dom/push/PushCrypto.jsm
author Kris Maglione <maglione.k@gmail.com>
Wed, 24 Jan 2018 15:48:47 -0800
changeset 455769 d4a7c018420e408fbe0a13ffddd2861623fda5a7
parent 408436 7c9b4296270538c9156649969b32c137895d3c34
child 455772 cc87ad81ff86109c7ea0187424fa9a8ed3b4af6c
permissions -rw-r--r--
Bug 1431533: Part 5a - Auto-rewrite code to use ChromeUtils import methods. r=florian MozReview-Commit-ID: 8V1ZT53ReiP

/* jshint moz: true, esnext: true */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this file,
 * You can obtain one at http://mozilla.org/MPL/2.0/. */

'use strict';

const Cu = Components.utils;

ChromeUtils.import('resource://gre/modules/Services.jsm');
ChromeUtils.import('resource://gre/modules/XPCOMUtils.jsm');

XPCOMUtils.defineLazyGetter(this, 'gDOMBundle', () =>
  Services.strings.createBundle('chrome://global/locale/dom/dom.properties'));

Cu.importGlobalProperties(['crypto']);

this.EXPORTED_SYMBOLS = ['PushCrypto', 'concatArray'];

var UTF8 = new TextEncoder('utf-8');

var ECDH_KEY = { name: 'ECDH', namedCurve: 'P-256' };
var ECDSA_KEY =  { name: 'ECDSA', namedCurve: 'P-256' };

// A default keyid with a name that won't conflict with a real keyid.
var DEFAULT_KEYID = '';

/** Localized error property names. */

// `Encryption` header missing or malformed.
const BAD_ENCRYPTION_HEADER = 'PushMessageBadEncryptionHeader';
// `Crypto-Key` or legacy `Encryption-Key` header missing.
const BAD_CRYPTO_KEY_HEADER = 'PushMessageBadCryptoKeyHeader';
const BAD_ENCRYPTION_KEY_HEADER = 'PushMessageBadEncryptionKeyHeader';
// `Content-Encoding` header missing or contains unsupported encoding.
const BAD_ENCODING_HEADER = 'PushMessageBadEncodingHeader';
// `dh` parameter of `Crypto-Key` header missing or not base64url-encoded.
const BAD_DH_PARAM = 'PushMessageBadSenderKey';
// `salt` parameter of `Encryption` header missing or not base64url-encoded.
const BAD_SALT_PARAM = 'PushMessageBadSalt';
// `rs` parameter of `Encryption` header not a number or less than pad size.
const BAD_RS_PARAM = 'PushMessageBadRecordSize';
// Invalid or insufficient padding for encrypted chunk.
const BAD_PADDING = 'PushMessageBadPaddingError';
// Generic crypto error.
const BAD_CRYPTO = 'PushMessageBadCryptoError';

class CryptoError extends Error {
  /**
   * Creates an error object indicating an incoming push message could not be
   * decrypted.
   *
   * @param {String} message A human-readable error message. This is only for
   * internal module logging, and doesn't need to be localized.
   * @param {String} property The localized property name from `dom.properties`.
   * @param {String...} params Substitutions to insert into the localized
   *  string.
   */
  constructor(message, property, ...params) {
    super(message);
    this.isCryptoError = true;
    this.property = property;
    this.params = params;
  }

  /**
   * Formats a localized string for reporting decryption errors to the Web
   * Console.
   *
   * @param {String} scope The scope of the service worker receiving the
   *  message, prepended to any other substitutions in the string.
   * @returns {String} The localized string.
   */
  format(scope) {
    let params = [scope, ...this.params].map(String);
    return gDOMBundle.formatStringFromName(this.property, params,
                                           params.length);
  }
}

function getEncryptionKeyParams(encryptKeyField) {
  if (!encryptKeyField) {
    return null;
  }
  var params = encryptKeyField.split(',');
  return params.reduce((m, p) => {
    var pmap = p.split(';').reduce(parseHeaderFieldParams, {});
    if (pmap.keyid && pmap.dh) {
      m[pmap.keyid] = pmap.dh;
    }
    if (!m[DEFAULT_KEYID] && pmap.dh) {
      m[DEFAULT_KEYID] = pmap.dh;
    }
    return m;
  }, {});
}

function getEncryptionParams(encryptField) {
  if (!encryptField) {
    throw new CryptoError('Missing encryption header',
                          BAD_ENCRYPTION_HEADER);
  }
  var p = encryptField.split(',', 1)[0];
  if (!p) {
    throw new CryptoError('Encryption header missing params',
                          BAD_ENCRYPTION_HEADER);
  }
  return p.split(';').reduce(parseHeaderFieldParams, {});
}

// Extracts the sender public key, salt, and record size from the payload for the
// aes128gcm scheme.
function getCryptoParamsFromPayload(payload) {
  if (payload.byteLength < 21) {
    throw new CryptoError('Truncated header', BAD_CRYPTO);
  }
  let rs = (payload[16] << 24) | (payload[17] << 16) | (payload[18] << 8) | payload[19];
  let keyIdLen = payload[20];
  if (keyIdLen != 65) {
    throw new CryptoError('Invalid sender public key', BAD_DH_PARAM);
  }
  if (payload.byteLength <= 21 + keyIdLen) {
    throw new CryptoError('Truncated payload', BAD_CRYPTO);
  }
  return {
    salt: payload.slice(0, 16),
    rs: rs,
    senderKey: payload.slice(21, 21 + keyIdLen),
    ciphertext: payload.slice(21 + keyIdLen),
  };
}

// Extracts the sender public key, salt, and record size from the `Crypto-Key`,
// `Encryption-Key`, and `Encryption` headers for the aesgcm and aesgcm128
// schemes.
function getCryptoParamsFromHeaders(headers) {
  if (!headers) {
    return null;
  }

  var keymap;
  if (headers.encoding == AESGCM_ENCODING) {
    // aesgcm uses the Crypto-Key header, 2 bytes for the pad length, and an
    // authentication secret.
    // https://tools.ietf.org/html/draft-ietf-httpbis-encryption-encoding-01
    keymap = getEncryptionKeyParams(headers.crypto_key);
    if (!keymap) {
      throw new CryptoError('Missing Crypto-Key header',
                            BAD_CRYPTO_KEY_HEADER);
    }
  } else if (headers.encoding == AESGCM128_ENCODING) {
    // aesgcm128 uses Encryption-Key, 1 byte for the pad length, and no secret.
    // https://tools.ietf.org/html/draft-thomson-http-encryption-02
    keymap = getEncryptionKeyParams(headers.encryption_key);
    if (!keymap) {
      throw new CryptoError('Missing Encryption-Key header',
                            BAD_ENCRYPTION_KEY_HEADER);
    }
  }

  var enc = getEncryptionParams(headers.encryption);
  var dh = keymap[enc.keyid || DEFAULT_KEYID];
  var senderKey = base64URLDecode(dh);
  if (!senderKey) {
    throw new CryptoError('Invalid dh parameter', BAD_DH_PARAM);
  }

  var salt = base64URLDecode(enc.salt);
  if (!salt) {
    throw new CryptoError('Invalid salt parameter', BAD_SALT_PARAM);
  }
  var rs = enc.rs ? parseInt(enc.rs, 10) : 4096;
  if (isNaN(rs)) {
    throw new CryptoError('rs parameter must be a number', BAD_RS_PARAM);
  }
  return {
    salt: salt,
    rs: rs,
    senderKey: senderKey,
  };
}

// Decodes an unpadded, base64url-encoded string.
function base64URLDecode(string) {
  if (!string) {
    return null;
  }
  try {
    return ChromeUtils.base64URLDecode(string, {
      // draft-ietf-httpbis-encryption-encoding-01 prohibits padding.
      padding: 'reject',
    });
  } catch (ex) {}
  return null;
}

var parseHeaderFieldParams = (m, v) => {
  var i = v.indexOf('=');
  if (i >= 0) {
    // A quoted string with internal quotes is invalid for all the possible
    // values of this header field.
    m[v.substring(0, i).trim()] = v.substring(i + 1).trim()
                                   .replace(/^"(.*)"$/, '$1');
  }
  return m;
};

function chunkArray(array, size) {
  var start = array.byteOffset || 0;
  array = array.buffer || array;
  var index = 0;
  var result = [];
  while(index + size <= array.byteLength) {
    result.push(new Uint8Array(array, start + index, size));
    index += size;
  }
  if (index < array.byteLength) {
    result.push(new Uint8Array(array, start + index));
  }
  return result;
}

this.concatArray = function(arrays) {
  var size = arrays.reduce((total, a) => total + a.byteLength, 0);
  var index = 0;
  return arrays.reduce((result, a) => {
    result.set(new Uint8Array(a), index);
    index += a.byteLength;
    return result;
  }, new Uint8Array(size));
};

var HMAC_SHA256 = { name: 'HMAC', hash: 'SHA-256' };

function hmac(key) {
  this.keyPromise = crypto.subtle.importKey('raw', key, HMAC_SHA256,
                                            false, ['sign']);
}

hmac.prototype.hash = function(input) {
  return this.keyPromise.then(k => crypto.subtle.sign('HMAC', k, input));
};

function hkdf(salt, ikm) {
  this.prkhPromise = new hmac(salt).hash(ikm)
    .then(prk => new hmac(prk));
}

hkdf.prototype.extract = function(info, len) {
  var input = concatArray([info, new Uint8Array([1])]);
  return this.prkhPromise
    .then(prkh => prkh.hash(input))
    .then(h => {
      if (h.byteLength < len) {
        throw new CryptoError('HKDF length is too long', BAD_CRYPTO);
      }
      return h.slice(0, len);
    });
};

/* generate a 96-bit nonce for use in GCM, 48-bits of which are populated */
function generateNonce(base, index) {
  if (index >= Math.pow(2, 48)) {
    throw new CryptoError('Nonce index is too large', BAD_CRYPTO);
  }
  var nonce = base.slice(0, 12);
  nonce = new Uint8Array(nonce);
  for (var i = 0; i < 6; ++i) {
    nonce[nonce.byteLength - 1 - i] ^= (index / Math.pow(256, i)) & 0xff;
  }
  return nonce;
}

function encodeLength(buffer) {
  return new Uint8Array([0, buffer.byteLength]);
}

var NONCE_INFO = UTF8.encode('Content-Encoding: nonce');

class Decoder {
  /**
   * Creates a decoder for decrypting an incoming push message.
   *
   * @param {JsonWebKey} privateKey The static subscription private key.
   * @param {BufferSource} publicKey The static subscription public key.
   * @param {BufferSource} authenticationSecret The subscription authentication
   *  secret, or `null` if not used by the scheme.
   * @param {Object} cryptoParams An object containing the ephemeral sender
   *  public key, salt, and record size.
   * @param {BufferSource} ciphertext The encrypted message data.
   */
  constructor(privateKey, publicKey, authenticationSecret, cryptoParams,
              ciphertext) {
    this.privateKey = privateKey;
    this.publicKey = publicKey;
    this.authenticationSecret = authenticationSecret;
    this.senderKey = cryptoParams.senderKey;
    this.salt = cryptoParams.salt;
    this.rs = cryptoParams.rs;
    this.ciphertext = ciphertext;
  }

  /**
   * Derives the decryption keys and decodes the push message.
   *
   * @throws {CryptoError} if decryption fails.
   * @returns {Uint8Array} The decrypted message data.
   */
  async decode() {
    if (this.ciphertext.byteLength === 0) {
      // Zero length messages will be passed as null.
      return null;
    }
    try {
      let ikm = await this.computeSharedSecret();
      let [gcmBits, nonce] = await this.deriveKeyAndNonce(ikm);
      let key = await crypto.subtle.importKey('raw', gcmBits, 'AES-GCM', false,
                                              ['decrypt']);

      let r = await Promise.all(chunkArray(this.ciphertext, this.chunkSize)
        .map((slice, index, chunks) => this.decodeChunk(slice, index, nonce,
          key, index >= chunks.length - 1)));

      return concatArray(r);
    } catch (error) {
      if (error.isCryptoError) {
        throw error;
      }
      // Web Crypto returns an unhelpful "operation failed for an
      // operation-specific reason" error if decryption fails. We don't have
      // context about what went wrong, so we throw a generic error instead.
      throw new CryptoError('Bad encryption', BAD_CRYPTO);
    }
  }

  /**
   * Computes the ECDH shared secret, used as the input key material for HKDF.
   *
   * @throws if the static or ephemeral ECDH keys are invalid.
   * @returns {ArrayBuffer} The shared secret.
   */
  async computeSharedSecret() {
    let [appServerKey, subscriptionPrivateKey] = await Promise.all([
      crypto.subtle.importKey('raw', this.senderKey, ECDH_KEY,
                              false, ['deriveBits']),
      crypto.subtle.importKey('jwk', this.privateKey, ECDH_KEY,
                              false, ['deriveBits'])
    ]);
    return crypto.subtle.deriveBits({ name: 'ECDH', public: appServerKey },
                                    subscriptionPrivateKey, 256);
  }

  /**
   * Derives the content encryption key and nonce.
   *
   * @param {BufferSource} ikm The ECDH shared secret.
   * @returns {Array} A `[gcmBits, nonce]` tuple.
   */
  async deriveKeyAndNonce(ikm) {
    throw new Error('Missing `deriveKeyAndNonce` implementation');
  }

  /**
   * Decrypts and removes padding from an encrypted record.
   *
   * @throws {CryptoError} if decryption fails or padding is incorrect.
   * @param {Uint8Array} slice The encrypted record.
   * @param {Number} index The record sequence number.
   * @param {Uint8Array} nonce The nonce base, used to generate the IV.
   * @param {Uint8Array} key The content encryption key.
   * @param {Boolean} last Indicates if this is the final record.
   * @returns {Uint8Array} The decrypted block with padding removed.
   */
  async decodeChunk(slice, index, nonce, key, last) {
    let params = {
      name: 'AES-GCM',
      iv: generateNonce(nonce, index)
    };
    let decoded = await crypto.subtle.decrypt(params, key, slice);
    return this.unpadChunk(new Uint8Array(decoded), last);
  }

  /**
   * Removes padding from a decrypted block.
   *
   * @throws {CryptoError} if padding is missing or invalid.
   * @param {Uint8Array} chunk The decrypted block with padding.
   * @returns {Uint8Array} The block with padding removed.
   */
  unpadChunk(chunk, last) {
    throw new Error('Missing `unpadChunk` implementation');
  }

  /** The record chunking size. */
  get chunkSize() {
    throw new Error('Missing `chunkSize` implementation');
  }
}

class OldSchemeDecoder extends Decoder {
  async decode() {
    // For aesgcm and aesgcm128, the ciphertext length can't fall on a record
    // boundary.
    if (this.ciphertext.byteLength > 0 &&
        this.ciphertext.byteLength % this.chunkSize === 0) {
      throw new CryptoError('Encrypted data truncated', BAD_CRYPTO);
    }
    return super.decode();
  }

  /**
   * For aesgcm, the padding length is a 16-bit unsigned big endian integer.
   * For aesgcm128, the padding is an 8-bit integer.
   */
  unpadChunk(decoded) {
    if (decoded.length < this.padSize) {
      throw new CryptoError('Decoded array is too short!', BAD_PADDING);
    }
    var pad = decoded[0]
    if (this.padSize == 2) {
      pad = (pad << 8) | decoded[1];
    }
    if (pad > decoded.length - this.padSize) {
      throw new CryptoError('Padding is wrong!', BAD_PADDING);
    }
    // All padded bytes must be zero except the first one.
    for (var i = this.padSize; i < this.padSize + pad; i++) {
      if (decoded[i] !== 0) {
        throw new CryptoError('Padding is wrong!', BAD_PADDING);
      }
    }
    return decoded.slice(pad + this.padSize);
  }

  /**
   * aesgcm and aesgcm128 don't account for the authentication tag as part of
   * the record size.
   */
  get chunkSize() {
    return this.rs + 16;
  }

  get padSize() {
    throw new Error('Missing `padSize` implementation');
  }
}

/** New encryption scheme (draft-ietf-httpbis-encryption-encoding-06). */

var AES128GCM_ENCODING = 'aes128gcm';
var AES128GCM_KEY_INFO = UTF8.encode('Content-Encoding: aes128gcm\0');
var AES128GCM_AUTH_INFO = UTF8.encode('WebPush: info\0');

class aes128gcmDecoder extends Decoder {
  /**
   * Derives the aes128gcm decryption key and nonce. The PRK info string for
   * HKDF is "WebPush: info\0", followed by the unprefixed receiver and sender
   * public keys.
   */
  async deriveKeyAndNonce(ikm) {
    let authKdf = new hkdf(this.authenticationSecret, ikm);
    let authInfo = concatArray([
      AES128GCM_AUTH_INFO,
      this.publicKey,
      this.senderKey
    ]);
    let prk = await authKdf.extract(authInfo, 32);
    let prkKdf = new hkdf(this.salt, prk);
    return Promise.all([
      prkKdf.extract(AES128GCM_KEY_INFO, 16),
      prkKdf.extract(concatArray([NONCE_INFO, new Uint8Array([0])]), 12)
    ]);
  }

  unpadChunk(decoded, last) {
    let length = decoded.length;
    while (length--) {
      if (decoded[length] === 0) {
        continue;
      }
      let recordPad = last ? 2 : 1;
      if (decoded[length] != recordPad) {
        throw new CryptoError('Padding is wrong!', BAD_PADDING);
      }
      return decoded.slice(0, length);
    }
    throw new CryptoError('Zero plaintext', BAD_PADDING);
  }

  /** aes128gcm accounts for the authentication tag in the record size. */
  get chunkSize() {
    return this.rs;
  }
}

/** Older encryption scheme (draft-ietf-httpbis-encryption-encoding-01). */

var AESGCM_ENCODING = 'aesgcm';
var AESGCM_KEY_INFO = UTF8.encode('Content-Encoding: aesgcm\0');
var AESGCM_AUTH_INFO = UTF8.encode('Content-Encoding: auth\0'); // note nul-terminus
var AESGCM_P256DH_INFO = UTF8.encode('P-256\0');

class aesgcmDecoder extends OldSchemeDecoder {
  /**
   * Derives the aesgcm decryption key and nonce. We mix the authentication
   * secret with the ikm using HKDF. The context string for the PRK is
   * "Content-Encoding: auth\0". The context string for the key and nonce is
   * "Content-Encoding: <blah>\0P-256\0" then the length and value of both the
   * receiver key and sender key.
   */
  async deriveKeyAndNonce(ikm) {
    // Since we are using an authentication secret, we need to run an extra
    // round of HKDF with the authentication secret as salt.
    let authKdf = new hkdf(this.authenticationSecret, ikm);
    let prk = await authKdf.extract(AESGCM_AUTH_INFO, 32);
    let prkKdf = new hkdf(this.salt, prk);
    let keyInfo = concatArray([
      AESGCM_KEY_INFO, AESGCM_P256DH_INFO,
      encodeLength(this.publicKey), this.publicKey,
      encodeLength(this.senderKey), this.senderKey
    ]);
    let nonceInfo = concatArray([
      NONCE_INFO, new Uint8Array([0]), AESGCM_P256DH_INFO,
      encodeLength(this.publicKey), this.publicKey,
      encodeLength(this.senderKey), this.senderKey
    ]);
    return Promise.all([
      prkKdf.extract(keyInfo, 16),
      prkKdf.extract(nonceInfo, 12)
    ]);
  }

  get padSize() {
    return 2;
  }
}

/** Oldest encryption scheme (draft-thomson-http-encryption-02). */

var AESGCM128_ENCODING = 'aesgcm128';
var AESGCM128_KEY_INFO = UTF8.encode('Content-Encoding: aesgcm128');

class aesgcm128Decoder extends OldSchemeDecoder {
  constructor(privateKey, publicKey, cryptoParams, ciphertext) {
    super(privateKey, publicKey, null, cryptoParams, ciphertext);
  }

  /**
   * The aesgcm128 scheme ignores the authentication secret, and uses
   * "Content-Encoding: <blah>" for the context string. It should eventually
   * be removed: bug 1230038.
   */
  deriveKeyAndNonce(ikm) {
    let prkKdf = new hkdf(this.salt, ikm);
    return Promise.all([
      prkKdf.extract(AESGCM128_KEY_INFO, 16),
      prkKdf.extract(NONCE_INFO, 12)
    ]);
  }

  get padSize() {
    return 1;
  }
}

this.PushCrypto = {

  generateAuthenticationSecret() {
    return crypto.getRandomValues(new Uint8Array(16));
  },

  validateAppServerKey(key) {
    return crypto.subtle.importKey('raw', key, ECDSA_KEY,
                                   true, ['verify'])
      .then(_ => key);
  },

  generateKeys() {
    return crypto.subtle.generateKey(ECDH_KEY, true, ['deriveBits'])
      .then(cryptoKey =>
         Promise.all([
           crypto.subtle.exportKey('raw', cryptoKey.publicKey),
           crypto.subtle.exportKey('jwk', cryptoKey.privateKey)
         ]));
  },

  /**
   * Decrypts a push message.
   *
   * @throws {CryptoError} if decryption fails.
   * @param {JsonWebKey} privateKey The ECDH private key of the subscription
   *  receiving the message, in JWK form.
   * @param {BufferSource} publicKey The ECDH public key of the subscription
   *  receiving the message, in raw form.
   * @param {BufferSource} authenticationSecret The 16-byte shared
   *  authentication secret of the subscription receiving the message.
   * @param {Object} headers The encryption headers from the push server.
   * @param {BufferSource} payload The encrypted message payload.
   * @returns {Uint8Array} The decrypted message data.
   */
  async decrypt(privateKey, publicKey, authenticationSecret, headers, payload) {
    if (!headers) {
      return null;
    }

    let encoding = headers.encoding;
    if (!headers.encoding) {
      throw new CryptoError('Missing Content-Encoding header',
                            BAD_ENCODING_HEADER);
    }

    let decoder;
    if (encoding == AES128GCM_ENCODING) {
      // aes128gcm includes the salt, record size, and sender public key in a
      // binary header preceding the ciphertext.
      let cryptoParams = getCryptoParamsFromPayload(new Uint8Array(payload));
      decoder = new aes128gcmDecoder(privateKey, publicKey,
                                     authenticationSecret, cryptoParams,
                                     cryptoParams.ciphertext);
    } else if (encoding == AESGCM128_ENCODING || encoding == AESGCM_ENCODING) {
      // aesgcm and aesgcm128 include the salt, record size, and sender public
      // key in the `Crypto-Key` and `Encryption` HTTP headers.
      let cryptoParams = getCryptoParamsFromHeaders(headers);
      if (headers.encoding == AESGCM_ENCODING) {
        decoder = new aesgcmDecoder(privateKey, publicKey, authenticationSecret,
                                    cryptoParams, payload);
      } else {
        decoder = new aesgcm128Decoder(privateKey, publicKey, cryptoParams,
                                       payload);
      }
    }

    if (!decoder) {
      throw new CryptoError('Unsupported Content-Encoding: ' + encoding,
                            BAD_ENCODING_HEADER);
    }

    return decoder.decode();
  },
};