mercurial/pvec.py
author Gregory Szorc <gregory.szorc@gmail.com>
Wed, 01 Aug 2018 13:00:45 -0700
changeset 47112 e7aa113b14f77959ad4039d873b57100a4d56b31
parent 37316 4462a981e8df8046e4c49aeb02d501cd192607b0
permissions -rw-r--r--
global: use pycompat.xrange() On Python 3, our module importer automatically rewrites xrange() to pycompat.xrange(). We want to move away from the custom importer on Python 3. This commit converts all instances of xrange() to use pycompat.xrange(). Differential Revision: https://phab.mercurial-scm.org/D4032

# pvec.py - probabilistic vector clocks for Mercurial
#
# Copyright 2012 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

'''
A "pvec" is a changeset property based on the theory of vector clocks
that can be compared to discover relatedness without consulting a
graph. This can be useful for tasks like determining how a
disconnected patch relates to a repository.

Currently a pvec consist of 448 bits, of which 24 are 'depth' and the
remainder are a bit vector. It is represented as a 70-character base85
string.

Construction:

- a root changeset has a depth of 0 and a bit vector based on its hash
- a normal commit has a changeset where depth is increased by one and
  one bit vector bit is flipped based on its hash
- a merge changeset pvec is constructed by copying changes from one pvec into
  the other to balance its depth

Properties:

- for linear changes, difference in depth is always <= hamming distance
- otherwise, changes are probably divergent
- when hamming distance is < 200, we can reliably detect when pvecs are near

Issues:

- hamming distance ceases to work over distances of ~ 200
- detecting divergence is less accurate when the common ancestor is very close
  to either revision or total distance is high
- this could probably be improved by modeling the relation between
  delta and hdist

Uses:

- a patch pvec can be used to locate the nearest available common ancestor for
  resolving conflicts
- ordering of patches can be established without a DAG
- two head pvecs can be compared to determine whether push/pull/merge is needed
  and approximately how many changesets are involved
- can be used to find a heuristic divergence measure between changesets on
  different branches
'''

from __future__ import absolute_import

from .node import nullrev
from . import (
    pycompat,
    util,
)

_size = 448 # 70 chars b85-encoded
_bytes = _size / 8
_depthbits = 24
_depthbytes = _depthbits / 8
_vecbytes = _bytes - _depthbytes
_vecbits = _vecbytes * 8
_radius = (_vecbits - 30) / 2 # high probability vectors are related

def _bin(bs):
    '''convert a bytestring to a long'''
    v = 0
    for b in bs:
        v = v * 256 + ord(b)
    return v

def _str(v, l):
    bs = ""
    for p in pycompat.xrange(l):
        bs = chr(v & 255) + bs
        v >>= 8
    return bs

def _split(b):
    '''depth and bitvec'''
    return _bin(b[:_depthbytes]), _bin(b[_depthbytes:])

def _join(depth, bitvec):
    return _str(depth, _depthbytes) + _str(bitvec, _vecbytes)

def _hweight(x):
    c = 0
    while x:
        if x & 1:
            c += 1
        x >>= 1
    return c
_htab = [_hweight(x) for x in pycompat.xrange(256)]

def _hamming(a, b):
    '''find the hamming distance between two longs'''
    d = a ^ b
    c = 0
    while d:
        c += _htab[d & 0xff]
        d >>= 8
    return c

def _mergevec(x, y, c):
    # Ideally, this function would be x ^ y ^ ancestor, but finding
    # ancestors is a nuisance. So instead we find the minimal number
    # of changes to balance the depth and hamming distance

    d1, v1 = x
    d2, v2 = y
    if d1 < d2:
        d1, d2, v1, v2 = d2, d1, v2, v1

    hdist = _hamming(v1, v2)
    ddist = d1 - d2
    v = v1
    m = v1 ^ v2 # mask of different bits
    i = 1

    if hdist > ddist:
        # if delta = 10 and hdist = 100, then we need to go up 55 steps
        # to the ancestor and down 45
        changes = (hdist - ddist + 1) / 2
    else:
        # must make at least one change
        changes = 1
    depth = d1 + changes

    # copy changes from v2
    if m:
        while changes:
            if m & i:
                v ^= i
                changes -= 1
            i <<= 1
    else:
        v = _flipbit(v, c)

    return depth, v

def _flipbit(v, node):
    # converting bit strings to longs is slow
    bit = (hash(node) & 0xffffffff) % _vecbits
    return v ^ (1<<bit)

def ctxpvec(ctx):
    '''construct a pvec for ctx while filling in the cache'''
    r = ctx.repo()
    if not util.safehasattr(r, "_pveccache"):
        r._pveccache = {}
    pvc = r._pveccache
    if ctx.rev() not in pvc:
        cl = r.changelog
        for n in pycompat.xrange(ctx.rev() + 1):
            if n not in pvc:
                node = cl.node(n)
                p1, p2 = cl.parentrevs(n)
                if p1 == nullrev:
                    # start with a 'random' vector at root
                    pvc[n] = (0, _bin((node * 3)[:_vecbytes]))
                elif p2 == nullrev:
                    d, v = pvc[p1]
                    pvc[n] = (d + 1, _flipbit(v, node))
                else:
                    pvc[n] = _mergevec(pvc[p1], pvc[p2], node)
    bs = _join(*pvc[ctx.rev()])
    return pvec(util.b85encode(bs))

class pvec(object):
    def __init__(self, hashorctx):
        if isinstance(hashorctx, str):
            self._bs = hashorctx
            self._depth, self._vec = _split(util.b85decode(hashorctx))
        else:
            self._vec = ctxpvec(hashorctx)

    def __str__(self):
        return self._bs

    def __eq__(self, b):
        return self._vec == b._vec and self._depth == b._depth

    def __lt__(self, b):
        delta = b._depth - self._depth
        if delta < 0:
            return False # always correct
        if _hamming(self._vec, b._vec) > delta:
            return False
        return True

    def __gt__(self, b):
        return b < self

    def __or__(self, b):
        delta = abs(b._depth - self._depth)
        if _hamming(self._vec, b._vec) <= delta:
            return False
        return True

    def __sub__(self, b):
        if self | b:
            raise ValueError("concurrent pvecs")
        return self._depth - b._depth

    def distance(self, b):
        d = abs(b._depth - self._depth)
        h = _hamming(self._vec, b._vec)
        return max(d, h)

    def near(self, b):
        dist = abs(b.depth - self._depth)
        if dist > _radius or _hamming(self._vec, b._vec) > _radius:
            return False