mozglue/linker/Utils.h
author David Anderson <danderson@mozilla.com>
Wed, 22 Aug 2012 16:09:24 -0700
changeset 106704 c4f83d9d8243f3f853a5356188164a5fddee2b5a
parent 100862 3c34aa0c81f7541a12c64ab32132f7c26908239a
child 112467 e587aa26326e603d0b282e266d3737b9d37ad677
permissions -rw-r--r--
Merge from mozilla-central.

/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this file,
 * You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef Utils_h
#define Utils_h

#include <stdint.h>
#include <stddef.h>
#include <sys/mman.h>
#include <unistd.h>
#include "mozilla/Assertions.h"
#include "mozilla/Scoped.h"

/**
 * On architectures that are little endian and that support unaligned reads,
 * we can use direct type, but on others, we want to have a special class
 * to handle conversion and alignment issues.
 */
#if !defined(DEBUG) && (defined(__i386__) || defined(__x86_64__))
typedef uint16_t le_uint16;
typedef uint32_t le_uint32;
#else

/**
 * Template that allows to find an unsigned int type from a (computed) bit size
 */
template <int s> struct UInt { };
template <> struct UInt<16> { typedef uint16_t Type; };
template <> struct UInt<32> { typedef uint32_t Type; };

/**
 * Template to access 2 n-bit sized words as a 2*n-bit sized word, doing
 * conversion from little endian and avoiding alignment issues.
 */
template <typename T>
class le_to_cpu
{
public:
  typedef typename UInt<16 * sizeof(T)>::Type Type;

  operator Type() const
  {
    return (b << (sizeof(T) * 8)) | a;
  }

  const le_to_cpu& operator =(const Type &v)
  {
    a = v & ((1 << (sizeof(T) * 8)) - 1);
    b = v >> (sizeof(T) * 8);
    return *this;
  }

  le_to_cpu() { }
  le_to_cpu(const Type &v)
  {
    operator =(v);
  }

  const le_to_cpu& operator +=(const Type &v)
  {
    return operator =(operator Type() + v);
  }

  const le_to_cpu& operator ++(int)
  {
    return operator =(operator Type() + 1);
  }

private:
  T a, b;
};

/**
 * Type definitions
 */
typedef le_to_cpu<unsigned char> le_uint16;
typedef le_to_cpu<le_uint16> le_uint32;
#endif


/**
 * AutoCloseFD is a RAII wrapper for POSIX file descriptors
 */
struct AutoCloseFDTraits
{
  typedef int type;
  static int empty() { return -1; }
  static void release(int fd) { close(fd); }
};
typedef mozilla::Scoped<AutoCloseFDTraits> AutoCloseFD;


/**
 * MappedPtr is a RAII wrapper for mmap()ed memory. It can be used as
 * a simple void * or unsigned char *.
 *
 * It is defined as a derivative of a template that allows to use a
 * different unmapping strategy.
 */
template <typename T>
class GenericMappedPtr
{
public:
  GenericMappedPtr(void *buf, size_t length): buf(buf), length(length) { }
  GenericMappedPtr(): buf(MAP_FAILED), length(0) { }

  void Assign(void *b, size_t len) {
    if (buf != MAP_FAILED)
      static_cast<T *>(this)->munmap(buf, length);
    buf = b;
    length = len;
  }

  ~GenericMappedPtr()
  {
    if (buf != MAP_FAILED)
      static_cast<T *>(this)->munmap(buf, length);
  }

  operator void *() const
  {
    return buf;
  }

  operator unsigned char *() const
  {
    return reinterpret_cast<unsigned char *>(buf);
  }

  bool operator ==(void *ptr) const {
    return buf == ptr;
  }

  bool operator ==(unsigned char *ptr) const {
    return buf == ptr;
  }

  void *operator +(off_t offset) const
  {
    return reinterpret_cast<char *>(buf) + offset;
  }

  /**
   * Returns whether the given address is within the mapped range
   */
  bool Contains(void *ptr) const
  {
    return (ptr >= buf) && (ptr < reinterpret_cast<char *>(buf) + length);
  }

  /**
   * Returns the length of the mapped range
   */
  size_t GetLength() const
  {
    return length;
  }

private:
  void *buf;
  size_t length;
};

struct MappedPtr: public GenericMappedPtr<MappedPtr>
{
  MappedPtr(void *buf, size_t length)
  : GenericMappedPtr<MappedPtr>(buf, length) { }
  MappedPtr(): GenericMappedPtr<MappedPtr>() { }

private:
  friend class GenericMappedPtr<MappedPtr>;
  void munmap(void *buf, size_t length)
  {
    ::munmap(buf, length);
  }
};

/**
 * UnsizedArray is a way to access raw arrays of data in memory.
 *
 *   struct S { ... };
 *   UnsizedArray<S> a(buf);
 *   UnsizedArray<S> b; b.Init(buf);
 *
 * This is roughly equivalent to
 *   const S *a = reinterpret_cast<const S *>(buf);
 *   const S *b = NULL; b = reinterpret_cast<const S *>(buf);
 *
 * An UnsizedArray has no known length, and it's up to the caller to make
 * sure the accessed memory is mapped and makes sense.
 */
template <typename T>
class UnsizedArray
{
public:
  typedef size_t idx_t;

  /**
   * Constructors and Initializers
   */
  UnsizedArray(): contents(NULL) { }
  UnsizedArray(const void *buf): contents(reinterpret_cast<const T *>(buf)) { }

  void Init(const void *buf)
  {
    MOZ_ASSERT(contents == NULL);
    contents = reinterpret_cast<const T *>(buf);
  }

  /**
   * Returns the nth element of the array
   */
  const T &operator[](const idx_t index) const
  {
    MOZ_ASSERT(contents);
    return contents[index];
  }

  /**
   * Returns whether the array points somewhere
   */
  operator bool() const
  {
    return contents != NULL;
  }
private:
  const T *contents;
};

/**
 * Array, like UnsizedArray, is a way to access raw arrays of data in memory.
 * Unlike UnsizedArray, it has a known length, and is enumerable with an
 * iterator.
 *
 *   struct S { ... };
 *   Array<S> a(buf, len);
 *   UnsizedArray<S> b; b.Init(buf, len);
 *
 * In the above examples, len is the number of elements in the array. It is
 * also possible to initialize an Array with the buffer size:
 *
 *   Array<S> c; c.InitSize(buf, size);
 *
 * It is also possible to initialize an Array in two steps, only providing
 * one data at a time:
 *
 *   Array<S> d;
 *   d.Init(buf);
 *   d.Init(len); // or d.InitSize(size);
 *
 */
template <typename T>
class Array: public UnsizedArray<T>
{
public:
  typedef typename UnsizedArray<T>::idx_t idx_t;

  /**
   * Constructors and Initializers
   */
  Array(): UnsizedArray<T>(), length(0) { }
  Array(const void *buf, const idx_t length)
  : UnsizedArray<T>(buf), length(length) { }

  void Init(const void *buf)
  {
    UnsizedArray<T>::Init(buf);
  }

  void Init(const idx_t len)
  {
    MOZ_ASSERT(length == 0);
    length = len;
  }

  void InitSize(const idx_t size)
  {
    Init(size / sizeof(T));
  }

  void Init(const void *buf, const idx_t len)
  {
    UnsizedArray<T>::Init(buf);
    Init(len);
  }

  void InitSize(const void *buf, const idx_t size)
  {
    UnsizedArray<T>::Init(buf);
    InitSize(size);
  }

  /**
   * Returns the nth element of the array
   */
  const T &operator[](const idx_t index) const
  {
    MOZ_ASSERT(index < length);
    MOZ_ASSERT(operator bool());
    return UnsizedArray<T>::operator[](index);
  }

  /**
   * Returns the number of elements in the array
   */
  idx_t numElements() const
  {
    return length;
  }

  /**
   * Returns whether the array points somewhere and has at least one element.
   */
  operator bool() const
  {
    return (length > 0) && UnsizedArray<T>::operator bool();
  }

  /**
   * Iterator for an Array. Use is similar to that of STL const_iterators:
   *
   *   struct S { ... };
   *   Array<S> a(buf, len);
   *   for (Array<S>::iterator it = a.begin(); it < a.end(); ++it) {
   *     // Do something with *it.
   *   }
   */
  class iterator
  {
  public:
    iterator(): item(NULL) { }

    const T &operator *() const
    {
      return *item;
    }

    const T *operator ->() const
    {
      return item;
    }

    iterator &operator ++()
    {
      ++item;
      return *this;
    }

    bool operator<(const iterator &other) const
    {
      return item < other.item;
    }
  protected:
    friend class Array<T>;
    iterator(const T &item): item(&item) { }

  private:
    const T *item;
  };

  /**
   * Returns an iterator pointing at the beginning of the Array
   */
  iterator begin() const {
    if (length)
      return iterator(UnsizedArray<T>::operator[](0));
    return iterator();
  }

  /**
   * Returns an iterator pointing past the end of the Array
   */
  iterator end() const {
    if (length)
      return iterator(UnsizedArray<T>::operator[](length));
    return iterator();
  }

  /**
   * Reverse iterator for an Array. Use is similar to that of STL
   * const_reverse_iterators:
   *
   *   struct S { ... };
   *   Array<S> a(buf, len);
   *   for (Array<S>::reverse_iterator it = a.rbegin(); it < a.rend(); ++it) {
   *     // Do something with *it.
   *   }
   */
  class reverse_iterator
  {
  public:
    reverse_iterator(): item(NULL) { }

    const T &operator *() const
    {
      const T *tmp = item;
      return *--tmp;
    }

    const T *operator ->() const
    {
      return &operator*();
    }

    reverse_iterator &operator ++()
    {
      --item;
      return *this;
    }

    bool operator<(const reverse_iterator &other) const
    {
      return item > other.item;
    }
  protected:
    friend class Array<T>;
    reverse_iterator(const T &item): item(&item) { }

  private:
    const T *item;
  };

  /**
   * Returns a reverse iterator pointing at the end of the Array
   */
  reverse_iterator rbegin() const {
    if (length)
      return reverse_iterator(UnsizedArray<T>::operator[](length));
    return reverse_iterator();
  }

  /**
   * Returns a reverse iterator pointing past the beginning of the Array
   */
  reverse_iterator rend() const {
    if (length)
      return reverse_iterator(UnsizedArray<T>::operator[](0));
    return reverse_iterator();
  }
private:
  idx_t length;
};

/**
 * Transforms a pointer-to-function to a pointer-to-object pointing at the
 * same address.
 */
template <typename T>
void *FunctionPtr(T func)
{
  union {
    void *ptr;
    T func;
  } f;
  f.func = func;
  return f.ptr;
}

#endif /* Utils_h */