Backed out changeset a5fc387c4622
authorBrian Crowder <crowder@fiverocks.com>
Thu, 24 Jul 2008 14:05:29 -0700
changeset 16185 bf197ed2b086f4b5b56f233195685f6045a26819
parent 16182 a5fc387c46227c0ee0eba99e86ddd60e07ee3467
child 16186 afcd085d73168a51208906704e0a145724388977
push idunknown
push userunknown
push dateunknown
milestone1.9.1a2pre
backs outa5fc387c46227c0ee0eba99e86ddd60e07ee3467
Backed out changeset a5fc387c4622
js/src/dtoa.c
js/src/jsapi.cpp
js/src/jsdtoa.cpp
js/src/jsdtoa.h
js/src/jsnum.cpp
deleted file mode 100644
--- a/js/src/dtoa.c
+++ /dev/null
@@ -1,3332 +0,0 @@
-/****************************************************************
- *
- * The author of this software is David M. Gay.
- *
- * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose without fee is hereby granted, provided that this entire notice
- * is included in all copies of any software which is or includes a copy
- * or modification of this software and in all copies of the supporting
- * documentation for such software.
- *
- * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
- * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
- * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
- * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
- *
- ***************************************************************/
-
-/* Please send bug reports to David M. Gay (dmg at acm dot org,
- * with " at " changed at "@" and " dot " changed to ".").	*/
-
-/* On a machine with IEEE extended-precision registers, it is
- * necessary to specify double-precision (53-bit) rounding precision
- * before invoking strtod or dtoa.  If the machine uses (the equivalent
- * of) Intel 80x87 arithmetic, the call
- *	_control87(PC_53, MCW_PC);
- * does this with many compilers.  Whether this or another call is
- * appropriate depends on the compiler; for this to work, it may be
- * necessary to #include "float.h" or another system-dependent header
- * file.
- */
-
-/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
- *
- * This strtod returns a nearest machine number to the input decimal
- * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
- * broken by the IEEE round-even rule.  Otherwise ties are broken by
- * biased rounding (add half and chop).
- *
- * Inspired loosely by William D. Clinger's paper "How to Read Floating
- * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
- *
- * Modifications:
- *
- *	1. We only require IEEE, IBM, or VAX double-precision
- *		arithmetic (not IEEE double-extended).
- *	2. We get by with floating-point arithmetic in a case that
- *		Clinger missed -- when we're computing d * 10^n
- *		for a small integer d and the integer n is not too
- *		much larger than 22 (the maximum integer k for which
- *		we can represent 10^k exactly), we may be able to
- *		compute (d*10^k) * 10^(e-k) with just one roundoff.
- *	3. Rather than a bit-at-a-time adjustment of the binary
- *		result in the hard case, we use floating-point
- *		arithmetic to determine the adjustment to within
- *		one bit; only in really hard cases do we need to
- *		compute a second residual.
- *	4. Because of 3., we don't need a large table of powers of 10
- *		for ten-to-e (just some small tables, e.g. of 10^k
- *		for 0 <= k <= 22).
- */
-
-/*
- * #define IEEE_8087 for IEEE-arithmetic machines where the least
- *	significant byte has the lowest address.
- * #define IEEE_MC68k for IEEE-arithmetic machines where the most
- *	significant byte has the lowest address.
- * #define Long int on machines with 32-bit ints and 64-bit longs.
- * #define IBM for IBM mainframe-style floating-point arithmetic.
- * #define VAX for VAX-style floating-point arithmetic (D_floating).
- * #define No_leftright to omit left-right logic in fast floating-point
- *	computation of dtoa.
- * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
- *	and strtod and dtoa should round accordingly.
- * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
- *	and Honor_FLT_ROUNDS is not #defined.
- * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
- *	that use extended-precision instructions to compute rounded
- *	products and quotients) with IBM.
- * #define ROUND_BIASED for IEEE-format with biased rounding.
- * #define Inaccurate_Divide for IEEE-format with correctly rounded
- *	products but inaccurate quotients, e.g., for Intel i860.
- * #define NO_LONG_LONG on machines that do not have a "long long"
- *	integer type (of >= 64 bits).  On such machines, you can
- *	#define Just_16 to store 16 bits per 32-bit Long when doing
- *	high-precision integer arithmetic.  Whether this speeds things
- *	up or slows things down depends on the machine and the number
- *	being converted.  If long long is available and the name is
- *	something other than "long long", #define Llong to be the name,
- *	and if "unsigned Llong" does not work as an unsigned version of
- *	Llong, #define #ULLong to be the corresponding unsigned type.
- * #define KR_headers for old-style C function headers.
- * #define Bad_float_h if your system lacks a float.h or if it does not
- *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
- *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
- * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
- *	if memory is available and otherwise does something you deem
- *	appropriate.  If MALLOC is undefined, malloc will be invoked
- *	directly -- and assumed always to succeed.
- * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
- *	memory allocations from a private pool of memory when possible.
- *	When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
- *	unless #defined to be a different length.  This default length
- *	suffices to get rid of MALLOC calls except for unusual cases,
- *	such as decimal-to-binary conversion of a very long string of
- *	digits.  The longest string dtoa can return is about 751 bytes
- *	long.  For conversions by strtod of strings of 800 digits and
- *	all dtoa conversions in single-threaded executions with 8-byte
- *	pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
- *	pointers, PRIVATE_MEM >= 7112 appears adequate.
- * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
- *	#defined automatically on IEEE systems.  On such systems,
- *	when INFNAN_CHECK is #defined, strtod checks
- *	for Infinity and NaN (case insensitively).  On some systems
- *	(e.g., some HP systems), it may be necessary to #define NAN_WORD0
- *	appropriately -- to the most significant word of a quiet NaN.
- *	(On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
- *	When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
- *	strtod also accepts (case insensitively) strings of the form
- *	NaN(x), where x is a string of hexadecimal digits and spaces;
- *	if there is only one string of hexadecimal digits, it is taken
- *	for the 52 fraction bits of the resulting NaN; if there are two
- *	or more strings of hex digits, the first is for the high 20 bits,
- *	the second and subsequent for the low 32 bits, with intervening
- *	white space ignored; but if this results in none of the 52
- *	fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
- *	and NAN_WORD1 are used instead.
- * #define MULTIPLE_THREADS if the system offers preemptively scheduled
- *	multiple threads.  In this case, you must provide (or suitably
- *	#define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
- *	by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
- *	in pow5mult, ensures lazy evaluation of only one copy of high
- *	powers of 5; omitting this lock would introduce a small
- *	probability of wasting memory, but would otherwise be harmless.)
- *	You must also invoke freedtoa(s) to free the value s returned by
- *	dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
- * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
- *	avoids underflows on inputs whose result does not underflow.
- *	If you #define NO_IEEE_Scale on a machine that uses IEEE-format
- *	floating-point numbers and flushes underflows to zero rather
- *	than implementing gradual underflow, then you must also #define
- *	Sudden_Underflow.
- * #define YES_ALIAS to permit aliasing certain double values with
- *	arrays of ULongs.  This leads to slightly better code with
- *	some compilers and was always used prior to 19990916, but it
- *	is not strictly legal and can cause trouble with aggressively
- *	optimizing compilers (e.g., gcc 2.95.1 under -O2).
- * #define USE_LOCALE to use the current locale's decimal_point value.
- * #define SET_INEXACT if IEEE arithmetic is being used and extra
- *	computation should be done to set the inexact flag when the
- *	result is inexact and avoid setting inexact when the result
- *	is exact.  In this case, dtoa.c must be compiled in
- *	an environment, perhaps provided by #include "dtoa.c" in a
- *	suitable wrapper, that defines two functions,
- *		int get_inexact(void);
- *		void clear_inexact(void);
- *	such that get_inexact() returns a nonzero value if the
- *	inexact bit is already set, and clear_inexact() sets the
- *	inexact bit to 0.  When SET_INEXACT is #defined, strtod
- *	also does extra computations to set the underflow and overflow
- *	flags when appropriate (i.e., when the result is tiny and
- *	inexact or when it is a numeric value rounded to +-infinity).
- * #define NO_ERRNO if strtod should not assign errno = ERANGE when
- *	the result overflows to +-Infinity or underflows to 0.
- */
-
-#ifndef Long
-#define Long long
-#endif
-#ifndef ULong
-typedef unsigned Long ULong;
-#endif
-
-#ifdef DEBUG
-#include "stdio.h"
-#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
-#endif
-
-#include "stdlib.h"
-#include "string.h"
-
-#ifdef USE_LOCALE
-#include "locale.h"
-#endif
-
-#ifdef MALLOC
-#ifdef KR_headers
-extern char *MALLOC();
-#else
-extern void *MALLOC(size_t);
-#endif
-#else
-#define MALLOC malloc
-#endif
-
-#ifndef Omit_Private_Memory
-#ifndef PRIVATE_MEM
-#define PRIVATE_MEM 2304
-#endif
-#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
-static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
-#endif
-
-#undef IEEE_Arith
-#undef Avoid_Underflow
-#ifdef IEEE_MC68k
-#define IEEE_Arith
-#endif
-#ifdef IEEE_8087
-#define IEEE_Arith
-#endif
-
-#ifdef IEEE_Arith
-#ifndef NO_INFNAN_CHECK
-#undef INFNAN_CHECK
-#define INFNAN_CHECK
-#endif
-#else
-#undef INFNAN_CHECK
-#endif
-
-#include "errno.h"
-
-#ifdef Bad_float_h
-
-#ifdef IEEE_Arith
-#define DBL_DIG 15
-#define DBL_MAX_10_EXP 308
-#define DBL_MAX_EXP 1024
-#define FLT_RADIX 2
-#endif /*IEEE_Arith*/
-
-#ifdef IBM
-#define DBL_DIG 16
-#define DBL_MAX_10_EXP 75
-#define DBL_MAX_EXP 63
-#define FLT_RADIX 16
-#define DBL_MAX 7.2370055773322621e+75
-#endif
-
-#ifdef VAX
-#define DBL_DIG 16
-#define DBL_MAX_10_EXP 38
-#define DBL_MAX_EXP 127
-#define FLT_RADIX 2
-#define DBL_MAX 1.7014118346046923e+38
-#endif
-
-#ifndef LONG_MAX
-#define LONG_MAX 2147483647
-#endif
-
-#else /* ifndef Bad_float_h */
-#include "float.h"
-#endif /* Bad_float_h */
-
-#ifndef __MATH_H__
-#include "math.h"
-#endif
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#ifndef CONST
-#ifdef KR_headers
-#define CONST /* blank */
-#else
-#define CONST const
-#endif
-#endif
-
-#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
-Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
-#endif
-
-typedef union { double d; ULong L[2]; } U;
-
-#ifdef YES_ALIAS
-#define dval(x) x
-#ifdef IEEE_8087
-#define word0(x) ((ULong *)&x)[1]
-#define word1(x) ((ULong *)&x)[0]
-#else
-#define word0(x) ((ULong *)&x)[0]
-#define word1(x) ((ULong *)&x)[1]
-#endif
-#else
-#ifdef IEEE_8087
-#define word0(x) ((U*)&x)->L[1]
-#define word1(x) ((U*)&x)->L[0]
-#else
-#define word0(x) ((U*)&x)->L[0]
-#define word1(x) ((U*)&x)->L[1]
-#endif
-#define dval(x) ((U*)&x)->d
-#endif
-
-/* The following definition of Storeinc is appropriate for MIPS processors.
- * An alternative that might be better on some machines is
- * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
- */
-#if defined(IEEE_8087) + defined(VAX)
-#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
-((unsigned short *)a)[0] = (unsigned short)c, a++)
-#else
-#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
-((unsigned short *)a)[1] = (unsigned short)c, a++)
-#endif
-
-/* #define P DBL_MANT_DIG */
-/* Ten_pmax = floor(P*log(2)/log(5)) */
-/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
-/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
-/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
-
-#ifdef IEEE_Arith
-#define Exp_shift  20
-#define Exp_shift1 20
-#define Exp_msk1    0x100000
-#define Exp_msk11   0x100000
-#define Exp_mask  0x7ff00000
-#define P 53
-#define Bias 1023
-#define Emin (-1022)
-#define Exp_1  0x3ff00000
-#define Exp_11 0x3ff00000
-#define Ebits 11
-#define Frac_mask  0xfffff
-#define Frac_mask1 0xfffff
-#define Ten_pmax 22
-#define Bletch 0x10
-#define Bndry_mask  0xfffff
-#define Bndry_mask1 0xfffff
-#define LSB 1
-#define Sign_bit 0x80000000
-#define Log2P 1
-#define Tiny0 0
-#define Tiny1 1
-#define Quick_max 14
-#define Int_max 14
-#ifndef NO_IEEE_Scale
-#define Avoid_Underflow
-#ifdef Flush_Denorm	/* debugging option */
-#undef Sudden_Underflow
-#endif
-#endif
-
-#ifndef Flt_Rounds
-#ifdef FLT_ROUNDS
-#define Flt_Rounds FLT_ROUNDS
-#else
-#define Flt_Rounds 1
-#endif
-#endif /*Flt_Rounds*/
-
-#ifdef Honor_FLT_ROUNDS
-#define Rounding rounding
-#undef Check_FLT_ROUNDS
-#define Check_FLT_ROUNDS
-#else
-#define Rounding Flt_Rounds
-#endif
-
-#else /* ifndef IEEE_Arith */
-#undef Check_FLT_ROUNDS
-#undef Honor_FLT_ROUNDS
-#undef SET_INEXACT
-#undef  Sudden_Underflow
-#define Sudden_Underflow
-#ifdef IBM
-#undef Flt_Rounds
-#define Flt_Rounds 0
-#define Exp_shift  24
-#define Exp_shift1 24
-#define Exp_msk1   0x1000000
-#define Exp_msk11  0x1000000
-#define Exp_mask  0x7f000000
-#define P 14
-#define Bias 65
-#define Exp_1  0x41000000
-#define Exp_11 0x41000000
-#define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
-#define Frac_mask  0xffffff
-#define Frac_mask1 0xffffff
-#define Bletch 4
-#define Ten_pmax 22
-#define Bndry_mask  0xefffff
-#define Bndry_mask1 0xffffff
-#define LSB 1
-#define Sign_bit 0x80000000
-#define Log2P 4
-#define Tiny0 0x100000
-#define Tiny1 0
-#define Quick_max 14
-#define Int_max 15
-#else /* VAX */
-#undef Flt_Rounds
-#define Flt_Rounds 1
-#define Exp_shift  23
-#define Exp_shift1 7
-#define Exp_msk1    0x80
-#define Exp_msk11   0x800000
-#define Exp_mask  0x7f80
-#define P 56
-#define Bias 129
-#define Exp_1  0x40800000
-#define Exp_11 0x4080
-#define Ebits 8
-#define Frac_mask  0x7fffff
-#define Frac_mask1 0xffff007f
-#define Ten_pmax 24
-#define Bletch 2
-#define Bndry_mask  0xffff007f
-#define Bndry_mask1 0xffff007f
-#define LSB 0x10000
-#define Sign_bit 0x8000
-#define Log2P 1
-#define Tiny0 0x80
-#define Tiny1 0
-#define Quick_max 15
-#define Int_max 15
-#endif /* IBM, VAX */
-#endif /* IEEE_Arith */
-
-#ifndef IEEE_Arith
-#define ROUND_BIASED
-#endif
-
-#ifdef RND_PRODQUOT
-#define rounded_product(a,b) a = rnd_prod(a, b)
-#define rounded_quotient(a,b) a = rnd_quot(a, b)
-#ifdef KR_headers
-extern double rnd_prod(), rnd_quot();
-#else
-extern double rnd_prod(double, double), rnd_quot(double, double);
-#endif
-#else
-#define rounded_product(a,b) a *= b
-#define rounded_quotient(a,b) a /= b
-#endif
-
-#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
-#define Big1 0xffffffff
-
-#ifndef Pack_32
-#define Pack_32
-#endif
-
-#ifdef KR_headers
-#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff)
-#else
-#define FFFFFFFF 0xffffffffUL
-#endif
-
-#ifdef NO_LONG_LONG
-#undef ULLong
-#ifdef Just_16
-#undef Pack_32
-/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
- * This makes some inner loops simpler and sometimes saves work
- * during multiplications, but it often seems to make things slightly
- * slower.  Hence the default is now to store 32 bits per Long.
- */
-#endif
-#else	/* long long available */
-#ifndef Llong
-#define Llong long long
-#endif
-#ifndef ULLong
-#define ULLong unsigned Llong
-#endif
-#endif /* NO_LONG_LONG */
-
-#ifndef MULTIPLE_THREADS
-#define ACQUIRE_DTOA_LOCK(n)	/*nothing*/
-#define FREE_DTOA_LOCK(n)	/*nothing*/
-#endif
-
-#define Kmax 15
-
- struct
-Bigint {
-	struct Bigint *next;
-	int k, maxwds, sign, wds;
-	ULong x[1];
-	};
-
- typedef struct Bigint Bigint;
-
- static Bigint *freelist[Kmax+1];
-
- static Bigint *
-Balloc
-#ifdef KR_headers
-	(k) int k;
-#else
-	(int k)
-#endif
-{
-	int x;
-	Bigint *rv;
-#ifndef Omit_Private_Memory
-	unsigned int len;
-#endif
-
-	ACQUIRE_DTOA_LOCK(0);
-	if ((rv = freelist[k])) {
-		freelist[k] = rv->next;
-		}
-	else {
-		x = 1 << k;
-#ifdef Omit_Private_Memory
-		rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
-#else
-		len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
-			/sizeof(double);
-		if (pmem_next - private_mem + len <= PRIVATE_mem) {
-			rv = (Bigint*)pmem_next;
-			pmem_next += len;
-			}
-		else
-			rv = (Bigint*)MALLOC(len*sizeof(double));
-#endif
-		rv->k = k;
-		rv->maxwds = x;
-		}
-	FREE_DTOA_LOCK(0);
-	rv->sign = rv->wds = 0;
-	return rv;
-	}
-
- static void
-Bfree
-#ifdef KR_headers
-	(v) Bigint *v;
-#else
-	(Bigint *v)
-#endif
-{
-	if (v) {
-		ACQUIRE_DTOA_LOCK(0);
-		v->next = freelist[v->k];
-		freelist[v->k] = v;
-		FREE_DTOA_LOCK(0);
-		}
-	}
-
-#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
-y->wds*sizeof(Long) + 2*sizeof(int))
-
- static Bigint *
-multadd
-#ifdef KR_headers
-	(b, m, a) Bigint *b; int m, a;
-#else
-	(Bigint *b, int m, int a)	/* multiply by m and add a */
-#endif
-{
-	int i, wds;
-#ifdef ULLong
-	ULong *x;
-	ULLong carry, y;
-#else
-	ULong carry, *x, y;
-#ifdef Pack_32
-	ULong xi, z;
-#endif
-#endif
-	Bigint *b1;
-
-	wds = b->wds;
-	x = b->x;
-	i = 0;
-	carry = a;
-	do {
-#ifdef ULLong
-		y = *x * (ULLong)m + carry;
-		carry = y >> 32;
-		*x++ = (ULong) y & FFFFFFFF;
-#else
-#ifdef Pack_32
-		xi = *x;
-		y = (xi & 0xffff) * m + carry;
-		z = (xi >> 16) * m + (y >> 16);
-		carry = z >> 16;
-		*x++ = (z << 16) + (y & 0xffff);
-#else
-		y = *x * m + carry;
-		carry = y >> 16;
-		*x++ = y & 0xffff;
-#endif
-#endif
-		}
-		while(++i < wds);
-	if (carry) {
-		if (wds >= b->maxwds) {
-			b1 = Balloc(b->k+1);
-			Bcopy(b1, b);
-			Bfree(b);
-			b = b1;
-			}
-		b->x[wds++] = (ULong) carry;
-		b->wds = wds;
-		}
-	return b;
-	}
-
- static Bigint *
-s2b
-#ifdef KR_headers
-	(s, nd0, nd, y9) CONST char *s; int nd0, nd; ULong y9;
-#else
-	(CONST char *s, int nd0, int nd, ULong y9)
-#endif
-{
-	Bigint *b;
-	int i, k;
-	Long x, y;
-
-	x = (nd + 8) / 9;
-	for(k = 0, y = 1; x > y; y <<= 1, k++) ;
-#ifdef Pack_32
-	b = Balloc(k);
-	b->x[0] = y9;
-	b->wds = 1;
-#else
-	b = Balloc(k+1);
-	b->x[0] = y9 & 0xffff;
-	b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
-#endif
-
-	i = 9;
-	if (9 < nd0) {
-		s += 9;
-		do b = multadd(b, 10, *s++ - '0');
-			while(++i < nd0);
-		s++;
-		}
-	else
-		s += 10;
-	for(; i < nd; i++)
-		b = multadd(b, 10, *s++ - '0');
-	return b;
-	}
-
- static int
-hi0bits
-#ifdef KR_headers
-	(x) register ULong x;
-#else
-	(register ULong x)
-#endif
-{
-	register int k = 0;
-
-	if (!(x & 0xffff0000)) {
-		k = 16;
-		x <<= 16;
-		}
-	if (!(x & 0xff000000)) {
-		k += 8;
-		x <<= 8;
-		}
-	if (!(x & 0xf0000000)) {
-		k += 4;
-		x <<= 4;
-		}
-	if (!(x & 0xc0000000)) {
-		k += 2;
-		x <<= 2;
-		}
-	if (!(x & 0x80000000)) {
-		k++;
-		if (!(x & 0x40000000))
-			return 32;
-		}
-	return k;
-	}
-
- static int
-lo0bits
-#ifdef KR_headers
-	(y) ULong *y;
-#else
-	(ULong *y)
-#endif
-{
-	register int k;
-	register ULong x = *y;
-
-	if (x & 7) {
-		if (x & 1)
-			return 0;
-		if (x & 2) {
-			*y = x >> 1;
-			return 1;
-			}
-		*y = x >> 2;
-		return 2;
-		}
-	k = 0;
-	if (!(x & 0xffff)) {
-		k = 16;
-		x >>= 16;
-		}
-	if (!(x & 0xff)) {
-		k += 8;
-		x >>= 8;
-		}
-	if (!(x & 0xf)) {
-		k += 4;
-		x >>= 4;
-		}
-	if (!(x & 0x3)) {
-		k += 2;
-		x >>= 2;
-		}
-	if (!(x & 1)) {
-		k++;
-		x >>= 1;
-		if (!x)
-			return 32;
-		}
-	*y = x;
-	return k;
-	}
-
- static Bigint *
-i2b
-#ifdef KR_headers
-	(i) int i;
-#else
-	(int i)
-#endif
-{
-	Bigint *b;
-
-	b = Balloc(1);
-	b->x[0] = i;
-	b->wds = 1;
-	return b;
-	}
-
- static Bigint *
-mult
-#ifdef KR_headers
-	(a, b) Bigint *a, *b;
-#else
-	(Bigint *a, Bigint *b)
-#endif
-{
-	Bigint *c;
-	int k, wa, wb, wc;
-	ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
-	ULong y;
-#ifdef ULLong
-	ULLong carry, z;
-#else
-	ULong carry, z;
-#ifdef Pack_32
-	ULong z2;
-#endif
-#endif
-
-	if (a->wds < b->wds) {
-		c = a;
-		a = b;
-		b = c;
-		}
-	k = a->k;
-	wa = a->wds;
-	wb = b->wds;
-	wc = wa + wb;
-	if (wc > a->maxwds)
-		k++;
-	c = Balloc(k);
-	for(x = c->x, xa = x + wc; x < xa; x++)
-		*x = 0;
-	xa = a->x;
-	xae = xa + wa;
-	xb = b->x;
-	xbe = xb + wb;
-	xc0 = c->x;
-#ifdef ULLong
-	for(; xb < xbe; xc0++) {
-		if ((y = *xb++)) {
-			x = xa;
-			xc = xc0;
-			carry = 0;
-			do {
-				z = *x++ * (ULLong)y + *xc + carry;
-				carry = z >> 32;
-				*xc++ = (ULong) z & FFFFFFFF;
-				}
-				while(x < xae);
-			*xc = (ULong) carry;
-			}
-		}
-#else
-#ifdef Pack_32
-	for(; xb < xbe; xb++, xc0++) {
-		if (y = *xb & 0xffff) {
-			x = xa;
-			xc = xc0;
-			carry = 0;
-			do {
-				z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
-				carry = z >> 16;
-				z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
-				carry = z2 >> 16;
-				Storeinc(xc, z2, z);
-				}
-				while(x < xae);
-			*xc = carry;
-			}
-		if (y = *xb >> 16) {
-			x = xa;
-			xc = xc0;
-			carry = 0;
-			z2 = *xc;
-			do {
-				z = (*x & 0xffff) * y + (*xc >> 16) + carry;
-				carry = z >> 16;
-				Storeinc(xc, z, z2);
-				z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
-				carry = z2 >> 16;
-				}
-				while(x < xae);
-			*xc = z2;
-			}
-		}
-#else
-	for(; xb < xbe; xc0++) {
-		if (y = *xb++) {
-			x = xa;
-			xc = xc0;
-			carry = 0;
-			do {
-				z = *x++ * y + *xc + carry;
-				carry = z >> 16;
-				*xc++ = z & 0xffff;
-				}
-				while(x < xae);
-			*xc = carry;
-			}
-		}
-#endif
-#endif
-	for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
-	c->wds = wc;
-	return c;
-	}
-
- static Bigint *p5s;
-
- static Bigint *
-pow5mult
-#ifdef KR_headers
-	(b, k) Bigint *b; int k;
-#else
-	(Bigint *b, int k)
-#endif
-{
-	Bigint *b1, *p5, *p51;
-	int i;
-	static int p05[3] = { 5, 25, 125 };
-
-	if ((i = k & 3))
-		b = multadd(b, p05[i-1], 0);
-
-	if (!(k >>= 2))
-		return b;
-	if (!(p5 = p5s)) {
-		/* first time */
-#ifdef MULTIPLE_THREADS
-		ACQUIRE_DTOA_LOCK(1);
-		if (!(p5 = p5s)) {
-			p5 = p5s = i2b(625);
-			p5->next = 0;
-			}
-		FREE_DTOA_LOCK(1);
-#else
-		p5 = p5s = i2b(625);
-		p5->next = 0;
-#endif
-		}
-	for(;;) {
-		if (k & 1) {
-			b1 = mult(b, p5);
-			Bfree(b);
-			b = b1;
-			}
-		if (!(k >>= 1))
-			break;
-		if (!(p51 = p5->next)) {
-#ifdef MULTIPLE_THREADS
-			ACQUIRE_DTOA_LOCK(1);
-			if (!(p51 = p5->next)) {
-				p51 = p5->next = mult(p5,p5);
-				p51->next = 0;
-				}
-			FREE_DTOA_LOCK(1);
-#else
-			p51 = p5->next = mult(p5,p5);
-			p51->next = 0;
-#endif
-			}
-		p5 = p51;
-		}
-	return b;
-	}
-
- static Bigint *
-lshift
-#ifdef KR_headers
-	(b, k) Bigint *b; int k;
-#else
-	(Bigint *b, int k)
-#endif
-{
-	int i, k1, n, n1;
-	Bigint *b1;
-	ULong *x, *x1, *xe, z;
-
-#ifdef Pack_32
-	n = k >> 5;
-#else
-	n = k >> 4;
-#endif
-	k1 = b->k;
-	n1 = n + b->wds + 1;
-	for(i = b->maxwds; n1 > i; i <<= 1)
-		k1++;
-	b1 = Balloc(k1);
-	x1 = b1->x;
-	for(i = 0; i < n; i++)
-		*x1++ = 0;
-	x = b->x;
-	xe = x + b->wds;
-#ifdef Pack_32
-	if (k &= 0x1f) {
-		k1 = 32 - k;
-		z = 0;
-		do {
-			*x1++ = *x << k | z;
-			z = *x++ >> k1;
-			}
-			while(x < xe);
-		if ((*x1 = z))
-			++n1;
-		}
-#else
-	if (k &= 0xf) {
-		k1 = 16 - k;
-		z = 0;
-		do {
-			*x1++ = *x << k  & 0xffff | z;
-			z = *x++ >> k1;
-			}
-			while(x < xe);
-		if (*x1 = z)
-			++n1;
-		}
-#endif
-	else do
-		*x1++ = *x++;
-		while(x < xe);
-	b1->wds = n1 - 1;
-	Bfree(b);
-	return b1;
-	}
-
- static int
-cmp
-#ifdef KR_headers
-	(a, b) Bigint *a, *b;
-#else
-	(Bigint *a, Bigint *b)
-#endif
-{
-	ULong *xa, *xa0, *xb, *xb0;
-	int i, j;
-
-	i = a->wds;
-	j = b->wds;
-#ifdef DEBUG
-	if (i > 1 && !a->x[i-1])
-		Bug("cmp called with a->x[a->wds-1] == 0");
-	if (j > 1 && !b->x[j-1])
-		Bug("cmp called with b->x[b->wds-1] == 0");
-#endif
-	if (i -= j)
-		return i;
-	xa0 = a->x;
-	xa = xa0 + j;
-	xb0 = b->x;
-	xb = xb0 + j;
-	for(;;) {
-		if (*--xa != *--xb)
-			return *xa < *xb ? -1 : 1;
-		if (xa <= xa0)
-			break;
-		}
-	return 0;
-	}
-
- static Bigint *
-diff
-#ifdef KR_headers
-	(a, b) Bigint *a, *b;
-#else
-	(Bigint *a, Bigint *b)
-#endif
-{
-	Bigint *c;
-	int i, wa, wb;
-	ULong *xa, *xae, *xb, *xbe, *xc;
-#ifdef ULLong
-	ULLong borrow, y;
-#else
-	ULong borrow, y;
-#ifdef Pack_32
-	ULong z;
-#endif
-#endif
-
-	i = cmp(a,b);
-	if (!i) {
-		c = Balloc(0);
-		c->wds = 1;
-		c->x[0] = 0;
-		return c;
-		}
-	if (i < 0) {
-		c = a;
-		a = b;
-		b = c;
-		i = 1;
-		}
-	else
-		i = 0;
-	c = Balloc(a->k);
-	c->sign = i;
-	wa = a->wds;
-	xa = a->x;
-	xae = xa + wa;
-	wb = b->wds;
-	xb = b->x;
-	xbe = xb + wb;
-	xc = c->x;
-	borrow = 0;
-#ifdef ULLong
-	do {
-		y = (ULLong)*xa++ - *xb++ - borrow;
-		borrow = y >> 32 & (ULong)1;
-		*xc++ = (ULong) y & FFFFFFFF;
-		}
-		while(xb < xbe);
-	while(xa < xae) {
-		y = *xa++ - borrow;
-		borrow = y >> 32 & (ULong)1;
-		*xc++ = (ULong) y & FFFFFFFF;
-		}
-#else
-#ifdef Pack_32
-	do {
-		y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
-		borrow = (y & 0x10000) >> 16;
-		z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
-		borrow = (z & 0x10000) >> 16;
-		Storeinc(xc, z, y);
-		}
-		while(xb < xbe);
-	while(xa < xae) {
-		y = (*xa & 0xffff) - borrow;
-		borrow = (y & 0x10000) >> 16;
-		z = (*xa++ >> 16) - borrow;
-		borrow = (z & 0x10000) >> 16;
-		Storeinc(xc, z, y);
-		}
-#else
-	do {
-		y = *xa++ - *xb++ - borrow;
-		borrow = (y & 0x10000) >> 16;
-		*xc++ = y & 0xffff;
-		}
-		while(xb < xbe);
-	while(xa < xae) {
-		y = *xa++ - borrow;
-		borrow = (y & 0x10000) >> 16;
-		*xc++ = y & 0xffff;
-		}
-#endif
-#endif
-	while(!*--xc)
-		wa--;
-	c->wds = wa;
-	return c;
-	}
-
- static double
-ulp
-#ifdef KR_headers
-	(x) double x;
-#else
-	(double x)
-#endif
-{
-	register Long L;
-	double a;
-
-	L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
-#ifndef Avoid_Underflow
-#ifndef Sudden_Underflow
-	if (L > 0) {
-#endif
-#endif
-#ifdef IBM
-		L |= Exp_msk1 >> 4;
-#endif
-		word0(a) = L;
-		word1(a) = 0;
-#ifndef Avoid_Underflow
-#ifndef Sudden_Underflow
-		}
-	else {
-		L = -L >> Exp_shift;
-		if (L < Exp_shift) {
-			word0(a) = 0x80000 >> L;
-			word1(a) = 0;
-			}
-		else {
-			word0(a) = 0;
-			L -= Exp_shift;
-			word1(a) = L >= 31 ? 1 : 1 << 31 - L;
-			}
-		}
-#endif
-#endif
-	return dval(a);
-	}
-
- static double
-b2d
-#ifdef KR_headers
-	(a, e) Bigint *a; int *e;
-#else
-	(Bigint *a, int *e)
-#endif
-{
-	ULong *xa, *xa0, w, y, z;
-	int k;
-	double d;
-#ifdef VAX
-	ULong d0, d1;
-#else
-#define d0 word0(d)
-#define d1 word1(d)
-#endif
-
-	xa0 = a->x;
-	xa = xa0 + a->wds;
-	y = *--xa;
-#ifdef DEBUG
-	if (!y) Bug("zero y in b2d");
-#endif
-	k = hi0bits(y);
-	*e = 32 - k;
-#ifdef Pack_32
-	if (k < Ebits) {
-		d0 = Exp_1 | y >> (Ebits - k);
-		w = xa > xa0 ? *--xa : 0;
-		d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
-		goto ret_d;
-		}
-	z = xa > xa0 ? *--xa : 0;
-	if (k -= Ebits) {
-		d0 = Exp_1 | y << k | z >> (32 - k);
-		y = xa > xa0 ? *--xa : 0;
-		d1 = z << k | y >> (32 - k);
-		}
-	else {
-		d0 = Exp_1 | y;
-		d1 = z;
-		}
-#else
-	if (k < Ebits + 16) {
-		z = xa > xa0 ? *--xa : 0;
-		d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
-		w = xa > xa0 ? *--xa : 0;
-		y = xa > xa0 ? *--xa : 0;
-		d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
-		goto ret_d;
-		}
-	z = xa > xa0 ? *--xa : 0;
-	w = xa > xa0 ? *--xa : 0;
-	k -= Ebits + 16;
-	d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
-	y = xa > xa0 ? *--xa : 0;
-	d1 = w << k + 16 | y << k;
-#endif
- ret_d:
-#ifdef VAX
-	word0(d) = d0 >> 16 | d0 << 16;
-	word1(d) = d1 >> 16 | d1 << 16;
-#else
-#undef d0
-#undef d1
-#endif
-	return dval(d);
-	}
-
- static Bigint *
-d2b
-#ifdef KR_headers
-	(d, e, bits) double d; int *e, *bits;
-#else
-	(double d, int *e, int *bits)
-#endif
-{
-	Bigint *b;
-	int de, k;
-	ULong *x, y, z;
-#ifndef Sudden_Underflow
-	int i;
-#endif
-#ifdef VAX
-	ULong d0, d1;
-	d0 = word0(d) >> 16 | word0(d) << 16;
-	d1 = word1(d) >> 16 | word1(d) << 16;
-#else
-#define d0 word0(d)
-#define d1 word1(d)
-#endif
-
-#ifdef Pack_32
-	b = Balloc(1);
-#else
-	b = Balloc(2);
-#endif
-	x = b->x;
-
-	z = d0 & Frac_mask;
-	d0 &= 0x7fffffff;	/* clear sign bit, which we ignore */
-#ifdef Sudden_Underflow
-	de = (int)(d0 >> Exp_shift);
-#ifndef IBM
-	z |= Exp_msk11;
-#endif
-#else
-	if ((de = (int)(d0 >> Exp_shift)))
-		z |= Exp_msk1;
-#endif
-#ifdef Pack_32
-	if ((y = d1)) {
-		if ((k = lo0bits(&y))) {
-			x[0] = y | z << (32 - k);
-			z >>= k;
-			}
-		else
-			x[0] = y;
-#ifndef Sudden_Underflow
-		i =
-#endif
-		    b->wds = (x[1] = z) ? 2 : 1;
-		}
-	else {
-#ifdef DEBUG
-		if (!z)
-			Bug("Zero passed to d2b");
-#endif
-		k = lo0bits(&z);
-		x[0] = z;
-#ifndef Sudden_Underflow
-		i =
-#endif
-		    b->wds = 1;
-		k += 32;
-		}
-#else
-	if (y = d1) {
-		if (k = lo0bits(&y))
-			if (k >= 16) {
-				x[0] = y | z << 32 - k & 0xffff;
-				x[1] = z >> k - 16 & 0xffff;
-				x[2] = z >> k;
-				i = 2;
-				}
-			else {
-				x[0] = y & 0xffff;
-				x[1] = y >> 16 | z << 16 - k & 0xffff;
-				x[2] = z >> k & 0xffff;
-				x[3] = z >> k+16;
-				i = 3;
-				}
-		else {
-			x[0] = y & 0xffff;
-			x[1] = y >> 16;
-			x[2] = z & 0xffff;
-			x[3] = z >> 16;
-			i = 3;
-			}
-		}
-	else {
-#ifdef DEBUG
-		if (!z)
-			Bug("Zero passed to d2b");
-#endif
-		k = lo0bits(&z);
-		if (k >= 16) {
-			x[0] = z;
-			i = 0;
-			}
-		else {
-			x[0] = z & 0xffff;
-			x[1] = z >> 16;
-			i = 1;
-			}
-		k += 32;
-		}
-	while(!x[i])
-		--i;
-	b->wds = i + 1;
-#endif
-#ifndef Sudden_Underflow
-	if (de) {
-#endif
-#ifdef IBM
-		*e = (de - Bias - (P-1) << 2) + k;
-		*bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
-#else
-		*e = de - Bias - (P-1) + k;
-		*bits = P - k;
-#endif
-#ifndef Sudden_Underflow
-		}
-	else {
-		*e = de - Bias - (P-1) + 1 + k;
-#ifdef Pack_32
-		*bits = 32*i - hi0bits(x[i-1]);
-#else
-		*bits = (i+2)*16 - hi0bits(x[i]);
-#endif
-		}
-#endif
-	return b;
-	}
-#undef d0
-#undef d1
-
- static double
-ratio
-#ifdef KR_headers
-	(a, b) Bigint *a, *b;
-#else
-	(Bigint *a, Bigint *b)
-#endif
-{
-	double da, db;
-	int k, ka, kb;
-
-	dval(da) = b2d(a, &ka);
-	dval(db) = b2d(b, &kb);
-#ifdef Pack_32
-	k = ka - kb + 32*(a->wds - b->wds);
-#else
-	k = ka - kb + 16*(a->wds - b->wds);
-#endif
-#ifdef IBM
-	if (k > 0) {
-		word0(da) += (k >> 2)*Exp_msk1;
-		if (k &= 3)
-			dval(da) *= 1 << k;
-		}
-	else {
-		k = -k;
-		word0(db) += (k >> 2)*Exp_msk1;
-		if (k &= 3)
-			dval(db) *= 1 << k;
-		}
-#else
-	if (k > 0)
-		word0(da) += k*Exp_msk1;
-	else {
-		k = -k;
-		word0(db) += k*Exp_msk1;
-		}
-#endif
-	return dval(da) / dval(db);
-	}
-
- static CONST double
-tens[] = {
-		1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
-		1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
-		1e20, 1e21, 1e22
-#ifdef VAX
-		, 1e23, 1e24
-#endif
-		};
-
- static CONST double
-#ifdef IEEE_Arith
-bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
-static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
-#ifdef Avoid_Underflow
-		9007199254740992.*9007199254740992.e-256
-		/* = 2^106 * 1e-53 */
-#else
-		1e-256
-#endif
-		};
-/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
-/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
-#define Scale_Bit 0x10
-#define n_bigtens 5
-#else
-#ifdef IBM
-bigtens[] = { 1e16, 1e32, 1e64 };
-static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
-#define n_bigtens 3
-#else
-bigtens[] = { 1e16, 1e32 };
-static CONST double tinytens[] = { 1e-16, 1e-32 };
-#define n_bigtens 2
-#endif
-#endif
-
-#ifdef INFNAN_CHECK
-
-#ifndef NAN_WORD0
-#define NAN_WORD0 0x7ff80000
-#endif
-
-#ifndef NAN_WORD1
-#define NAN_WORD1 0
-#endif
-
- static int
-match
-#ifdef KR_headers
-	(sp, t) char **sp, *t;
-#else
-	(CONST char **sp, char *t)
-#endif
-{
-	int c, d;
-	CONST char *s = *sp;
-
-	while((d = *t++)) {
-		if ((c = *++s) >= 'A' && c <= 'Z')
-			c += 'a' - 'A';
-		if (c != d)
-			return 0;
-		}
-	*sp = s + 1;
-	return 1;
-	}
-
-#ifndef No_Hex_NaN
- static void
-hexnan
-#ifdef KR_headers
-	(rvp, sp) double *rvp; CONST char **sp;
-#else
-	(double *rvp, CONST char **sp)
-#endif
-{
-	ULong c, x[2];
-	CONST char *s;
-	int havedig, udx0, xshift;
-
-	x[0] = x[1] = 0;
-	havedig = xshift = 0;
-	udx0 = 1;
-	s = *sp;
-	/* allow optional initial 0x or 0X */
-	while((c = *(CONST unsigned char*)(s+1)) && c <= ' ')
-		++s;
-	if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X'))
-		s += 2;
-	while((c = *(CONST unsigned char*)++s)) {
-		if (c >= '0' && c <= '9')
-			c -= '0';
-		else if (c >= 'a' && c <= 'f')
-			c += 10 - 'a';
-		else if (c >= 'A' && c <= 'F')
-			c += 10 - 'A';
-		else if (c <= ' ') {
-			if (udx0 && havedig) {
-				udx0 = 0;
-				xshift = 1;
-				}
-			continue;
-			}
-#ifdef GDTOA_NON_PEDANTIC_NANCHECK
-		else if (/*(*/ c == ')' && havedig) {
-			*sp = s + 1;
-			break;
-			}
-		else
-			return;	/* invalid form: don't change *sp */
-#else
-		else {
-			do {
-				if (/*(*/ c == ')') {
-					*sp = s + 1;
-					break;
-					}
-				} while((c = *++s));
-			break;
-			}
-#endif
-		havedig = 1;
-		if (xshift) {
-			xshift = 0;
-			x[0] = x[1];
-			x[1] = 0;
-			}
-		if (udx0)
-			x[0] = (x[0] << 4) | (x[1] >> 28);
-		x[1] = (x[1] << 4) | c;
-		}
-	if ((x[0] &= 0xfffff) || x[1]) {
-		word0(*rvp) = Exp_mask | x[0];
-		word1(*rvp) = x[1];
-		}
-	}
-#endif /*No_Hex_NaN*/
-#endif /* INFNAN_CHECK */
-
- static double
-_strtod
-#ifdef KR_headers
-	(s00, se) CONST char *s00; char **se;
-#else
-	(CONST char *s00, char **se)
-#endif
-{
-#ifdef Avoid_Underflow
-	int scale;
-#endif
-	int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
-		 e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
-	CONST char *s, *s0, *s1;
-	double aadj, aadj1, adj, rv, rv0;
-	Long L;
-	ULong y, z;
-	Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
-#ifdef SET_INEXACT
-	int inexact, oldinexact;
-#endif
-#ifdef Honor_FLT_ROUNDS
-	int rounding;
-#endif
-#ifdef USE_LOCALE
-	CONST char *s2;
-#endif
-
-#ifdef __GNUC__
-    delta = bb = bd = bs = 0;
-#endif
-
-	sign = nz0 = nz = 0;
-	dval(rv) = 0.;
-	for(s = s00;;s++) switch(*s) {
-		case '-':
-			sign = 1;
-			/* no break */
-		case '+':
-			if (*++s)
-				goto break2;
-			/* no break */
-		case 0:
-			goto ret0;
-		case '\t':
-		case '\n':
-		case '\v':
-		case '\f':
-		case '\r':
-		case ' ':
-			continue;
-		default:
-			goto break2;
-		}
- break2:
-	if (*s == '0') {
-		nz0 = 1;
-		while(*++s == '0') ;
-		if (!*s)
-			goto ret;
-		}
-	s0 = s;
-	y = z = 0;
-	for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
-		if (nd < 9)
-			y = 10*y + c - '0';
-		else if (nd < 16)
-			z = 10*z + c - '0';
-	nd0 = nd;
-#ifdef USE_LOCALE
-	s1 = localeconv()->decimal_point;
-	if (c == *s1) {
-		c = '.';
-		if (*++s1) {
-			s2 = s;
-			for(;;) {
-				if (*++s2 != *s1) {
-					c = 0;
-					break;
-					}
-				if (!*++s1) {
-					s = s2;
-					break;
-					}
-				}
-			}
-		}
-#endif
-	if (c == '.') {
-		c = *++s;
-		if (!nd) {
-			for(; c == '0'; c = *++s)
-				nz++;
-			if (c > '0' && c <= '9') {
-				s0 = s;
-				nf += nz;
-				nz = 0;
-				goto have_dig;
-				}
-			goto dig_done;
-			}
-		for(; c >= '0' && c <= '9'; c = *++s) {
- have_dig:
-			nz++;
-			if (c -= '0') {
-				nf += nz;
-				for(i = 1; i < nz; i++)
-					if (nd++ < 9)
-						y *= 10;
-					else if (nd <= DBL_DIG + 1)
-						z *= 10;
-				if (nd++ < 9)
-					y = 10*y + c;
-				else if (nd <= DBL_DIG + 1)
-					z = 10*z + c;
-				nz = 0;
-				}
-			}
-		}
- dig_done:
-	e = 0;
-	if (c == 'e' || c == 'E') {
-		if (!nd && !nz && !nz0) {
-			goto ret0;
-			}
-		s00 = s;
-		esign = 0;
-		switch(c = *++s) {
-			case '-':
-				esign = 1;
-			case '+':
-				c = *++s;
-			}
-		if (c >= '0' && c <= '9') {
-			while(c == '0')
-				c = *++s;
-			if (c > '0' && c <= '9') {
-				L = c - '0';
-				s1 = s;
-				while((c = *++s) >= '0' && c <= '9')
-					L = 10*L + c - '0';
-				if (s - s1 > 8 || L > 19999)
-					/* Avoid confusion from exponents
-					 * so large that e might overflow.
-					 */
-					e = 19999; /* safe for 16 bit ints */
-				else
-					e = (int)L;
-				if (esign)
-					e = -e;
-				}
-			else
-				e = 0;
-			}
-		else
-			s = s00;
-		}
-	if (!nd) {
-		if (!nz && !nz0) {
-#ifdef INFNAN_CHECK
-			/* Check for Nan and Infinity */
-			switch(c) {
-			  case 'i':
-			  case 'I':
-				if (match(&s,"nf")) {
-					--s;
-					if (!match(&s,"inity"))
-						++s;
-					word0(rv) = 0x7ff00000;
-					word1(rv) = 0;
-					goto ret;
-					}
-				break;
-			  case 'n':
-			  case 'N':
-				if (match(&s, "an")) {
-					word0(rv) = NAN_WORD0;
-					word1(rv) = NAN_WORD1;
-#ifndef No_Hex_NaN
-					if (*s == '(') /*)*/
-						hexnan(&rv, &s);
-#endif
-					goto ret;
-					}
-			  }
-#endif /* INFNAN_CHECK */
- ret0:
-			s = s00;
-			sign = 0;
-			}
-		goto ret;
-		}
-	e1 = e -= nf;
-
-	/* Now we have nd0 digits, starting at s0, followed by a
-	 * decimal point, followed by nd-nd0 digits.  The number we're
-	 * after is the integer represented by those digits times
-	 * 10**e */
-
-	if (!nd0)
-		nd0 = nd;
-	k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
-	dval(rv) = y;
-	if (k > 9) {
-#ifdef SET_INEXACT
-		if (k > DBL_DIG)
-			oldinexact = get_inexact();
-#endif
-		dval(rv) = tens[k - 9] * dval(rv) + z;
-		}
-	bd0 = 0;
-	if (nd <= DBL_DIG
-#ifndef RND_PRODQUOT
-#ifndef Honor_FLT_ROUNDS
-		&& Flt_Rounds == 1
-#endif
-#endif
-			) {
-		if (!e)
-			goto ret;
-		if (e > 0) {
-			if (e <= Ten_pmax) {
-#ifdef VAX
-				goto vax_ovfl_check;
-#else
-#ifdef Honor_FLT_ROUNDS
-				/* round correctly FLT_ROUNDS = 2 or 3 */
-				if (sign) {
-					rv = -rv;
-					sign = 0;
-					}
-#endif
-				/* rv = */ rounded_product(dval(rv), tens[e]);
-				goto ret;
-#endif
-				}
-			i = DBL_DIG - nd;
-			if (e <= Ten_pmax + i) {
-				/* A fancier test would sometimes let us do
-				 * this for larger i values.
-				 */
-#ifdef Honor_FLT_ROUNDS
-				/* round correctly FLT_ROUNDS = 2 or 3 */
-				if (sign) {
-					rv = -rv;
-					sign = 0;
-					}
-#endif
-				e -= i;
-				dval(rv) *= tens[i];
-#ifdef VAX
-				/* VAX exponent range is so narrow we must
-				 * worry about overflow here...
-				 */
- vax_ovfl_check:
-				word0(rv) -= P*Exp_msk1;
-				/* rv = */ rounded_product(dval(rv), tens[e]);
-				if ((word0(rv) & Exp_mask)
-				 > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
-					goto ovfl;
-				word0(rv) += P*Exp_msk1;
-#else
-				/* rv = */ rounded_product(dval(rv), tens[e]);
-#endif
-				goto ret;
-				}
-			}
-#ifndef Inaccurate_Divide
-		else if (e >= -Ten_pmax) {
-#ifdef Honor_FLT_ROUNDS
-			/* round correctly FLT_ROUNDS = 2 or 3 */
-			if (sign) {
-				rv = -rv;
-				sign = 0;
-				}
-#endif
-			/* rv = */ rounded_quotient(dval(rv), tens[-e]);
-			goto ret;
-			}
-#endif
-		}
-	e1 += nd - k;
-
-#ifdef IEEE_Arith
-#ifdef SET_INEXACT
-	inexact = 1;
-	if (k <= DBL_DIG)
-		oldinexact = get_inexact();
-#endif
-#ifdef Avoid_Underflow
-	scale = 0;
-#endif
-#ifdef Honor_FLT_ROUNDS
-	if ((rounding = Flt_Rounds) >= 2) {
-		if (sign)
-			rounding = rounding == 2 ? 0 : 2;
-		else
-			if (rounding != 2)
-				rounding = 0;
-		}
-#endif
-#endif /*IEEE_Arith*/
-
-	/* Get starting approximation = rv * 10**e1 */
-
-	if (e1 > 0) {
-		if ((i = e1 & 15))
-			dval(rv) *= tens[i];
-		if (e1 &= ~15) {
-			if (e1 > DBL_MAX_10_EXP) {
- ovfl:
-#ifndef NO_ERRNO
-				errno = ERANGE;
-#endif
-				/* Can't trust HUGE_VAL */
-#ifdef IEEE_Arith
-#ifdef Honor_FLT_ROUNDS
-				switch(rounding) {
-				  case 0: /* toward 0 */
-				  case 3: /* toward -infinity */
-					word0(rv) = Big0;
-					word1(rv) = Big1;
-					break;
-				  default:
-					word0(rv) = Exp_mask;
-					word1(rv) = 0;
-				  }
-#else /*Honor_FLT_ROUNDS*/
-				word0(rv) = Exp_mask;
-				word1(rv) = 0;
-#endif /*Honor_FLT_ROUNDS*/
-#ifdef SET_INEXACT
-				/* set overflow bit */
-				dval(rv0) = 1e300;
-				dval(rv0) *= dval(rv0);
-#endif
-#else /*IEEE_Arith*/
-				word0(rv) = Big0;
-				word1(rv) = Big1;
-#endif /*IEEE_Arith*/
-				if (bd0)
-					goto retfree;
-				goto ret;
-				}
-			e1 >>= 4;
-			for(j = 0; e1 > 1; j++, e1 >>= 1)
-				if (e1 & 1)
-					dval(rv) *= bigtens[j];
-		/* The last multiplication could overflow. */
-			word0(rv) -= P*Exp_msk1;
-			dval(rv) *= bigtens[j];
-			if ((z = word0(rv) & Exp_mask)
-			 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
-				goto ovfl;
-			if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
-				/* set to largest number */
-				/* (Can't trust DBL_MAX) */
-				word0(rv) = Big0;
-				word1(rv) = Big1;
-				}
-			else
-				word0(rv) += P*Exp_msk1;
-			}
-		}
-	else if (e1 < 0) {
-		e1 = -e1;
-		if ((i = e1 & 15))
-			dval(rv) /= tens[i];
-		if (e1 >>= 4) {
-			if (e1 >= 1 << n_bigtens)
-				goto undfl;
-#ifdef Avoid_Underflow
-			if (e1 & Scale_Bit)
-				scale = 2*P;
-			for(j = 0; e1 > 0; j++, e1 >>= 1)
-				if (e1 & 1)
-					dval(rv) *= tinytens[j];
-			if (scale && (j = 2*P + 1 - ((word0(rv) & Exp_mask)
-						>> Exp_shift)) > 0) {
-				/* scaled rv is denormal; zap j low bits */
-				if (j >= 32) {
-					word1(rv) = 0;
-					if (j >= 53)
-					 word0(rv) = (P+2)*Exp_msk1;
-					else
-					 word0(rv) &= 0xffffffff << (j-32);
-					}
-				else
-					word1(rv) &= 0xffffffff << j;
-				}
-#else
-			for(j = 0; e1 > 1; j++, e1 >>= 1)
-				if (e1 & 1)
-					dval(rv) *= tinytens[j];
-			/* The last multiplication could underflow. */
-			dval(rv0) = dval(rv);
-			dval(rv) *= tinytens[j];
-			if (!dval(rv)) {
-				dval(rv) = 2.*dval(rv0);
-				dval(rv) *= tinytens[j];
-#endif
-				if (!dval(rv)) {
- undfl:
-					dval(rv) = 0.;
-#ifndef NO_ERRNO
-					errno = ERANGE;
-#endif
-					if (bd0)
-						goto retfree;
-					goto ret;
-					}
-#ifndef Avoid_Underflow
-				word0(rv) = Tiny0;
-				word1(rv) = Tiny1;
-				/* The refinement below will clean
-				 * this approximation up.
-				 */
-				}
-#endif
-			}
-		}
-
-	/* Now the hard part -- adjusting rv to the correct value.*/
-
-	/* Put digits into bd: true value = bd * 10^e */
-
-	bd0 = s2b(s0, nd0, nd, y);
-
-	for(;;) {
-		bd = Balloc(bd0->k);
-		Bcopy(bd, bd0);
-		bb = d2b(dval(rv), &bbe, &bbbits);	/* rv = bb * 2^bbe */
-		bs = i2b(1);
-
-		if (e >= 0) {
-			bb2 = bb5 = 0;
-			bd2 = bd5 = e;
-			}
-		else {
-			bb2 = bb5 = -e;
-			bd2 = bd5 = 0;
-			}
-		if (bbe >= 0)
-			bb2 += bbe;
-		else
-			bd2 -= bbe;
-		bs2 = bb2;
-#ifdef Honor_FLT_ROUNDS
-		if (rounding != 1)
-			bs2++;
-#endif
-#ifdef Avoid_Underflow
-		j = bbe - scale;
-		i = j + bbbits - 1;	/* logb(rv) */
-		if (i < Emin)	/* denormal */
-			j += P - Emin;
-		else
-			j = P + 1 - bbbits;
-#else /*Avoid_Underflow*/
-#ifdef Sudden_Underflow
-#ifdef IBM
-		j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
-#else
-		j = P + 1 - bbbits;
-#endif
-#else /*Sudden_Underflow*/
-		j = bbe;
-		i = j + bbbits - 1;	/* logb(rv) */
-		if (i < Emin)	/* denormal */
-			j += P - Emin;
-		else
-			j = P + 1 - bbbits;
-#endif /*Sudden_Underflow*/
-#endif /*Avoid_Underflow*/
-		bb2 += j;
-		bd2 += j;
-#ifdef Avoid_Underflow
-		bd2 += scale;
-#endif
-		i = bb2 < bd2 ? bb2 : bd2;
-		if (i > bs2)
-			i = bs2;
-		if (i > 0) {
-			bb2 -= i;
-			bd2 -= i;
-			bs2 -= i;
-			}
-		if (bb5 > 0) {
-			bs = pow5mult(bs, bb5);
-			bb1 = mult(bs, bb);
-			Bfree(bb);
-			bb = bb1;
-			}
-		if (bb2 > 0)
-			bb = lshift(bb, bb2);
-		if (bd5 > 0)
-			bd = pow5mult(bd, bd5);
-		if (bd2 > 0)
-			bd = lshift(bd, bd2);
-		if (bs2 > 0)
-			bs = lshift(bs, bs2);
-		delta = diff(bb, bd);
-		dsign = delta->sign;
-		delta->sign = 0;
-		i = cmp(delta, bs);
-#ifdef Honor_FLT_ROUNDS
-		if (rounding != 1) {
-			if (i < 0) {
-				/* Error is less than an ulp */
-				if (!delta->x[0] && delta->wds <= 1) {
-					/* exact */
-#ifdef SET_INEXACT
-					inexact = 0;
-#endif
-					break;
-					}
-				if (rounding) {
-					if (dsign) {
-						adj = 1.;
-						goto apply_adj;
-						}
-					}
-				else if (!dsign) {
-					adj = -1.;
-					if (!word1(rv)
-					 && !(word0(rv) & Frac_mask)) {
-						y = word0(rv) & Exp_mask;
-#ifdef Avoid_Underflow
-						if (!scale || y > 2*P*Exp_msk1)
-#else
-						if (y)
-#endif
-						  {
-						  delta = lshift(delta,Log2P);
-						  if (cmp(delta, bs) <= 0)
-							adj = -0.5;
-						  }
-						}
- apply_adj:
-#ifdef Avoid_Underflow
-					if (scale && (y = word0(rv) & Exp_mask)
-						<= 2*P*Exp_msk1)
-					  word0(adj) += (2*P+1)*Exp_msk1 - y;
-#else
-#ifdef Sudden_Underflow
-					if ((word0(rv) & Exp_mask) <=
-							P*Exp_msk1) {
-						word0(rv) += P*Exp_msk1;
-						dval(rv) += adj*ulp(dval(rv));
-						word0(rv) -= P*Exp_msk1;
-						}
-					else
-#endif /*Sudden_Underflow*/
-#endif /*Avoid_Underflow*/
-					dval(rv) += adj*ulp(dval(rv));
-					}
-				break;
-				}
-			adj = ratio(delta, bs);
-			if (adj < 1.)
-				adj = 1.;
-			if (adj <= 0x7ffffffe) {
-				/* adj = rounding ? ceil(adj) : floor(adj); */
-				y = adj;
-				if (y != adj) {
-					if (!((rounding>>1) ^ dsign))
-						y++;
-					adj = y;
-					}
-				}
-#ifdef Avoid_Underflow
-			if (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1)
-				word0(adj) += (2*P+1)*Exp_msk1 - y;
-#else
-#ifdef Sudden_Underflow
-			if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
-				word0(rv) += P*Exp_msk1;
-				adj *= ulp(dval(rv));
-				if (dsign)
-					dval(rv) += adj;
-				else
-					dval(rv) -= adj;
-				word0(rv) -= P*Exp_msk1;
-				goto cont;
-				}
-#endif /*Sudden_Underflow*/
-#endif /*Avoid_Underflow*/
-			adj *= ulp(dval(rv));
-			if (dsign)
-				dval(rv) += adj;
-			else
-				dval(rv) -= adj;
-			goto cont;
-			}
-#endif /*Honor_FLT_ROUNDS*/
-
-		if (i < 0) {
-			/* Error is less than half an ulp -- check for
-			 * special case of mantissa a power of two.
-			 */
-			if (dsign || word1(rv) || word0(rv) & Bndry_mask
-#ifdef IEEE_Arith
-#ifdef Avoid_Underflow
-			 || (word0(rv) & Exp_mask) <= (2*P+1)*Exp_msk1
-#else
-			 || (word0(rv) & Exp_mask) <= Exp_msk1
-#endif
-#endif
-				) {
-#ifdef SET_INEXACT
-				if (!delta->x[0] && delta->wds <= 1)
-					inexact = 0;
-#endif
-				break;
-				}
-			if (!delta->x[0] && delta->wds <= 1) {
-				/* exact result */
-#ifdef SET_INEXACT
-				inexact = 0;
-#endif
-				break;
-				}
-			delta = lshift(delta,Log2P);
-			if (cmp(delta, bs) > 0)
-				goto drop_down;
-			break;
-			}
-		if (i == 0) {
-			/* exactly half-way between */
-			if (dsign) {
-				if ((word0(rv) & Bndry_mask1) == Bndry_mask1
-				 &&  word1(rv) == (
-#ifdef Avoid_Underflow
-			(scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1)
-		? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
-#endif
-						   0xffffffff)) {
-					/*boundary case -- increment exponent*/
-					word0(rv) = (word0(rv) & Exp_mask)
-						+ Exp_msk1
-#ifdef IBM
-						| Exp_msk1 >> 4
-#endif
-						;
-					word1(rv) = 0;
-#ifdef Avoid_Underflow
-					dsign = 0;
-#endif
-					break;
-					}
-				}
-			else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
- drop_down:
-				/* boundary case -- decrement exponent */
-#ifdef Sudden_Underflow /*{{*/
-				L = word0(rv) & Exp_mask;
-#ifdef IBM
-				if (L <  Exp_msk1)
-#else
-#ifdef Avoid_Underflow
-				if (L <= (scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
-#else
-				if (L <= Exp_msk1)
-#endif /*Avoid_Underflow*/
-#endif /*IBM*/
-					goto undfl;
-				L -= Exp_msk1;
-#else /*Sudden_Underflow}{*/
-#ifdef Avoid_Underflow
-				if (scale) {
-					L = word0(rv) & Exp_mask;
-					if (L <= (2*P+1)*Exp_msk1) {
-						if (L > (P+2)*Exp_msk1)
-							/* round even ==> */
-							/* accept rv */
-							break;
-						/* rv = smallest denormal */
-						goto undfl;
-						}
-					}
-#endif /*Avoid_Underflow*/
-				L = (word0(rv) & Exp_mask) - Exp_msk1;
-#endif /*Sudden_Underflow}}*/
-				word0(rv) = L | Bndry_mask1;
-				word1(rv) = 0xffffffff;
-#ifdef IBM
-				goto cont;
-#else
-				break;
-#endif
-				}
-#ifndef ROUND_BIASED
-			if (!(word1(rv) & LSB))
-				break;
-#endif
-			if (dsign)
-				dval(rv) += ulp(dval(rv));
-#ifndef ROUND_BIASED
-			else {
-				dval(rv) -= ulp(dval(rv));
-#ifndef Sudden_Underflow
-				if (!dval(rv))
-					goto undfl;
-#endif
-				}
-#ifdef Avoid_Underflow
-			dsign = 1 - dsign;
-#endif
-#endif
-			break;
-			}
-		if ((aadj = ratio(delta, bs)) <= 2.) {
-			if (dsign)
-				aadj = aadj1 = 1.;
-			else if (word1(rv) || word0(rv) & Bndry_mask) {
-#ifndef Sudden_Underflow
-				if (word1(rv) == Tiny1 && !word0(rv))
-					goto undfl;
-#endif
-				aadj = 1.;
-				aadj1 = -1.;
-				}
-			else {
-				/* special case -- power of FLT_RADIX to be */
-				/* rounded down... */
-
-				if (aadj < 2./FLT_RADIX)
-					aadj = 1./FLT_RADIX;
-				else
-					aadj *= 0.5;
-				aadj1 = -aadj;
-				}
-			}
-		else {
-			aadj *= 0.5;
-			aadj1 = dsign ? aadj : -aadj;
-#ifdef Check_FLT_ROUNDS
-			switch(Rounding) {
-				case 2: /* towards +infinity */
-					aadj1 -= 0.5;
-					break;
-				case 0: /* towards 0 */
-				case 3: /* towards -infinity */
-					aadj1 += 0.5;
-				}
-#else
-			if (Flt_Rounds == 0)
-				aadj1 += 0.5;
-#endif /*Check_FLT_ROUNDS*/
-			}
-		y = word0(rv) & Exp_mask;
-
-		/* Check for overflow */
-
-		if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
-			dval(rv0) = dval(rv);
-			word0(rv) -= P*Exp_msk1;
-			adj = aadj1 * ulp(dval(rv));
-			dval(rv) += adj;
-			if ((word0(rv) & Exp_mask) >=
-					Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
-				if (word0(rv0) == Big0 && word1(rv0) == Big1)
-					goto ovfl;
-				word0(rv) = Big0;
-				word1(rv) = Big1;
-				goto cont;
-				}
-			else
-				word0(rv) += P*Exp_msk1;
-			}
-		else {
-#ifdef Avoid_Underflow
-			if (scale && y <= 2*P*Exp_msk1) {
-				if (aadj <= 0x7fffffff) {
-					if ((z = (ULong) aadj) <= 0)
-						z = 1;
-					aadj = z;
-					aadj1 = dsign ? aadj : -aadj;
-					}
-				word0(aadj1) += (2*P+1)*Exp_msk1 - y;
-				}
-			adj = aadj1 * ulp(dval(rv));
-			dval(rv) += adj;
-#else
-#ifdef Sudden_Underflow
-			if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
-				dval(rv0) = dval(rv);
-				word0(rv) += P*Exp_msk1;
-				adj = aadj1 * ulp(dval(rv));
-				dval(rv) += adj;
-#ifdef IBM
-				if ((word0(rv) & Exp_mask) <  P*Exp_msk1)
-#else
-				if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
-#endif
-					{
-					if (word0(rv0) == Tiny0
-					 && word1(rv0) == Tiny1)
-						goto undfl;
-					word0(rv) = Tiny0;
-					word1(rv) = Tiny1;
-					goto cont;
-					}
-				else
-					word0(rv) -= P*Exp_msk1;
-				}
-			else {
-				adj = aadj1 * ulp(dval(rv));
-				dval(rv) += adj;
-				}
-#else /*Sudden_Underflow*/
-			/* Compute adj so that the IEEE rounding rules will
-			 * correctly round rv + adj in some half-way cases.
-			 * If rv * ulp(rv) is denormalized (i.e.,
-			 * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
-			 * trouble from bits lost to denormalization;
-			 * example: 1.2e-307 .
-			 */
-			if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
-				aadj1 = (double)(int)(aadj + 0.5);
-				if (!dsign)
-					aadj1 = -aadj1;
-				}
-			adj = aadj1 * ulp(dval(rv));
-			dval(rv) += adj;
-#endif /*Sudden_Underflow*/
-#endif /*Avoid_Underflow*/
-			}
-		z = word0(rv) & Exp_mask;
-#ifndef SET_INEXACT
-#ifdef Avoid_Underflow
-		if (!scale)
-#endif
-		if (y == z) {
-			/* Can we stop now? */
-			L = (Long)aadj;
-			aadj -= L;
-			/* The tolerances below are conservative. */
-			if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
-				if (aadj < .4999999 || aadj > .5000001)
-					break;
-				}
-			else if (aadj < .4999999/FLT_RADIX)
-				break;
-			}
-#endif
- cont:
-		Bfree(bb);
-		Bfree(bd);
-		Bfree(bs);
-		Bfree(delta);
-		}
-#ifdef SET_INEXACT
-	if (inexact) {
-		if (!oldinexact) {
-			word0(rv0) = Exp_1 + (70 << Exp_shift);
-			word1(rv0) = 0;
-			dval(rv0) += 1.;
-			}
-		}
-	else if (!oldinexact)
-		clear_inexact();
-#endif
-#ifdef Avoid_Underflow
-	if (scale) {
-		word0(rv0) = Exp_1 - 2*P*Exp_msk1;
-		word1(rv0) = 0;
-		dval(rv) *= dval(rv0);
-#ifndef NO_ERRNO
-		/* try to avoid the bug of testing an 8087 register value */
-		if (word0(rv) == 0 && word1(rv) == 0)
-			errno = ERANGE;
-#endif
-		}
-#endif /* Avoid_Underflow */
-#ifdef SET_INEXACT
-	if (inexact && !(word0(rv) & Exp_mask)) {
-		/* set underflow bit */
-		dval(rv0) = 1e-300;
-		dval(rv0) *= dval(rv0);
-		}
-#endif
- retfree:
-	Bfree(bb);
-	Bfree(bd);
-	Bfree(bs);
-	Bfree(bd0);
-	Bfree(delta);
- ret:
-	if (se)
-		*se = (char *)s;
-	return sign ? -dval(rv) : dval(rv);
-	}
-
- static int
-quorem
-#ifdef KR_headers
-	(b, S) Bigint *b, *S;
-#else
-	(Bigint *b, Bigint *S)
-#endif
-{
-	int n;
-	ULong *bx, *bxe, q, *sx, *sxe;
-#ifdef ULLong
-	ULLong borrow, carry, y, ys;
-#else
-	ULong borrow, carry, y, ys;
-#ifdef Pack_32
-	ULong si, z, zs;
-#endif
-#endif
-
-	n = S->wds;
-#ifdef DEBUG
-	/*debug*/ if (b->wds > n)
-	/*debug*/	Bug("oversize b in quorem");
-#endif
-	if (b->wds < n)
-		return 0;
-	sx = S->x;
-	sxe = sx + --n;
-	bx = b->x;
-	bxe = bx + n;
-	q = *bxe / (*sxe + 1);	/* ensure q <= true quotient */
-#ifdef DEBUG
-	/*debug*/ if (q > 9)
-	/*debug*/	Bug("oversized quotient in quorem");
-#endif
-	if (q) {
-		borrow = 0;
-		carry = 0;
-		do {
-#ifdef ULLong
-			ys = *sx++ * (ULLong)q + carry;
-			carry = ys >> 32;
-			y = *bx - (ys & FFFFFFFF) - borrow;
-			borrow = y >> 32 & (ULong)1;
-			*bx++ = (ULong) y & FFFFFFFF;
-#else
-#ifdef Pack_32
-			si = *sx++;
-			ys = (si & 0xffff) * q + carry;
-			zs = (si >> 16) * q + (ys >> 16);
-			carry = zs >> 16;
-			y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
-			borrow = (y & 0x10000) >> 16;
-			z = (*bx >> 16) - (zs & 0xffff) - borrow;
-			borrow = (z & 0x10000) >> 16;
-			Storeinc(bx, z, y);
-#else
-			ys = *sx++ * q + carry;
-			carry = ys >> 16;
-			y = *bx - (ys & 0xffff) - borrow;
-			borrow = (y & 0x10000) >> 16;
-			*bx++ = y & 0xffff;
-#endif
-#endif
-			}
-			while(sx <= sxe);
-		if (!*bxe) {
-			bx = b->x;
-			while(--bxe > bx && !*bxe)
-				--n;
-			b->wds = n;
-			}
-		}
-	if (cmp(b, S) >= 0) {
-		q++;
-		borrow = 0;
-		carry = 0;
-		bx = b->x;
-		sx = S->x;
-		do {
-#ifdef ULLong
-			ys = *sx++ + carry;
-			carry = ys >> 32;
-			y = *bx - (ys & FFFFFFFF) - borrow;
-			borrow = y >> 32 & (ULong)1;
-			*bx++ = (ULong) y & FFFFFFFF;
-#else
-#ifdef Pack_32
-			si = *sx++;
-			ys = (si & 0xffff) + carry;
-			zs = (si >> 16) + (ys >> 16);
-			carry = zs >> 16;
-			y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
-			borrow = (y & 0x10000) >> 16;
-			z = (*bx >> 16) - (zs & 0xffff) - borrow;
-			borrow = (z & 0x10000) >> 16;
-			Storeinc(bx, z, y);
-#else
-			ys = *sx++ + carry;
-			carry = ys >> 16;
-			y = *bx - (ys & 0xffff) - borrow;
-			borrow = (y & 0x10000) >> 16;
-			*bx++ = y & 0xffff;
-#endif
-#endif
-			}
-			while(sx <= sxe);
-		bx = b->x;
-		bxe = bx + n;
-		if (!*bxe) {
-			while(--bxe > bx && !*bxe)
-				--n;
-			b->wds = n;
-			}
-		}
-	return q;
-	}
-
-#ifndef MULTIPLE_THREADS
- static char *dtoa_result;
-#endif
-
- static char *
-#ifdef KR_headers
-rv_alloc(i) int i;
-#else
-rv_alloc(int i)
-#endif
-{
-	int j, k, *r;
-
-	j = sizeof(ULong);
-	for(k = 0;
-		sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= sizeof(i);
-		j <<= 1)
-			k++;
-	r = (int*)Balloc(k);
-	*r = k;
-	return
-#ifndef MULTIPLE_THREADS
-	dtoa_result =
-#endif
-		(char *)(r+1);
-	}
-
- static char *
-#ifdef KR_headers
-nrv_alloc(s, rve, n) char *s, **rve; int n;
-#else
-nrv_alloc(char *s, char **rve, int n)
-#endif
-{
-	char *rv, *t;
-
-	t = rv = rv_alloc(n);
-	while((*t = *s++)) t++;
-	if (rve)
-		*rve = t;
-	return rv;
-	}
-
-/* freedtoa(s) must be used to free values s returned by dtoa
- * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
- * but for consistency with earlier versions of dtoa, it is optional
- * when MULTIPLE_THREADS is not defined.
- */
-
- void
-#ifdef KR_headers
-freedtoa(s) char *s;
-#else
-freedtoa(char *s)
-#endif
-{
-	Bigint *b = (Bigint *)((int *)s - 1);
-	b->maxwds = 1 << (b->k = *(int*)b);
-	Bfree(b);
-#ifndef MULTIPLE_THREADS
-	if (s == dtoa_result)
-		dtoa_result = 0;
-#endif
-	}
-
-/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
- *
- * Inspired by "How to Print Floating-Point Numbers Accurately" by
- * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
- *
- * Modifications:
- *	1. Rather than iterating, we use a simple numeric overestimate
- *	   to determine k = floor(log10(d)).  We scale relevant
- *	   quantities using O(log2(k)) rather than O(k) multiplications.
- *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
- *	   try to generate digits strictly left to right.  Instead, we
- *	   compute with fewer bits and propagate the carry if necessary
- *	   when rounding the final digit up.  This is often faster.
- *	3. Under the assumption that input will be rounded nearest,
- *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
- *	   That is, we allow equality in stopping tests when the
- *	   round-nearest rule will give the same floating-point value
- *	   as would satisfaction of the stopping test with strict
- *	   inequality.
- *	4. We remove common factors of powers of 2 from relevant
- *	   quantities.
- *	5. When converting floating-point integers less than 1e16,
- *	   we use floating-point arithmetic rather than resorting
- *	   to multiple-precision integers.
- *	6. When asked to produce fewer than 15 digits, we first try
- *	   to get by with floating-point arithmetic; we resort to
- *	   multiple-precision integer arithmetic only if we cannot
- *	   guarantee that the floating-point calculation has given
- *	   the correctly rounded result.  For k requested digits and
- *	   "uniformly" distributed input, the probability is
- *	   something like 10^(k-15) that we must resort to the Long
- *	   calculation.
- */
-
- static char *
-dtoa
-#ifdef KR_headers
-	(d, mode, ndigits, decpt, sign, rve)
-	double d; int mode, ndigits, *decpt, *sign; char **rve;
-#else
-	(double d, int mode, int ndigits, int *decpt, int *sign, char **rve)
-#endif
-{
- /*	Arguments ndigits, decpt, sign are similar to those
-	of ecvt and fcvt; trailing zeros are suppressed from
-	the returned string.  If not null, *rve is set to point
-	to the end of the return value.  If d is +-Infinity or NaN,
-	then *decpt is set to 9999.
-
-	mode:
-		0 ==> shortest string that yields d when read in
-			and rounded to nearest.
-		1 ==> like 0, but with Steele & White stopping rule;
-			e.g. with IEEE P754 arithmetic , mode 0 gives
-			1e23 whereas mode 1 gives 9.999999999999999e22.
-		2 ==> max(1,ndigits) significant digits.  This gives a
-			return value similar to that of ecvt, except
-			that trailing zeros are suppressed.
-		3 ==> through ndigits past the decimal point.  This
-			gives a return value similar to that from fcvt,
-			except that trailing zeros are suppressed, and
-			ndigits can be negative.
-		4,5 ==> similar to 2 and 3, respectively, but (in
-			round-nearest mode) with the tests of mode 0 to
-			possibly return a shorter string that rounds to d.
-			With IEEE arithmetic and compilation with
-			-DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
-			as modes 2 and 3 when FLT_ROUNDS != 1.
-		6-9 ==> Debugging modes similar to mode - 4:  don't try
-			fast floating-point estimate (if applicable).
-
-		Values of mode other than 0-9 are treated as mode 0.
-
-		Sufficient space is allocated to the return value
-		to hold the suppressed trailing zeros.
-	*/
-
-	int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
-		j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
-		spec_case, try_quick;
-	Long L;
-#ifndef Sudden_Underflow
-	int denorm;
-	ULong x;
-#endif
-	Bigint *b, *b1, *delta, *mlo, *mhi, *S;
-	double d2, ds, eps;
-	char *s, *s0;
-#ifdef Honor_FLT_ROUNDS
-	int rounding;
-#endif
-#ifdef SET_INEXACT
-	int inexact, oldinexact;
-#endif
-
-#ifdef __GNUC__
-    ilim = ilim1 = 0;
-    mlo = NULL;
-#endif
-
-#ifndef MULTIPLE_THREADS
-	if (dtoa_result) {
-		freedtoa(dtoa_result);
-		dtoa_result = 0;
-		}
-#endif
-
-	if (word0(d) & Sign_bit) {
-		/* set sign for everything, including 0's and NaNs */
-		*sign = 1;
-		word0(d) &= ~Sign_bit;	/* clear sign bit */
-		}
-	else
-		*sign = 0;
-
-#if defined(IEEE_Arith) + defined(VAX)
-#ifdef IEEE_Arith
-	if ((word0(d) & Exp_mask) == Exp_mask)
-#else
-	if (word0(d)  == 0x8000)
-#endif
-		{
-		/* Infinity or NaN */
-		*decpt = 9999;
-#ifdef IEEE_Arith
-		if (!word1(d) && !(word0(d) & 0xfffff))
-			return nrv_alloc("Infinity", rve, 8);
-#endif
-		return nrv_alloc("NaN", rve, 3);
-		}
-#endif
-#ifdef IBM
-	dval(d) += 0; /* normalize */
-#endif
-	if (!dval(d)) {
-		*decpt = 1;
-		return nrv_alloc("0", rve, 1);
-		}
-
-#ifdef SET_INEXACT
-	try_quick = oldinexact = get_inexact();
-	inexact = 1;
-#endif
-#ifdef Honor_FLT_ROUNDS
-	if ((rounding = Flt_Rounds) >= 2) {
-		if (*sign)
-			rounding = rounding == 2 ? 0 : 2;
-		else
-			if (rounding != 2)
-				rounding = 0;
-		}
-#endif
-
-	b = d2b(dval(d), &be, &bbits);
-#ifdef Sudden_Underflow
-	i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
-#else
-	if ((i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
-#endif
-		dval(d2) = dval(d);
-		word0(d2) &= Frac_mask1;
-		word0(d2) |= Exp_11;
-#ifdef IBM
-		if (j = 11 - hi0bits(word0(d2) & Frac_mask))
-			dval(d2) /= 1 << j;
-#endif
-
-		/* log(x)	~=~ log(1.5) + (x-1.5)/1.5
-		 * log10(x)	 =  log(x) / log(10)
-		 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
-		 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
-		 *
-		 * This suggests computing an approximation k to log10(d) by
-		 *
-		 * k = (i - Bias)*0.301029995663981
-		 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
-		 *
-		 * We want k to be too large rather than too small.
-		 * The error in the first-order Taylor series approximation
-		 * is in our favor, so we just round up the constant enough
-		 * to compensate for any error in the multiplication of
-		 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
-		 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
-		 * adding 1e-13 to the constant term more than suffices.
-		 * Hence we adjust the constant term to 0.1760912590558.
-		 * (We could get a more accurate k by invoking log10,
-		 *  but this is probably not worthwhile.)
-		 */
-
-		i -= Bias;
-#ifdef IBM
-		i <<= 2;
-		i += j;
-#endif
-#ifndef Sudden_Underflow
-		denorm = 0;
-		}
-	else {
-		/* d is denormalized */
-
-		i = bbits + be + (Bias + (P-1) - 1);
-		x = i > 32  ? word0(d) << (64 - i) | word1(d) >> (i - 32)
-			    : word1(d) << (32 - i);
-		dval(d2) = x;
-		word0(d2) -= 31*Exp_msk1; /* adjust exponent */
-		i -= (Bias + (P-1) - 1) + 1;
-		denorm = 1;
-		}
-#endif
-	ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
-	k = (int)ds;
-	if (ds < 0. && ds != k)
-		k--;	/* want k = floor(ds) */
-	k_check = 1;
-	if (k >= 0 && k <= Ten_pmax) {
-		if (dval(d) < tens[k])
-			k--;
-		k_check = 0;
-		}
-	j = bbits - i - 1;
-	if (j >= 0) {
-		b2 = 0;
-		s2 = j;
-		}
-	else {
-		b2 = -j;
-		s2 = 0;
-		}
-	if (k >= 0) {
-		b5 = 0;
-		s5 = k;
-		s2 += k;
-		}
-	else {
-		b2 -= k;
-		b5 = -k;
-		s5 = 0;
-		}
-	if (mode < 0 || mode > 9)
-		mode = 0;
-
-#ifndef SET_INEXACT
-#ifdef Check_FLT_ROUNDS
-	try_quick = Rounding == 1;
-#else
-	try_quick = 1;
-#endif
-#endif /*SET_INEXACT*/
-
-	if (mode > 5) {
-		mode -= 4;
-		try_quick = 0;
-		}
-	leftright = 1;
-	switch(mode) {
-		case 0:
-		case 1:
-			ilim = ilim1 = -1;
-			i = 18;
-			ndigits = 0;
-			break;
-		case 2:
-			leftright = 0;
-			/* no break */
-		case 4:
-			if (ndigits <= 0)
-				ndigits = 1;
-			ilim = ilim1 = i = ndigits;
-			break;
-		case 3:
-			leftright = 0;
-			/* no break */
-		case 5:
-			i = ndigits + k + 1;
-			ilim = i;
-			ilim1 = i - 1;
-			if (i <= 0)
-				i = 1;
-		}
-	s = s0 = rv_alloc(i);
-
-#ifdef Honor_FLT_ROUNDS
-	if (mode > 1 && rounding != 1)
-		leftright = 0;
-#endif
-
-	if (ilim >= 0 && ilim <= Quick_max && try_quick) {
-
-		/* Try to get by with floating-point arithmetic. */
-
-		i = 0;
-		dval(d2) = dval(d);
-		k0 = k;
-		ilim0 = ilim;
-		ieps = 2; /* conservative */
-		if (k > 0) {
-			ds = tens[k&0xf];
-			j = k >> 4;
-			if (j & Bletch) {
-				/* prevent overflows */
-				j &= Bletch - 1;
-				dval(d) /= bigtens[n_bigtens-1];
-				ieps++;
-				}
-			for(; j; j >>= 1, i++)
-				if (j & 1) {
-					ieps++;
-					ds *= bigtens[i];
-					}
-			dval(d) /= ds;
-			}
-		else if ((j1 = -k)) {
-			dval(d) *= tens[j1 & 0xf];
-			for(j = j1 >> 4; j; j >>= 1, i++)
-				if (j & 1) {
-					ieps++;
-					dval(d) *= bigtens[i];
-					}
-			}
-		if (k_check && dval(d) < 1. && ilim > 0) {
-			if (ilim1 <= 0)
-				goto fast_failed;
-			ilim = ilim1;
-			k--;
-			dval(d) *= 10.;
-			ieps++;
-			}
-		dval(eps) = ieps*dval(d) + 7.;
-		word0(eps) -= (P-1)*Exp_msk1;
-		if (ilim == 0) {
-			S = mhi = 0;
-			dval(d) -= 5.;
-			if (dval(d) > dval(eps))
-				goto one_digit;
-			if (dval(d) < -dval(eps))
-				goto no_digits;
-			goto fast_failed;
-			}
-#ifndef No_leftright
-		if (leftright) {
-			/* Use Steele & White method of only
-			 * generating digits needed.
-			 */
-			dval(eps) = 0.5/tens[ilim-1] - dval(eps);
-			for(i = 0;;) {
-				L = (ULong) dval(d);
-				dval(d) -= L;
-				*s++ = '0' + (int)L;
-				if (dval(d) < dval(eps))
-					goto ret1;
-				if (1. - dval(d) < dval(eps))
-					goto bump_up;
-				if (++i >= ilim)
-					break;
-				dval(eps) *= 10.;
-				dval(d) *= 10.;
-				}
-			}
-		else {
-#endif
-			/* Generate ilim digits, then fix them up. */
-			dval(eps) *= tens[ilim-1];
-			for(i = 1;; i++, dval(d) *= 10.) {
-				L = (Long)(dval(d));
-				if (!(dval(d) -= L))
-					ilim = i;
-				*s++ = '0' + (int)L;
-				if (i == ilim) {
-					if (dval(d) > 0.5 + dval(eps))
-						goto bump_up;
-					else if (dval(d) < 0.5 - dval(eps)) {
-						while(*--s == '0');
-						s++;
-						goto ret1;
-						}
-					break;
-					}
-				}
-#ifndef No_leftright
-			}
-#endif
- fast_failed:
-		s = s0;
-		dval(d) = dval(d2);
-		k = k0;
-		ilim = ilim0;
-		}
-
-	/* Do we have a "small" integer? */
-
-	if (be >= 0 && k <= Int_max) {
-		/* Yes. */
-		ds = tens[k];
-		if (ndigits < 0 && ilim <= 0) {
-			S = mhi = 0;
-			if (ilim < 0 || dval(d) <= 5*ds)
-				goto no_digits;
-			goto one_digit;
-			}
-		for(i = 1;; i++, dval(d) *= 10.) {
-			L = (Long)(dval(d) / ds);
-			dval(d) -= L*ds;
-#ifdef Check_FLT_ROUNDS
-			/* If FLT_ROUNDS == 2, L will usually be high by 1 */
-			if (dval(d) < 0) {
-				L--;
-				dval(d) += ds;
-				}
-#endif
-			*s++ = '0' + (int)L;
-			if (!dval(d)) {
-#ifdef SET_INEXACT
-				inexact = 0;
-#endif
-				break;
-				}
-			if (i == ilim) {
-#ifdef Honor_FLT_ROUNDS
-				if (mode > 1)
-				switch(rounding) {
-				  case 0: goto ret1;
-				  case 2: goto bump_up;
-				  }
-#endif
-				dval(d) += dval(d);
-				if (dval(d) > ds || dval(d) == ds && L & 1) {
- bump_up:
-					while(*--s == '9')
-						if (s == s0) {
-							k++;
-							*s = '0';
-							break;
-							}
-					++*s++;
-					}
-				break;
-				}
-			}
-		goto ret1;
-		}
-
-	m2 = b2;
-	m5 = b5;
-	mhi = mlo = 0;
-	if (leftright) {
-		i =
-#ifndef Sudden_Underflow
-			denorm ? be + (Bias + (P-1) - 1 + 1) :
-#endif
-#ifdef IBM
-			1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
-#else
-			1 + P - bbits;
-#endif
-		b2 += i;
-		s2 += i;
-		mhi = i2b(1);
-		}
-	if (m2 > 0 && s2 > 0) {
-		i = m2 < s2 ? m2 : s2;
-		b2 -= i;
-		m2 -= i;
-		s2 -= i;
-		}
-	if (b5 > 0) {
-		if (leftright) {
-			if (m5 > 0) {
-				mhi = pow5mult(mhi, m5);
-				b1 = mult(mhi, b);
-				Bfree(b);
-				b = b1;
-				}
-			if ((j = b5 - m5))
-				b = pow5mult(b, j);
-			}
-		else
-			b = pow5mult(b, b5);
-		}
-	S = i2b(1);
-	if (s5 > 0)
-		S = pow5mult(S, s5);
-
-	/* Check for special case that d is a normalized power of 2. */
-
-	spec_case = 0;
-	if ((mode < 2 || leftright)
-#ifdef Honor_FLT_ROUNDS
-			&& rounding == 1
-#endif
-				) {
-		if (!word1(d) && !(word0(d) & Bndry_mask)
-#ifndef Sudden_Underflow
-		 && word0(d) & (Exp_mask & ~Exp_msk1)
-#endif
-				) {
-			/* The special case */
-			b2 += Log2P;
-			s2 += Log2P;
-			spec_case = 1;
-			}
-		}
-
-	/* Arrange for convenient computation of quotients:
-	 * shift left if necessary so divisor has 4 leading 0 bits.
-	 *
-	 * Perhaps we should just compute leading 28 bits of S once
-	 * and for all and pass them and a shift to quorem, so it
-	 * can do shifts and ors to compute the numerator for q.
-	 */
-#ifdef Pack_32
-	if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f))
-		i = 32 - i;
-#else
-	if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf)
-		i = 16 - i;
-#endif
-	if (i > 4) {
-		i -= 4;
-		b2 += i;
-		m2 += i;
-		s2 += i;
-		}
-	else if (i < 4) {
-		i += 28;
-		b2 += i;
-		m2 += i;
-		s2 += i;
-		}
-	if (b2 > 0)
-		b = lshift(b, b2);
-	if (s2 > 0)
-		S = lshift(S, s2);
-	if (k_check) {
-		if (cmp(b,S) < 0) {
-			k--;
-			b = multadd(b, 10, 0);	/* we botched the k estimate */
-			if (leftright)
-				mhi = multadd(mhi, 10, 0);
-			ilim = ilim1;
-			}
-		}
-	if (ilim <= 0 && (mode == 3 || mode == 5)) {
-		if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
-			/* no digits, fcvt style */
- no_digits:
-			k = -1 - ndigits;
-			goto ret;
-			}
- one_digit:
-		*s++ = '1';
-		k++;
-		goto ret;
-		}
-	if (leftright) {
-		if (m2 > 0)
-			mhi = lshift(mhi, m2);
-
-		/* Compute mlo -- check for special case
-		 * that d is a normalized power of 2.
-		 */
-
-		mlo = mhi;
-		if (spec_case) {
-			mhi = Balloc(mhi->k);
-			Bcopy(mhi, mlo);
-			mhi = lshift(mhi, Log2P);
-			}
-
-		for(i = 1;;i++) {
-			dig = quorem(b,S) + '0';
-			/* Do we yet have the shortest decimal string
-			 * that will round to d?
-			 */
-			j = cmp(b, mlo);
-			delta = diff(S, mhi);
-			j1 = delta->sign ? 1 : cmp(b, delta);
-			Bfree(delta);
-#ifndef ROUND_BIASED
-			if (j1 == 0 && mode != 1 && !(word1(d) & 1)
-#ifdef Honor_FLT_ROUNDS
-				&& rounding >= 1
-#endif
-								   ) {
-				if (dig == '9')
-					goto round_9_up;
-				if (j > 0)
-					dig++;
-#ifdef SET_INEXACT
-				else if (!b->x[0] && b->wds <= 1)
-					inexact = 0;
-#endif
-				*s++ = dig;
-				goto ret;
-				}
-#endif
-			if (j < 0 || j == 0 && mode != 1
-#ifndef ROUND_BIASED
-							&& !(word1(d) & 1)
-#endif
-					) {
-				if (!b->x[0] && b->wds <= 1) {
-#ifdef SET_INEXACT
-					inexact = 0;
-#endif
-					goto accept_dig;
-					}
-#ifdef Honor_FLT_ROUNDS
-				if (mode > 1)
-				 switch(rounding) {
-				  case 0: goto accept_dig;
-				  case 2: goto keep_dig;
-				  }
-#endif /*Honor_FLT_ROUNDS*/
-				if (j1 > 0) {
-					b = lshift(b, 1);
-					j1 = cmp(b, S);
-					if ((j1 > 0 || j1 == 0 && dig & 1)
-					&& dig++ == '9')
-						goto round_9_up;
-					}
- accept_dig:
-				*s++ = dig;
-				goto ret;
-				}
-			if (j1 > 0) {
-#ifdef Honor_FLT_ROUNDS
-				if (!rounding)
-					goto accept_dig;
-#endif
-				if (dig == '9') { /* possible if i == 1 */
- round_9_up:
-					*s++ = '9';
-					goto roundoff;
-					}
-				*s++ = dig + 1;
-				goto ret;
-				}
-#ifdef Honor_FLT_ROUNDS
- keep_dig:
-#endif
-			*s++ = dig;
-			if (i == ilim)
-				break;
-			b = multadd(b, 10, 0);
-			if (mlo == mhi)
-				mlo = mhi = multadd(mhi, 10, 0);
-			else {
-				mlo = multadd(mlo, 10, 0);
-				mhi = multadd(mhi, 10, 0);
-				}
-			}
-		}
-	else
-		for(i = 1;; i++) {
-			*s++ = dig = quorem(b,S) + '0';
-			if (!b->x[0] && b->wds <= 1) {
-#ifdef SET_INEXACT
-				inexact = 0;
-#endif
-				goto ret;
-				}
-			if (i >= ilim)
-				break;
-			b = multadd(b, 10, 0);
-			}
-
-	/* Round off last digit */
-
-#ifdef Honor_FLT_ROUNDS
-	switch(rounding) {
-	  case 0: goto trimzeros;
-	  case 2: goto roundoff;
-	  }
-#endif
-	b = lshift(b, 1);
-	j = cmp(b, S);
-	if (j > 0 || j == 0 && dig & 1) {
- roundoff:
-		while(*--s == '9')
-			if (s == s0) {
-				k++;
-				*s++ = '1';
-				goto ret;
-				}
-		++*s++;
-		}
-	else {
-#ifdef Honor_FLT_ROUNDS
- trimzeros:
-#endif
-		while(*--s == '0');
-		s++;
-		}
- ret:
-	Bfree(S);
-	if (mhi) {
-		if (mlo && mlo != mhi)
-			Bfree(mlo);
-		Bfree(mhi);
-		}
- ret1:
-#ifdef SET_INEXACT
-	if (inexact) {
-		if (!oldinexact) {
-			word0(d) = Exp_1 + (70 << Exp_shift);
-			word1(d) = 0;
-			dval(d) += 1.;
-			}
-		}
-	else if (!oldinexact)
-		clear_inexact();
-#endif
-	Bfree(b);
-	*s = 0;
-	*decpt = k + 1;
-	if (rve)
-		*rve = s;
-	return s0;
-	}
-#ifdef __cplusplus
-}
-#endif
--- a/js/src/jsapi.cpp
+++ b/js/src/jsapi.cpp
@@ -736,18 +736,16 @@ JS_NewRuntime(uint32 maxbytes)
         return NULL;
 
     /* Initialize infallibly first, so we can goto bad and JS_DestroyRuntime. */
     memset(rt, 0, sizeof(JSRuntime));
     JS_INIT_CLIST(&rt->contextList);
     JS_INIT_CLIST(&rt->trapList);
     JS_INIT_CLIST(&rt->watchPointList);
 
-    if (!js_InitDtoa())
-        goto bad;
     if (!js_InitGC(rt, maxbytes))
         goto bad;
     if (!js_InitAtomState(rt))
         goto bad;
     if (!js_InitDeflatedStringCache(rt))
         goto bad;
 #ifdef JS_THREADSAFE
     if (!js_InitThreadPrivateIndex(js_ThreadDestructorCB))
--- a/js/src/jsdtoa.cpp
+++ b/js/src/jsdtoa.cpp
@@ -46,146 +46,2779 @@
 #include "jsdtoa.h"
 #include "jsprf.h"
 #include "jsutil.h" /* Added by JSIFY */
 #include "jspubtd.h"
 #include "jsnum.h"
 #include "jsbit.h"
 
 #ifdef JS_THREADSAFE
-#include "jslock.h"
+#include "prlock.h"
 #endif
 
+/****************************************************************
+ *
+ * The author of this software is David M. Gay.
+ *
+ * Copyright (c) 1991 by Lucent Technologies.
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose without fee is hereby granted, provided that this entire notice
+ * is included in all copies of any software which is or includes a copy
+ * or modification of this software and in all copies of the supporting
+ * documentation for such software.
+ *
+ * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
+ * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
+ * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
+ * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
+ *
+ ***************************************************************/
+
+/* Please send bug reports to
+    David M. Gay
+    Bell Laboratories, Room 2C-463
+    600 Mountain Avenue
+    Murray Hill, NJ 07974-0636
+    U.S.A.
+    dmg@bell-labs.com
+ */
+
+/* On a machine with IEEE extended-precision registers, it is
+ * necessary to specify double-precision (53-bit) rounding precision
+ * before invoking strtod or dtoa.  If the machine uses (the equivalent
+ * of) Intel 80x87 arithmetic, the call
+ *  _control87(PC_53, MCW_PC);
+ * does this with many compilers.  Whether this or another call is
+ * appropriate depends on the compiler; for this to work, it may be
+ * necessary to #include "float.h" or another system-dependent header
+ * file.
+ */
+
+/* strtod for IEEE-arithmetic machines.
+ *
+ * This strtod returns a nearest machine number to the input decimal
+ * string (or sets err to JS_DTOA_ERANGE or JS_DTOA_ENOMEM).  With IEEE
+ * arithmetic, ties are broken by the IEEE round-even rule.  Otherwise
+ * ties are broken by biased rounding (add half and chop).
+ *
+ * Inspired loosely by William D. Clinger's paper "How to Read Floating
+ * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
+ *
+ * Modifications:
+ *
+ *  1. We only require IEEE double-precision
+ *      arithmetic (not IEEE double-extended).
+ *  2. We get by with floating-point arithmetic in a case that
+ *      Clinger missed -- when we're computing d * 10^n
+ *      for a small integer d and the integer n is not too
+ *      much larger than 22 (the maximum integer k for which
+ *      we can represent 10^k exactly), we may be able to
+ *      compute (d*10^k) * 10^(e-k) with just one roundoff.
+ *  3. Rather than a bit-at-a-time adjustment of the binary
+ *      result in the hard case, we use floating-point
+ *      arithmetic to determine the adjustment to within
+ *      one bit; only in really hard cases do we need to
+ *      compute a second residual.
+ *  4. Because of 3., we don't need a large table of powers of 10
+ *      for ten-to-e (just some small tables, e.g. of 10^k
+ *      for 0 <= k <= 22).
+ */
+
+/*
+ * #define IEEE_8087 for IEEE-arithmetic machines where the least
+ *  significant byte has the lowest address.
+ * #define IEEE_MC68k for IEEE-arithmetic machines where the most
+ *  significant byte has the lowest address.
+ * #define Long int on machines with 32-bit ints and 64-bit longs.
+ * #define Sudden_Underflow for IEEE-format machines without gradual
+ *  underflow (i.e., that flush to zero on underflow).
+ * #define No_leftright to omit left-right logic in fast floating-point
+ *  computation of js_dtoa.
+ * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
+ * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
+ *  that use extended-precision instructions to compute rounded
+ *  products and quotients) with IBM.
+ * #define ROUND_BIASED for IEEE-format with biased rounding.
+ * #define Inaccurate_Divide for IEEE-format with correctly rounded
+ *  products but inaccurate quotients, e.g., for Intel i860.
+ * #define JS_HAVE_LONG_LONG on machines that have a "long long"
+ *  integer type (of >= 64 bits).  If long long is available and the name is
+ *  something other than "long long", #define Llong to be the name,
+ *  and if "unsigned Llong" does not work as an unsigned version of
+ *  Llong, #define #ULLong to be the corresponding unsigned type.
+ * #define Bad_float_h if your system lacks a float.h or if it does not
+ *  define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
+ *  FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
+ * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
+ *  if memory is available and otherwise does something you deem
+ *  appropriate.  If MALLOC is undefined, malloc will be invoked
+ *  directly -- and assumed always to succeed.
+ * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
+ *  memory allocations from a private pool of memory when possible.
+ *  When used, the private pool is PRIVATE_MEM bytes long: 2000 bytes,
+ *  unless #defined to be a different length.  This default length
+ *  suffices to get rid of MALLOC calls except for unusual cases,
+ *  such as decimal-to-binary conversion of a very long string of
+ *  digits.
+ * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
+ *  Infinity and NaN (case insensitively).  On some systems (e.g.,
+ *  some HP systems), it may be necessary to #define NAN_WORD0
+ *  appropriately -- to the most significant word of a quiet NaN.
+ *  (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
+ * #define MULTIPLE_THREADS if the system offers preemptively scheduled
+ *  multiple threads.  In this case, you must provide (or suitably
+ *  #define) two locks, acquired by ACQUIRE_DTOA_LOCK() and released
+ *  by RELEASE_DTOA_LOCK().  (The second lock, accessed
+ *  in pow5mult, ensures lazy evaluation of only one copy of high
+ *  powers of 5; omitting this lock would introduce a small
+ *  probability of wasting memory, but would otherwise be harmless.)
+ *  You must also invoke freedtoa(s) to free the value s returned by
+ *  dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
+ * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
+ *  avoids underflows on inputs whose result does not underflow.
+ */
 #ifdef IS_LITTLE_ENDIAN
 #define IEEE_8087
 #else
 #define IEEE_MC68k
 #endif
 
 #ifndef Long
 #define Long int32
 #endif
 
 #ifndef ULong
 #define ULong uint32
 #endif
 
-/*
+#define Bug(errorMessageString) JS_ASSERT(!errorMessageString)
+
+#include "stdlib.h"
+#include "string.h"
+
+#ifdef MALLOC
+extern void *MALLOC(size_t);
+#else
+#define MALLOC malloc
+#endif
+
+#define Omit_Private_Memory
+/* Private memory currently doesn't work with JS_THREADSAFE */
+#ifndef Omit_Private_Memory
+#ifndef PRIVATE_MEM
+#define PRIVATE_MEM 2000
+#endif
+#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
+static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
+#endif
+
+#ifdef Bad_float_h
+#undef __STDC__
+
+#define DBL_DIG 15
+#define DBL_MAX_10_EXP 308
+#define DBL_MAX_EXP 1024
+#define FLT_RADIX 2
+#define FLT_ROUNDS 1
+#define DBL_MAX 1.7976931348623157e+308
+
+
+
+#ifndef LONG_MAX
+#define LONG_MAX 2147483647
+#endif
+
+#else /* ifndef Bad_float_h */
+#include "float.h"
+#endif /* Bad_float_h */
+
+#ifndef __MATH_H__
+#include "math.h"
+#endif
+
+#ifndef CONST
+#define CONST const
+#endif
+
+#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
+Exactly one of IEEE_8087 or IEEE_MC68k should be defined.
+#endif
+
+#define word0(x)        JSDOUBLE_HI32(x)
+#define set_word0(x, y) JSDOUBLE_SET_HI32(x, y)
+#define word1(x)        JSDOUBLE_LO32(x)
+#define set_word1(x, y) JSDOUBLE_SET_LO32(x, y)
+
+#define Storeinc(a,b,c) (*(a)++ = (b) << 16 | (c) & 0xffff)
+
+/* #define P DBL_MANT_DIG */
+/* Ten_pmax = floor(P*log(2)/log(5)) */
+/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
+/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
+/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
+
+#define Exp_shift  20
+#define Exp_shift1 20
+#define Exp_msk1    0x100000
+#define Exp_msk11   0x100000
+#define Exp_mask  0x7ff00000
+#define P 53
+#define Bias 1023
+#define Emin (-1022)
+#define Exp_1  0x3ff00000
+#define Exp_11 0x3ff00000
+#define Ebits 11
+#define Frac_mask  0xfffff
+#define Frac_mask1 0xfffff
+#define Ten_pmax 22
+#define Bletch 0x10
+#define Bndry_mask  0xfffff
+#define Bndry_mask1 0xfffff
+#define LSB 1
+#define Sign_bit 0x80000000
+#define Log2P 1
+#define Tiny0 0
+#define Tiny1 1
+#define Quick_max 14
+#define Int_max 14
+#define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */
+#ifndef NO_IEEE_Scale
+#define Avoid_Underflow
+#endif
+
+
+
+#ifdef RND_PRODQUOT
+#define rounded_product(a,b) a = rnd_prod(a, b)
+#define rounded_quotient(a,b) a = rnd_quot(a, b)
+extern double rnd_prod(double, double), rnd_quot(double, double);
+#else
+#define rounded_product(a,b) a *= b
+#define rounded_quotient(a,b) a /= b
+#endif
+
+#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
+#define Big1 0xffffffff
+
+#ifndef JS_HAVE_LONG_LONG
+#undef ULLong
+#else   /* long long available */
 #ifndef Llong
 #define Llong JSInt64
 #endif
+#ifndef ULLong
+#define ULLong JSUint64
+#endif
+#endif /* JS_HAVE_LONG_LONG */
 
-#ifndef ULlong
-#define ULlong JSUint64
+#ifdef JS_THREADSAFE
+#define MULTIPLE_THREADS
+static PRLock *freelist_lock;
+#define ACQUIRE_DTOA_LOCK()                                                   \
+    JS_BEGIN_MACRO                                                            \
+        if (!initialized)                                                     \
+            InitDtoa();                                                       \
+        PR_Lock(freelist_lock);                                               \
+    JS_END_MACRO
+#define RELEASE_DTOA_LOCK() PR_Unlock(freelist_lock)
+#else
+#undef MULTIPLE_THREADS
+#define ACQUIRE_DTOA_LOCK()   /*nothing*/
+#define RELEASE_DTOA_LOCK()   /*nothing*/
+#endif
+
+#define Kmax 15
+
+struct Bigint {
+    struct Bigint *next;  /* Free list link */
+    int32 k;              /* lg2(maxwds) */
+    int32 maxwds;         /* Number of words allocated for x */
+    int32 sign;           /* Zero if positive, 1 if negative.  Ignored by most Bigint routines! */
+    int32 wds;            /* Actual number of words.  If value is nonzero, the most significant word must be nonzero. */
+    ULong x[1];           /* wds words of number in little endian order */
+};
+
+#ifdef ENABLE_OOM_TESTING
+/* Out-of-memory testing.  Use a good testcase (over and over) and then use
+ * these routines to cause a memory failure on every possible Balloc allocation,
+ * to make sure that all out-of-memory paths can be followed.  See bug 14044.
+ */
+
+static int allocationNum;               /* which allocation is next? */
+static int desiredFailure;              /* which allocation should fail? */
+
+/**
+ * js_BigintTestingReset
+ *
+ * Call at the beginning of a test run to set the allocation failure position.
+ * (Set to 0 to just have the engine count allocations without failing.)
+ */
+JS_PUBLIC_API(void)
+js_BigintTestingReset(int newFailure)
+{
+    allocationNum = 0;
+    desiredFailure = newFailure;
+}
+
+/**
+ * js_BigintTestingWhere
+ *
+ * Report the current allocation position.  This is really only useful when you
+ * want to learn how many allocations a test run has.
+ */
+JS_PUBLIC_API(int)
+js_BigintTestingWhere()
+{
+    return allocationNum;
+}
+
+
+/*
+ * So here's what you do: Set up a fantastic test case that exercises the
+ * elements of the code you wish.  Set the failure point at 0 and run the test,
+ * then get the allocation position.  This number is the number of allocations
+ * your test makes.  Now loop from 1 to that number, setting the failure point
+ * at each loop count, and run the test over and over, causing failures at each
+ * step.  Any memory failure *should* cause a Out-Of-Memory exception; if it
+ * doesn't, then there's still an error here.
+ */
+#endif
+
+typedef struct Bigint Bigint;
+
+static Bigint *freelist[Kmax+1];
+
+/*
+ * Allocate a Bigint with 2^k words.
+ * This is not threadsafe. The caller must use thread locks
+ */
+static Bigint *Balloc(int32 k)
+{
+    int32 x;
+    Bigint *rv;
+#ifndef Omit_Private_Memory
+    uint32 len;
+#endif
+
+#ifdef ENABLE_OOM_TESTING
+    if (++allocationNum == desiredFailure) {
+        printf("Forced Failing Allocation number %d\n", allocationNum);
+        return NULL;
+    }
+#endif
+
+    if ((rv = freelist[k]) != NULL)
+        freelist[k] = rv->next;
+    if (rv == NULL) {
+        x = 1 << k;
+#ifdef Omit_Private_Memory
+        rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
+#else
+        len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
+            /sizeof(double);
+        if (pmem_next - private_mem + len <= PRIVATE_mem) {
+            rv = (Bigint*)pmem_next;
+            pmem_next += len;
+            }
+        else
+            rv = (Bigint*)MALLOC(len*sizeof(double));
+#endif
+        if (!rv)
+            return NULL;
+        rv->k = k;
+        rv->maxwds = x;
+    }
+    rv->sign = rv->wds = 0;
+    return rv;
+}
+
+static void Bfree(Bigint *v)
+{
+    if (v) {
+        v->next = freelist[v->k];
+        freelist[v->k] = v;
+    }
+}
+
+#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
+                          y->wds*sizeof(Long) + 2*sizeof(int32))
+
+/* Return b*m + a.  Deallocate the old b.  Both a and m must be between 0 and
+ * 65535 inclusive.  NOTE: old b is deallocated on memory failure.
+ */
+static Bigint *multadd(Bigint *b, int32 m, int32 a)
+{
+    int32 i, wds;
+#ifdef ULLong
+    ULong *x;
+    ULLong carry, y;
+#else
+    ULong carry, *x, y;
+    ULong xi, z;
+#endif
+    Bigint *b1;
+
+#ifdef ENABLE_OOM_TESTING
+    if (++allocationNum == desiredFailure) {
+        /* Faux allocation, because I'm not getting all of the failure paths
+         * without it.
+         */
+        printf("Forced Failing Allocation number %d\n", allocationNum);
+        Bfree(b);
+        return NULL;
+    }
+#endif
+
+    wds = b->wds;
+    x = b->x;
+    i = 0;
+    carry = a;
+    do {
+#ifdef ULLong
+        y = *x * (ULLong)m + carry;
+        carry = y >> 32;
+        *x++ = (ULong)(y & 0xffffffffUL);
+#else
+        xi = *x;
+        y = (xi & 0xffff) * m + carry;
+        z = (xi >> 16) * m + (y >> 16);
+        carry = z >> 16;
+        *x++ = (z << 16) + (y & 0xffff);
+#endif
+    }
+    while(++i < wds);
+    if (carry) {
+        if (wds >= b->maxwds) {
+            b1 = Balloc(b->k+1);
+            if (!b1) {
+                Bfree(b);
+                return NULL;
+            }
+            Bcopy(b1, b);
+            Bfree(b);
+            b = b1;
+        }
+        b->x[wds++] = (ULong)carry;
+        b->wds = wds;
+    }
+    return b;
+}
+
+static Bigint *s2b(CONST char *s, int32 nd0, int32 nd, ULong y9)
+{
+    Bigint *b;
+    int32 i, k;
+    Long x, y;
+
+    x = (nd + 8) / 9;
+    for(k = 0, y = 1; x > y; y <<= 1, k++) ;
+    b = Balloc(k);
+    if (!b)
+        return NULL;
+    b->x[0] = y9;
+    b->wds = 1;
+
+    i = 9;
+    if (9 < nd0) {
+        s += 9;
+        do {
+            b = multadd(b, 10, *s++ - '0');
+            if (!b)
+                return NULL;
+        } while(++i < nd0);
+        s++;
+    }
+    else
+        s += 10;
+    for(; i < nd; i++) {
+        b = multadd(b, 10, *s++ - '0');
+        if (!b)
+            return NULL;
+    }
+    return b;
+}
+
+
+/* Return the number (0 through 32) of most significant zero bits in x. */
+static int32 hi0bits(register ULong x)
+{
+#ifdef JS_HAS_BUILTIN_BITSCAN32
+    return( (!x) ? 32 : js_bitscan_clz32(x) );
+#else
+    register int32 k = 0;
+
+    if (!(x & 0xffff0000)) {
+        k = 16;
+        x <<= 16;
+    }
+    if (!(x & 0xff000000)) {
+        k += 8;
+        x <<= 8;
+    }
+    if (!(x & 0xf0000000)) {
+        k += 4;
+        x <<= 4;
+    }
+    if (!(x & 0xc0000000)) {
+        k += 2;
+        x <<= 2;
+    }
+    if (!(x & 0x80000000)) {
+        k++;
+        if (!(x & 0x40000000))
+            return 32;
+    }
+    return k;
+#endif /* JS_HAS_BUILTIN_BITSCAN32 */
+}
+
+
+/* Return the number (0 through 32) of least significant zero bits in y.
+ * Also shift y to the right past these 0 through 32 zeros so that y's
+ * least significant bit will be set unless y was originally zero. */
+static int32 lo0bits(ULong *y)
+{
+#ifdef JS_HAS_BUILTIN_BITSCAN32
+    int32 k;
+    ULong x = *y;
+
+   if (x>1)
+      *y = ( x >> (k = js_bitscan_ctz32(x)) );
+   else
+      k = ((x ^ 1) << 5);
+#else
+    register int32 k;
+    register ULong x = *y;
+
+    if (x & 7) {
+        if (x & 1)
+            return 0;
+        if (x & 2) {
+            *y = x >> 1;
+            return 1;
+        }
+        *y = x >> 2;
+        return 2;
+    }
+    k = 0;
+    if (!(x & 0xffff)) {
+        k = 16;
+        x >>= 16;
+    }
+    if (!(x & 0xff)) {
+        k += 8;
+        x >>= 8;
+    }
+    if (!(x & 0xf)) {
+        k += 4;
+        x >>= 4;
+    }
+    if (!(x & 0x3)) {
+        k += 2;
+        x >>= 2;
+    }
+    if (!(x & 1)) {
+        k++;
+        x >>= 1;
+        if (!x & 1)
+            return 32;
+    }
+    *y = x;
+#endif /* JS_HAS_BUILTIN_BITSCAN32 */
+    return k;
+}
+
+/* Return a new Bigint with the given integer value, which must be nonnegative. */
+static Bigint *i2b(int32 i)
+{
+    Bigint *b;
+
+    b = Balloc(1);
+    if (!b)
+        return NULL;
+    b->x[0] = i;
+    b->wds = 1;
+    return b;
+}
+
+/* Return a newly allocated product of a and b. */
+static Bigint *mult(CONST Bigint *a, CONST Bigint *b)
+{
+    CONST Bigint *t;
+    Bigint *c;
+    int32 k, wa, wb, wc;
+    ULong y;
+    ULong *xc, *xc0, *xce;
+    CONST ULong *x, *xa, *xae, *xb, *xbe;
+#ifdef ULLong
+    ULLong carry, z;
+#else
+    ULong carry, z;
+    ULong z2;
+#endif
+
+    if (a->wds < b->wds) {
+        t = a;
+        a = b;
+        b = t;
+    }
+    k = a->k;
+    wa = a->wds;
+    wb = b->wds;
+    wc = wa + wb;
+    if (wc > a->maxwds)
+        k++;
+    c = Balloc(k);
+    if (!c)
+        return NULL;
+    for(xc = c->x, xce = xc + wc; xc < xce; xc++)
+        *xc = 0;
+    xa = a->x;
+    xae = xa + wa;
+    xb = b->x;
+    xbe = xb + wb;
+    xc0 = c->x;
+#ifdef ULLong
+    for(; xb < xbe; xc0++) {
+        if ((y = *xb++) != 0) {
+            x = xa;
+            xc = xc0;
+            carry = 0;
+            do {
+                z = *x++ * (ULLong)y + *xc + carry;
+                carry = z >> 32;
+                *xc++ = (ULong)(z & 0xffffffffUL);
+                }
+                while(x < xae);
+            *xc = (ULong)carry;
+            }
+        }
+#else
+    for(; xb < xbe; xb++, xc0++) {
+        if ((y = *xb & 0xffff) != 0) {
+            x = xa;
+            xc = xc0;
+            carry = 0;
+            do {
+                z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
+                carry = z >> 16;
+                z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
+                carry = z2 >> 16;
+                Storeinc(xc, z2, z);
+            }
+            while(x < xae);
+            *xc = carry;
+        }
+        if ((y = *xb >> 16) != 0) {
+            x = xa;
+            xc = xc0;
+            carry = 0;
+            z2 = *xc;
+            do {
+                z = (*x & 0xffff) * y + (*xc >> 16) + carry;
+                carry = z >> 16;
+                Storeinc(xc, z, z2);
+                z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
+                carry = z2 >> 16;
+            }
+            while(x < xae);
+            *xc = z2;
+        }
+    }
+#endif
+    for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
+    c->wds = wc;
+    return c;
+}
+
+/*
+ * 'p5s' points to a linked list of Bigints that are powers of 5.
+ * This list grows on demand, and it can only grow: it won't change
+ * in any other way.  So if we read 'p5s' or the 'next' field of
+ * some Bigint on the list, and it is not NULL, we know it won't
+ * change to NULL or some other value.  Only when the value of
+ * 'p5s' or 'next' is NULL do we need to acquire the lock and add
+ * a new Bigint to the list.
+ */
+
+static Bigint *p5s;
+
+#ifdef JS_THREADSAFE
+static PRLock *p5s_lock;
 #endif
-*/
+
+/* Return b * 5^k.  Deallocate the old b.  k must be nonnegative. */
+/* NOTE: old b is deallocated on memory failure. */
+static Bigint *pow5mult(Bigint *b, int32 k)
+{
+    Bigint *b1, *p5, *p51;
+    int32 i;
+    static CONST int32 p05[3] = { 5, 25, 125 };
+
+    if ((i = k & 3) != 0) {
+        b = multadd(b, p05[i-1], 0);
+        if (!b)
+            return NULL;
+    }
+
+    if (!(k >>= 2))
+        return b;
+    if (!(p5 = p5s)) {
+#ifdef JS_THREADSAFE
+        /*
+         * We take great care to not call i2b() and Bfree()
+         * while holding the lock.
+         */
+        Bigint *wasted_effort = NULL;
+        p5 = i2b(625);
+        if (!p5) {
+            Bfree(b);
+            return NULL;
+        }
+        /* lock and check again */
+        PR_Lock(p5s_lock);
+        if (!p5s) {
+            /* first time */
+            p5s = p5;
+            p5->next = 0;
+        } else {
+            /* some other thread just beat us */
+            wasted_effort = p5;
+            p5 = p5s;
+        }
+        PR_Unlock(p5s_lock);
+        if (wasted_effort) {
+            Bfree(wasted_effort);
+        }
+#else
+        /* first time */
+        p5 = p5s = i2b(625);
+        if (!p5) {
+            Bfree(b);
+            return NULL;
+        }
+        p5->next = 0;
+#endif
+    }
+    for(;;) {
+        if (k & 1) {
+            b1 = mult(b, p5);
+            Bfree(b);
+            if (!b1)
+                return NULL;
+            b = b1;
+        }
+        if (!(k >>= 1))
+            break;
+        if (!(p51 = p5->next)) {
+#ifdef JS_THREADSAFE
+            Bigint *wasted_effort = NULL;
+            p51 = mult(p5, p5);
+            if (!p51) {
+                Bfree(b);
+                return NULL;
+            }
+            PR_Lock(p5s_lock);
+            if (!p5->next) {
+                p5->next = p51;
+                p51->next = 0;
+            } else {
+                wasted_effort = p51;
+                p51 = p5->next;
+            }
+            PR_Unlock(p5s_lock);
+            if (wasted_effort) {
+                Bfree(wasted_effort);
+            }
+#else
+            p51 = mult(p5,p5);
+            if (!p51) {
+                Bfree(b);
+                return NULL;
+            }
+            p51->next = 0;
+            p5->next = p51;
+#endif
+        }
+        p5 = p51;
+    }
+    return b;
+}
+
+/* Return b * 2^k.  Deallocate the old b.  k must be nonnegative.
+ * NOTE: on memory failure, old b is deallocated. */
+static Bigint *lshift(Bigint *b, int32 k)
+{
+    int32 i, k1, n, n1;
+    Bigint *b1;
+    ULong *x, *x1, *xe, z;
+
+    n = k >> 5;
+    k1 = b->k;
+    n1 = n + b->wds + 1;
+    for(i = b->maxwds; n1 > i; i <<= 1)
+        k1++;
+    b1 = Balloc(k1);
+    if (!b1)
+        goto done;
+    x1 = b1->x;
+    for(i = 0; i < n; i++)
+        *x1++ = 0;
+    x = b->x;
+    xe = x + b->wds;
+    if (k &= 0x1f) {
+        k1 = 32 - k;
+        z = 0;
+        do {
+            *x1++ = *x << k | z;
+            z = *x++ >> k1;
+        }
+        while(x < xe);
+        if ((*x1 = z) != 0)
+            ++n1;
+    }
+    else do
+        *x1++ = *x++;
+         while(x < xe);
+    b1->wds = n1 - 1;
+done:
+    Bfree(b);
+    return b1;
+}
+
+/* Return -1, 0, or 1 depending on whether a<b, a==b, or a>b, respectively. */
+static int32 cmp(Bigint *a, Bigint *b)
+{
+    ULong *xa, *xa0, *xb, *xb0;
+    int32 i, j;
+
+    i = a->wds;
+    j = b->wds;
+#ifdef DEBUG
+    if (i > 1 && !a->x[i-1])
+        Bug("cmp called with a->x[a->wds-1] == 0");
+    if (j > 1 && !b->x[j-1])
+        Bug("cmp called with b->x[b->wds-1] == 0");
+#endif
+    if (i -= j)
+        return i;
+    xa0 = a->x;
+    xa = xa0 + j;
+    xb0 = b->x;
+    xb = xb0 + j;
+    for(;;) {
+        if (*--xa != *--xb)
+            return *xa < *xb ? -1 : 1;
+        if (xa <= xa0)
+            break;
+    }
+    return 0;
+}
+
+static Bigint *diff(Bigint *a, Bigint *b)
+{
+    Bigint *c;
+    int32 i, wa, wb;
+    ULong *xa, *xae, *xb, *xbe, *xc;
+#ifdef ULLong
+    ULLong borrow, y;
+#else
+    ULong borrow, y;
+    ULong z;
+#endif
+
+    i = cmp(a,b);
+    if (!i) {
+        c = Balloc(0);
+        if (!c)
+            return NULL;
+        c->wds = 1;
+        c->x[0] = 0;
+        return c;
+    }
+    if (i < 0) {
+        c = a;
+        a = b;
+        b = c;
+        i = 1;
+    }
+    else
+        i = 0;
+    c = Balloc(a->k);
+    if (!c)
+        return NULL;
+    c->sign = i;
+    wa = a->wds;
+    xa = a->x;
+    xae = xa + wa;
+    wb = b->wds;
+    xb = b->x;
+    xbe = xb + wb;
+    xc = c->x;
+    borrow = 0;
+#ifdef ULLong
+    do {
+        y = (ULLong)*xa++ - *xb++ - borrow;
+        borrow = y >> 32 & 1UL;
+        *xc++ = (ULong)(y & 0xffffffffUL);
+        }
+        while(xb < xbe);
+    while(xa < xae) {
+        y = *xa++ - borrow;
+        borrow = y >> 32 & 1UL;
+        *xc++ = (ULong)(y & 0xffffffffUL);
+        }
+#else
+    do {
+        y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
+        borrow = (y & 0x10000) >> 16;
+        z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
+        borrow = (z & 0x10000) >> 16;
+        Storeinc(xc, z, y);
+        }
+        while(xb < xbe);
+    while(xa < xae) {
+        y = (*xa & 0xffff) - borrow;
+        borrow = (y & 0x10000) >> 16;
+        z = (*xa++ >> 16) - borrow;
+        borrow = (z & 0x10000) >> 16;
+        Storeinc(xc, z, y);
+        }
+#endif
+    while(!*--xc)
+        wa--;
+    c->wds = wa;
+    return c;
+}
+
+/* Return the absolute difference between x and the adjacent greater-magnitude double number (ignoring exponent overflows). */
+static double ulp(double x)
+{
+    register Long L;
+    double a = 0;
+
+    L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
+#ifndef Sudden_Underflow
+    if (L > 0) {
+#endif
+        set_word0(a, L);
+        set_word1(a, 0);
+#ifndef Sudden_Underflow
+    }
+    else {
+        L = -L >> Exp_shift;
+        if (L < Exp_shift) {
+            set_word0(a, 0x80000 >> L);
+            set_word1(a, 0);
+        }
+        else {
+            set_word0(a, 0);
+            L -= Exp_shift;
+            set_word1(a, L >= 31 ? 1 : 1 << (31 - L));
+        }
+    }
+#endif
+    return a;
+}
+
+
+static double b2d(Bigint *a, int32 *e)
+{
+    ULong *xa, *xa0, w, y, z;
+    int32 k;
+    double d = 0;
+#define d0 word0(d)
+#define d1 word1(d)
+#define set_d0(x) set_word0(d, x)
+#define set_d1(x) set_word1(d, x)
+
+    xa0 = a->x;
+    xa = xa0 + a->wds;
+    y = *--xa;
+#ifdef DEBUG
+    if (!y) Bug("zero y in b2d");
+#endif
+    k = hi0bits(y);
+    *e = 32 - k;
+    if (k < Ebits) {
+        set_d0(Exp_1 | y >> (Ebits - k));
+        w = xa > xa0 ? *--xa : 0;
+        set_d1(y << (32-Ebits + k) | w >> (Ebits - k));
+        goto ret_d;
+    }
+    z = xa > xa0 ? *--xa : 0;
+    if (k -= Ebits) {
+        set_d0(Exp_1 | y << k | z >> (32 - k));
+        y = xa > xa0 ? *--xa : 0;
+        set_d1(z << k | y >> (32 - k));
+    }
+    else {
+        set_d0(Exp_1 | y);
+        set_d1(z);
+    }
+  ret_d:
+#undef d0
+#undef d1
+#undef set_d0
+#undef set_d1
+    return d;
+}
+
+
+/* Convert d into the form b*2^e, where b is an odd integer.  b is the returned
+ * Bigint and e is the returned binary exponent.  Return the number of significant
+ * bits in b in bits.  d must be finite and nonzero. */
+static Bigint *d2b(double d, int32 *e, int32 *bits)
+{
+    Bigint *b;
+    int32 de, i, k;
+    ULong *x, y, z;
+#define d0 word0(d)
+#define d1 word1(d)
+#define set_d0(x) set_word0(d, x)
+#define set_d1(x) set_word1(d, x)
+
+    b = Balloc(1);
+    if (!b)
+        return NULL;
+    x = b->x;
+
+    z = d0 & Frac_mask;
+    set_d0(d0 & 0x7fffffff);  /* clear sign bit, which we ignore */
+#ifdef Sudden_Underflow
+    de = (int32)(d0 >> Exp_shift);
+    z |= Exp_msk11;
+#else
+    if ((de = (int32)(d0 >> Exp_shift)) != 0)
+        z |= Exp_msk1;
+#endif
+    if ((y = d1) != 0) {
+        if ((k = lo0bits(&y)) != 0) {
+            x[0] = y | z << (32 - k);
+            z >>= k;
+        }
+        else
+            x[0] = y;
+        i = b->wds = (x[1] = z) ? 2 : 1;
+    }
+    else {
+        JS_ASSERT(z);
+        k = lo0bits(&z);
+        x[0] = z;
+        i = b->wds = 1;
+        k += 32;
+    }
+#ifndef Sudden_Underflow
+    if (de) {
+#endif
+        *e = de - Bias - (P-1) + k;
+        *bits = P - k;
+#ifndef Sudden_Underflow
+    }
+    else {
+        *e = de - Bias - (P-1) + 1 + k;
+        *bits = 32*i - hi0bits(x[i-1]);
+    }
+#endif
+    return b;
+}
+#undef d0
+#undef d1
+#undef set_d0
+#undef set_d1
+
+
+static double ratio(Bigint *a, Bigint *b)
+{
+    double da, db;
+    int32 k, ka, kb;
+
+    da = b2d(a, &ka);
+    db = b2d(b, &kb);
+    k = ka - kb + 32*(a->wds - b->wds);
+    if (k > 0)
+        set_word0(da, word0(da) + k*Exp_msk1);
+    else {
+        k = -k;
+        set_word0(db, word0(db) + k*Exp_msk1);
+    }
+    return da / db;
+}
+
+static CONST double
+tens[] = {
+    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
+    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
+    1e20, 1e21, 1e22
+};
+
+static CONST double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
+static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
+#ifdef Avoid_Underflow
+        9007199254740992.e-256
+#else
+        1e-256
+#endif
+        };
+/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
+/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
+#define Scale_Bit 0x10
+#define n_bigtens 5
+
+
+#ifdef INFNAN_CHECK
+
+#ifndef NAN_WORD0
+#define NAN_WORD0 0x7ff80000
+#endif
+
+#ifndef NAN_WORD1
+#define NAN_WORD1 0
+#endif
+
+static int match(CONST char **sp, char *t)
+{
+    int c, d;
+    CONST char *s = *sp;
+
+    while(d = *t++) {
+        if ((c = *++s) >= 'A' && c <= 'Z')
+            c += 'a' - 'A';
+        if (c != d)
+            return 0;
+        }
+    *sp = s + 1;
+    return 1;
+    }
+#endif /* INFNAN_CHECK */
+
+
+#ifdef JS_THREADSAFE
+static JSBool initialized = JS_FALSE;
+
+/* hacked replica of nspr _PR_InitDtoa */
+static void InitDtoa(void)
+{
+    freelist_lock = PR_NewLock();
+        p5s_lock = PR_NewLock();
+    initialized = JS_TRUE;
+}
+#endif
+
+void js_FinishDtoa(void)
+{
+    int count;
+    Bigint *temp;
 
 #ifdef JS_THREADSAFE
-static PRLock *dtoalock;
-static JSBool _dtoainited = JS_FALSE;
-
-#define LOCK_DTOA() PR_Lock(dtoalock);
-#define UNLOCK_DTOA() PR_Unlock(dtoalock)
-#else
-#define LOCK_DTOA()
-#define UNLOCK_DTOA()
+    if (initialized == JS_TRUE) {
+        PR_DestroyLock(freelist_lock);
+        PR_DestroyLock(p5s_lock);
+        initialized = JS_FALSE;
+    }
 #endif
-#include "dtoa.c"
+
+    /* clear down the freelist array and p5s */
+
+    /* static Bigint *freelist[Kmax+1]; */
+    for (count = 0; count <= Kmax; count++) {
+        Bigint **listp = &freelist[count];
+        while ((temp = *listp) != NULL) {
+            *listp = temp->next;
+            free(temp);
+        }
+        freelist[count] = NULL;
+    }
 
-JSBool
-js_InitDtoa()
+    /* static Bigint *p5s; */
+    while (p5s) {
+        temp = p5s;
+        p5s = p5s->next;
+        free(temp);
+    }
+}
+
+/* nspr2 watcom bug ifdef omitted */
+
+JS_FRIEND_API(double)
+JS_strtod(CONST char *s00, char **se, int *err)
 {
-#ifdef JS_THREADSAFE
-    if (!_dtoainited) {
-        dtoalock = PR_NewLock();
-        JS_ASSERT(dtoalock);
-        _dtoainited = JS_TRUE;
+    int32 scale;
+    int32 bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
+        e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
+    CONST char *s, *s0, *s1;
+    double aadj, aadj1, adj, rv, rv0;
+    Long L;
+    ULong y, z;
+    Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
+
+    *err = 0;
+
+    bb = bd = bs = delta = NULL;
+    sign = nz0 = nz = 0;
+    rv = 0.;
+
+    /* Locking for Balloc's shared buffers that will be used in this block */
+    ACQUIRE_DTOA_LOCK();
+
+    for(s = s00;;s++) switch(*s) {
+    case '-':
+        sign = 1;
+        /* no break */
+    case '+':
+        if (*++s)
+            goto break2;
+        /* no break */
+    case 0:
+        s = s00;
+        goto ret;
+    case '\t':
+    case '\n':
+    case '\v':
+    case '\f':
+    case '\r':
+    case ' ':
+        continue;
+    default:
+        goto break2;
+    }
+break2:
+
+    if (*s == '0') {
+        nz0 = 1;
+        while(*++s == '0') ;
+        if (!*s)
+            goto ret;
+    }
+    s0 = s;
+    y = z = 0;
+    for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
+        if (nd < 9)
+            y = 10*y + c - '0';
+        else if (nd < 16)
+            z = 10*z + c - '0';
+    nd0 = nd;
+    if (c == '.') {
+        c = *++s;
+        if (!nd) {
+            for(; c == '0'; c = *++s)
+                nz++;
+            if (c > '0' && c <= '9') {
+                s0 = s;
+                nf += nz;
+                nz = 0;
+                goto have_dig;
+            }
+            goto dig_done;
+        }
+        for(; c >= '0' && c <= '9'; c = *++s) {
+        have_dig:
+            nz++;
+            if (c -= '0') {
+                nf += nz;
+                for(i = 1; i < nz; i++)
+                    if (nd++ < 9)
+                        y *= 10;
+                    else if (nd <= DBL_DIG + 1)
+                        z *= 10;
+                if (nd++ < 9)
+                    y = 10*y + c;
+                else if (nd <= DBL_DIG + 1)
+                    z = 10*z + c;
+                nz = 0;
+            }
+        }
+    }
+dig_done:
+    e = 0;
+    if (c == 'e' || c == 'E') {
+        if (!nd && !nz && !nz0) {
+            s = s00;
+            goto ret;
+        }
+        s00 = s;
+        esign = 0;
+        switch(c = *++s) {
+        case '-':
+            esign = 1;
+        case '+':
+            c = *++s;
+        }
+        if (c >= '0' && c <= '9') {
+            while(c == '0')
+                c = *++s;
+            if (c > '0' && c <= '9') {
+                L = c - '0';
+                s1 = s;
+                while((c = *++s) >= '0' && c <= '9')
+                    L = 10*L + c - '0';
+                if (s - s1 > 8 || L > 19999)
+                    /* Avoid confusion from exponents
+                     * so large that e might overflow.
+                     */
+                    e = 19999; /* safe for 16 bit ints */
+                else
+                    e = (int32)L;
+                if (esign)
+                    e = -e;
+            }
+            else
+                e = 0;
+        }
+        else
+            s = s00;
+    }
+    if (!nd) {
+        if (!nz && !nz0) {
+#ifdef INFNAN_CHECK
+            /* Check for Nan and Infinity */
+            switch(c) {
+              case 'i':
+              case 'I':
+                if (match(&s,"nfinity")) {
+                    set_word0(rv, 0x7ff00000);
+                    set_word1(rv, 0);
+                    goto ret;
+                    }
+                break;
+              case 'n':
+              case 'N':
+                if (match(&s, "an")) {
+                    set_word0(rv, NAN_WORD0);
+                    set_word1(rv, NAN_WORD1);
+                    goto ret;
+                    }
+              }
+#endif /* INFNAN_CHECK */
+            s = s00;
+            }
+        goto ret;
+    }
+    e1 = e -= nf;
+
+    /* Now we have nd0 digits, starting at s0, followed by a
+     * decimal point, followed by nd-nd0 digits.  The number we're
+     * after is the integer represented by those digits times
+     * 10**e */
+
+    if (!nd0)
+        nd0 = nd;
+    k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
+    rv = y;
+    if (k > 9)
+        rv = tens[k - 9] * rv + z;
+    bd0 = 0;
+    if (nd <= DBL_DIG
+#ifndef RND_PRODQUOT
+        && FLT_ROUNDS == 1
+#endif
+        ) {
+        if (!e)
+            goto ret;
+        if (e > 0) {
+            if (e <= Ten_pmax) {
+                /* rv = */ rounded_product(rv, tens[e]);
+                goto ret;
+            }
+            i = DBL_DIG - nd;
+            if (e <= Ten_pmax + i) {
+                /* A fancier test would sometimes let us do
+                 * this for larger i values.
+                 */
+                e -= i;
+                rv *= tens[i];
+                /* rv = */ rounded_product(rv, tens[e]);
+                goto ret;
+            }
+        }
+#ifndef Inaccurate_Divide
+        else if (e >= -Ten_pmax) {
+            /* rv = */ rounded_quotient(rv, tens[-e]);
+            goto ret;
+        }
+#endif
+    }
+    e1 += nd - k;
+
+    scale = 0;
+
+    /* Get starting approximation = rv * 10**e1 */
+
+    if (e1 > 0) {
+        if ((i = e1 & 15) != 0)
+            rv *= tens[i];
+        if (e1 &= ~15) {
+            if (e1 > DBL_MAX_10_EXP) {
+            ovfl:
+                *err = JS_DTOA_ERANGE;
+#ifdef __STDC__
+                rv = HUGE_VAL;
+#else
+                /* Can't trust HUGE_VAL */
+                set_word0(rv, Exp_mask);
+                set_word1(rv, 0);
+#endif
+                if (bd0)
+                    goto retfree;
+                goto ret;
+            }
+            e1 >>= 4;
+            for(j = 0; e1 > 1; j++, e1 >>= 1)
+                if (e1 & 1)
+                    rv *= bigtens[j];
+            /* The last multiplication could overflow. */
+            set_word0(rv, word0(rv) - P*Exp_msk1);
+            rv *= bigtens[j];
+            if ((z = word0(rv) & Exp_mask) > Exp_msk1*(DBL_MAX_EXP+Bias-P))
+                goto ovfl;
+            if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
+                /* set to largest number */
+                /* (Can't trust DBL_MAX) */
+                set_word0(rv, Big0);
+                set_word1(rv, Big1);
+                }
+            else
+                set_word0(rv, word0(rv) + P*Exp_msk1);
+            }
+    }
+    else if (e1 < 0) {
+        e1 = -e1;
+        if ((i = e1 & 15) != 0)
+            rv /= tens[i];
+        if (e1 &= ~15) {
+            e1 >>= 4;
+            if (e1 >= 1 << n_bigtens)
+                goto undfl;
+#ifdef Avoid_Underflow
+            if (e1 & Scale_Bit)
+                scale = P;
+            for(j = 0; e1 > 0; j++, e1 >>= 1)
+                if (e1 & 1)
+                    rv *= tinytens[j];
+            if (scale && (j = P + 1 - ((word0(rv) & Exp_mask)
+                        >> Exp_shift)) > 0) {
+                /* scaled rv is denormal; zap j low bits */
+                if (j >= 32) {
+                    set_word1(rv, 0);
+                    set_word0(rv, word0(rv) & (0xffffffff << (j-32)));
+                    if (!word0(rv))
+                        set_word0(rv, 1);
+                    }
+                else
+                    set_word1(rv, word1(rv) & (0xffffffff << j));
+                }
+#else
+            for(j = 0; e1 > 1; j++, e1 >>= 1)
+                if (e1 & 1)
+                    rv *= tinytens[j];
+            /* The last multiplication could underflow. */
+            rv0 = rv;
+            rv *= tinytens[j];
+            if (!rv) {
+                rv = 2.*rv0;
+                rv *= tinytens[j];
+#endif
+                if (!rv) {
+                undfl:
+                    rv = 0.;
+                    *err = JS_DTOA_ERANGE;
+                    if (bd0)
+                        goto retfree;
+                    goto ret;
+                }
+#ifndef Avoid_Underflow
+                set_word0(rv, Tiny0);
+                set_word1(rv, Tiny1);
+                /* The refinement below will clean
+                 * this approximation up.
+                 */
+            }
+#endif
+        }
     }
 
-    return (dtoalock != 0);
+    /* Now the hard part -- adjusting rv to the correct value.*/
+
+    /* Put digits into bd: true value = bd * 10^e */
+
+    bd0 = s2b(s0, nd0, nd, y);
+    if (!bd0)
+        goto nomem;
+
+    for(;;) {
+        bd = Balloc(bd0->k);
+        if (!bd)
+            goto nomem;
+        Bcopy(bd, bd0);
+        bb = d2b(rv, &bbe, &bbbits);    /* rv = bb * 2^bbe */
+        if (!bb)
+            goto nomem;
+        bs = i2b(1);
+        if (!bs)
+            goto nomem;
+
+        if (e >= 0) {
+            bb2 = bb5 = 0;
+            bd2 = bd5 = e;
+        }
+        else {
+            bb2 = bb5 = -e;
+            bd2 = bd5 = 0;
+        }
+        if (bbe >= 0)
+            bb2 += bbe;
+        else
+            bd2 -= bbe;
+        bs2 = bb2;
+#ifdef Sudden_Underflow
+        j = P + 1 - bbbits;
+#else
+#ifdef Avoid_Underflow
+        j = bbe - scale;
+#else
+        j = bbe;
+#endif
+        i = j + bbbits - 1; /* logb(rv) */
+        if (i < Emin)   /* denormal */
+            j += P - Emin;
+        else
+            j = P + 1 - bbbits;
+#endif
+        bb2 += j;
+        bd2 += j;
+#ifdef Avoid_Underflow
+        bd2 += scale;
+#endif
+        i = bb2 < bd2 ? bb2 : bd2;
+        if (i > bs2)
+            i = bs2;
+        if (i > 0) {
+            bb2 -= i;
+            bd2 -= i;
+            bs2 -= i;
+        }
+        if (bb5 > 0) {
+            bs = pow5mult(bs, bb5);
+            if (!bs)
+                goto nomem;
+            bb1 = mult(bs, bb);
+            if (!bb1)
+                goto nomem;
+            Bfree(bb);
+            bb = bb1;
+        }
+        if (bb2 > 0) {
+            bb = lshift(bb, bb2);
+            if (!bb)
+                goto nomem;
+        }
+        if (bd5 > 0) {
+            bd = pow5mult(bd, bd5);
+            if (!bd)
+                goto nomem;
+        }
+        if (bd2 > 0) {
+            bd = lshift(bd, bd2);
+            if (!bd)
+                goto nomem;
+        }
+        if (bs2 > 0) {
+            bs = lshift(bs, bs2);
+            if (!bs)
+                goto nomem;
+        }
+        delta = diff(bb, bd);
+        if (!delta)
+            goto nomem;
+        dsign = delta->sign;
+        delta->sign = 0;
+        i = cmp(delta, bs);
+        if (i < 0) {
+            /* Error is less than half an ulp -- check for
+             * special case of mantissa a power of two.
+             */
+            if (dsign || word1(rv) || word0(rv) & Bndry_mask
+#ifdef Avoid_Underflow
+             || (word0(rv) & Exp_mask) <= Exp_msk1 + P*Exp_msk1
+#else
+             || (word0(rv) & Exp_mask) <= Exp_msk1
+#endif
+                ) {
+#ifdef Avoid_Underflow
+                if (!delta->x[0] && delta->wds == 1)
+                    dsign = 2;
+#endif
+                break;
+                }
+            delta = lshift(delta,Log2P);
+            if (!delta)
+                goto nomem;
+            if (cmp(delta, bs) > 0)
+                goto drop_down;
+            break;
+        }
+        if (i == 0) {
+            /* exactly half-way between */
+            if (dsign) {
+                if ((word0(rv) & Bndry_mask1) == Bndry_mask1
+                    &&  word1(rv) == 0xffffffff) {
+                    /*boundary case -- increment exponent*/
+                    set_word0(rv, (word0(rv) & Exp_mask) + Exp_msk1);
+                    set_word1(rv, 0);
+#ifdef Avoid_Underflow
+                    dsign = 0;
+#endif
+                    break;
+                }
+            }
+            else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
+#ifdef Avoid_Underflow
+                dsign = 2;
+#endif
+            drop_down:
+                /* boundary case -- decrement exponent */
+#ifdef Sudden_Underflow
+                L = word0(rv) & Exp_mask;
+                if (L <= Exp_msk1)
+                    goto undfl;
+                L -= Exp_msk1;
+#else
+                L = (word0(rv) & Exp_mask) - Exp_msk1;
+#endif
+                set_word0(rv, L | Bndry_mask1);
+                set_word1(rv, 0xffffffff);
+                break;
+            }
+#ifndef ROUND_BIASED
+            if (!(word1(rv) & LSB))
+                break;
+#endif
+            if (dsign)
+                rv += ulp(rv);
+#ifndef ROUND_BIASED
+            else {
+                rv -= ulp(rv);
+#ifndef Sudden_Underflow
+                if (!rv)
+                    goto undfl;
+#endif
+            }
+#ifdef Avoid_Underflow
+            dsign = 1 - dsign;
+#endif
+#endif
+            break;
+        }
+        if ((aadj = ratio(delta, bs)) <= 2.) {
+            if (dsign)
+                aadj = aadj1 = 1.;
+            else if (word1(rv) || word0(rv) & Bndry_mask) {
+#ifndef Sudden_Underflow
+                if (word1(rv) == Tiny1 && !word0(rv))
+                    goto undfl;
+#endif
+                aadj = 1.;
+                aadj1 = -1.;
+            }
+            else {
+                /* special case -- power of FLT_RADIX to be */
+                /* rounded down... */
+
+                if (aadj < 2./FLT_RADIX)
+                    aadj = 1./FLT_RADIX;
+                else
+                    aadj *= 0.5;
+                aadj1 = -aadj;
+            }
+        }
+        else {
+            aadj *= 0.5;
+            aadj1 = dsign ? aadj : -aadj;
+#ifdef Check_FLT_ROUNDS
+            switch(FLT_ROUNDS) {
+            case 2: /* towards +infinity */
+                aadj1 -= 0.5;
+                break;
+            case 0: /* towards 0 */
+            case 3: /* towards -infinity */
+                aadj1 += 0.5;
+            }
 #else
-    return JS_TRUE;
+            if (FLT_ROUNDS == 0)
+                aadj1 += 0.5;
+#endif
+        }
+        y = word0(rv) & Exp_mask;
+
+        /* Check for overflow */
+
+        if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
+            rv0 = rv;
+            set_word0(rv, word0(rv) - P*Exp_msk1);
+            adj = aadj1 * ulp(rv);
+            rv += adj;
+            if ((word0(rv) & Exp_mask) >=
+                Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
+                if (word0(rv0) == Big0 && word1(rv0) == Big1)
+                    goto ovfl;
+                set_word0(rv, Big0);
+                set_word1(rv, Big1);
+                goto cont;
+            }
+            else
+                set_word0(rv, word0(rv) + P*Exp_msk1);
+        }
+        else {
+#ifdef Sudden_Underflow
+            if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
+                rv0 = rv;
+                set_word0(rv, word0(rv) + P*Exp_msk1);
+                adj = aadj1 * ulp(rv);
+                rv += adj;
+                    if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
+                        {
+                            if (word0(rv0) == Tiny0
+                                && word1(rv0) == Tiny1)
+                                goto undfl;
+                            set_word0(rv, Tiny0);
+                            set_word1(rv, Tiny1);
+                            goto cont;
+                        }
+                    else
+                        set_word0(rv, word0(rv) - P*Exp_msk1);
+            }
+            else {
+                adj = aadj1 * ulp(rv);
+                rv += adj;
+            }
+#else
+            /* Compute adj so that the IEEE rounding rules will
+             * correctly round rv + adj in some half-way cases.
+             * If rv * ulp(rv) is denormalized (i.e.,
+             * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
+             * trouble from bits lost to denormalization;
+             * example: 1.2e-307 .
+             */
+#ifdef Avoid_Underflow
+            if (y <= P*Exp_msk1 && aadj > 1.)
+#else
+            if (y <= (P-1)*Exp_msk1 && aadj > 1.)
+#endif
+                {
+                aadj1 = (double)(int32)(aadj + 0.5);
+                if (!dsign)
+                    aadj1 = -aadj1;
+            }
+#ifdef Avoid_Underflow
+            if (scale && y <= P*Exp_msk1)
+                set_word0(aadj1, word0(aadj1) + (P+1)*Exp_msk1 - y);
+#endif
+            adj = aadj1 * ulp(rv);
+            rv += adj;
+#endif
+        }
+        z = word0(rv) & Exp_mask;
+#ifdef Avoid_Underflow
+        if (!scale)
+#endif
+        if (y == z) {
+            /* Can we stop now? */
+            L = (Long)aadj;
+            aadj -= L;
+            /* The tolerances below are conservative. */
+            if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
+                if (aadj < .4999999 || aadj > .5000001)
+                    break;
+            }
+            else if (aadj < .4999999/FLT_RADIX)
+                break;
+        }
+    cont:
+        Bfree(bb);
+        Bfree(bd);
+        Bfree(bs);
+        Bfree(delta);
+        bb = bd = bs = delta = NULL;
+    }
+#ifdef Avoid_Underflow
+    if (scale) {
+        rv0 = 0.;
+        set_word0(rv0, Exp_1 - P*Exp_msk1);
+        set_word1(rv0, 0);
+        if ((word0(rv) & Exp_mask) <= P*Exp_msk1
+              && word1(rv) & 1
+              && dsign != 2) {
+            if (dsign) {
+#ifdef Sudden_Underflow
+                /* rv will be 0, but this would give the  */
+                /* right result if only rv *= rv0 worked. */
+                set_word0(rv, word0(rv) + P*Exp_msk1);
+                set_word0(rv0, Exp_1 - 2*P*Exp_msk1);
 #endif
+                rv += ulp(rv);
+                }
+            else
+                set_word1(rv, word1(rv) & ~1);
+        }
+        rv *= rv0;
+    }
+#endif /* Avoid_Underflow */
+retfree:
+    Bfree(bb);
+    Bfree(bd);
+    Bfree(bs);
+    Bfree(bd0);
+    Bfree(delta);
+ret:
+    RELEASE_DTOA_LOCK();
+    if (se)
+        *se = (char *)s;
+    return sign ? -rv : rv;
+
+nomem:
+    Bfree(bb);
+    Bfree(bd);
+    Bfree(bs);
+    Bfree(bd0);
+    Bfree(delta);
+    RELEASE_DTOA_LOCK();
+    *err = JS_DTOA_ENOMEM;
+    return 0;
+}
+
+
+/* Return floor(b/2^k) and set b to be the remainder.  The returned quotient must be less than 2^32. */
+static uint32 quorem2(Bigint *b, int32 k)
+{
+    ULong mask;
+    ULong result;
+    ULong *bx, *bxe;
+    int32 w;
+    int32 n = k >> 5;
+    k &= 0x1F;
+    mask = (1<<k) - 1;
+
+    w = b->wds - n;
+    if (w <= 0)
+        return 0;
+    JS_ASSERT(w <= 2);
+    bx = b->x;
+    bxe = bx + n;
+    result = *bxe >> k;
+    *bxe &= mask;
+    if (w == 2) {
+        JS_ASSERT(!(bxe[1] & ~mask));
+        if (k)
+            result |= bxe[1] << (32 - k);
+    }
+    n++;
+    while (!*bxe && bxe != bx) {
+        n--;
+        bxe--;
+    }
+    b->wds = n;
+    return result;
+}
+
+/* Return floor(b/S) and set b to be the remainder.  As added restrictions, b must not have
+ * more words than S, the most significant word of S must not start with a 1 bit, and the
+ * returned quotient must be less than 36. */
+static int32 quorem(Bigint *b, Bigint *S)
+{
+    int32 n;
+    ULong *bx, *bxe, q, *sx, *sxe;
+#ifdef ULLong
+    ULLong borrow, carry, y, ys;
+#else
+    ULong borrow, carry, y, ys;
+    ULong si, z, zs;
+#endif
+
+    n = S->wds;
+    JS_ASSERT(b->wds <= n);
+    if (b->wds < n)
+        return 0;
+    sx = S->x;
+    sxe = sx + --n;
+    bx = b->x;
+    bxe = bx + n;
+    JS_ASSERT(*sxe <= 0x7FFFFFFF);
+    q = *bxe / (*sxe + 1);  /* ensure q <= true quotient */
+    JS_ASSERT(q < 36);
+    if (q) {
+        borrow = 0;
+        carry = 0;
+        do {
+#ifdef ULLong
+            ys = *sx++ * (ULLong)q + carry;
+            carry = ys >> 32;
+            y = *bx - (ys & 0xffffffffUL) - borrow;
+            borrow = y >> 32 & 1UL;
+            *bx++ = (ULong)(y & 0xffffffffUL);
+#else
+            si = *sx++;
+            ys = (si & 0xffff) * q + carry;
+            zs = (si >> 16) * q + (ys >> 16);
+            carry = zs >> 16;
+            y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
+            borrow = (y & 0x10000) >> 16;
+            z = (*bx >> 16) - (zs & 0xffff) - borrow;
+            borrow = (z & 0x10000) >> 16;
+            Storeinc(bx, z, y);
+#endif
+        }
+        while(sx <= sxe);
+        if (!*bxe) {
+            bx = b->x;
+            while(--bxe > bx && !*bxe)
+                --n;
+            b->wds = n;
+        }
+    }
+    if (cmp(b, S) >= 0) {
+        q++;
+        borrow = 0;
+        carry = 0;
+        bx = b->x;
+        sx = S->x;
+        do {
+#ifdef ULLong
+            ys = *sx++ + carry;
+            carry = ys >> 32;
+            y = *bx - (ys & 0xffffffffUL) - borrow;
+            borrow = y >> 32 & 1UL;
+            *bx++ = (ULong)(y & 0xffffffffUL);
+#else
+            si = *sx++;
+            ys = (si & 0xffff) + carry;
+            zs = (si >> 16) + (ys >> 16);
+            carry = zs >> 16;
+            y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
+            borrow = (y & 0x10000) >> 16;
+            z = (*bx >> 16) - (zs & 0xffff) - borrow;
+            borrow = (z & 0x10000) >> 16;
+            Storeinc(bx, z, y);
+#endif
+        } while(sx <= sxe);
+        bx = b->x;
+        bxe = bx + n;
+        if (!*bxe) {
+            while(--bxe > bx && !*bxe)
+                --n;
+            b->wds = n;
+        }
+    }
+    return (int32)q;
 }
 
-void
-js_FinishDtoa()
+/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
+ *
+ * Inspired by "How to Print Floating-Point Numbers Accurately" by
+ * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
+ *
+ * Modifications:
+ *  1. Rather than iterating, we use a simple numeric overestimate
+ *     to determine k = floor(log10(d)).  We scale relevant
+ *     quantities using O(log2(k)) rather than O(k) multiplications.
+ *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
+ *     try to generate digits strictly left to right.  Instead, we
+ *     compute with fewer bits and propagate the carry if necessary
+ *     when rounding the final digit up.  This is often faster.
+ *  3. Under the assumption that input will be rounded nearest,
+ *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
+ *     That is, we allow equality in stopping tests when the
+ *     round-nearest rule will give the same floating-point value
+ *     as would satisfaction of the stopping test with strict
+ *     inequality.
+ *  4. We remove common factors of powers of 2 from relevant
+ *     quantities.
+ *  5. When converting floating-point integers less than 1e16,
+ *     we use floating-point arithmetic rather than resorting
+ *     to multiple-precision integers.
+ *  6. When asked to produce fewer than 15 digits, we first try
+ *     to get by with floating-point arithmetic; we resort to
+ *     multiple-precision integer arithmetic only if we cannot
+ *     guarantee that the floating-point calculation has given
+ *     the correctly rounded result.  For k requested digits and
+ *     "uniformly" distributed input, the probability is
+ *     something like 10^(k-15) that we must resort to the Long
+ *     calculation.
+ */
+
+/* Always emits at least one digit. */
+/* If biasUp is set, then rounding in modes 2 and 3 will round away from zero
+ * when the number is exactly halfway between two representable values.  For example,
+ * rounding 2.5 to zero digits after the decimal point will return 3 and not 2.
+ * 2.49 will still round to 2, and 2.51 will still round to 3. */
+/* bufsize should be at least 20 for modes 0 and 1.  For the other modes,
+ * bufsize should be two greater than the maximum number of output characters expected. */
+static JSBool
+js_dtoa(double d, int mode, JSBool biasUp, int ndigits,
+    int *decpt, int *sign, char **rve, char *buf, size_t bufsize)
 {
-#ifdef JS_THREADSAFE
-    if (_dtoainited) {
-        PR_DestroyLock(dtoalock);
-        dtoalock = NULL;
-        _dtoainited = JS_FALSE;
+    /*  Arguments ndigits, decpt, sign are similar to those
+        of ecvt and fcvt; trailing zeros are suppressed from
+        the returned string.  If not null, *rve is set to point
+        to the end of the return value.  If d is +-Infinity or NaN,
+        then *decpt is set to 9999.
+
+        mode:
+        0 ==> shortest string that yields d when read in
+        and rounded to nearest.
+        1 ==> like 0, but with Steele & White stopping rule;
+        e.g. with IEEE P754 arithmetic , mode 0 gives
+        1e23 whereas mode 1 gives 9.999999999999999e22.
+        2 ==> max(1,ndigits) significant digits.  This gives a
+        return value similar to that of ecvt, except
+        that trailing zeros are suppressed.
+        3 ==> through ndigits past the decimal point.  This
+        gives a return value similar to that from fcvt,
+        except that trailing zeros are suppressed, and
+        ndigits can be negative.
+        4-9 should give the same return values as 2-3, i.e.,
+        4 <= mode <= 9 ==> same return as mode
+        2 + (mode & 1).  These modes are mainly for
+        debugging; often they run slower but sometimes
+        faster than modes 2-3.
+        4,5,8,9 ==> left-to-right digit generation.
+        6-9 ==> don't try fast floating-point estimate
+        (if applicable).
+
+        Values of mode other than 0-9 are treated as mode 0.
+
+        Sufficient space is allocated to the return value
+        to hold the suppressed trailing zeros.
+    */
+
+    int32 bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
+        j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
+        spec_case, try_quick;
+    Long L;
+#ifndef Sudden_Underflow
+    int32 denorm;
+    ULong x;
+#endif
+    Bigint *b, *b1, *delta, *mlo, *mhi, *S;
+    double d2, ds, eps;
+    char *s;
+    const char *cs;
+
+    if (word0(d) & Sign_bit) {
+        /* set sign for everything, including 0's and NaNs */
+        *sign = 1;
+        set_word0(d, word0(d) & ~Sign_bit);  /* clear sign bit */
+    }
+    else
+        *sign = 0;
+
+    if ((word0(d) & Exp_mask) == Exp_mask) {
+        /* Infinity or NaN */
+        *decpt = 9999;
+        cs = !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN";
+        if ((cs[0] == 'I' && bufsize < 9) || (cs[0] == 'N' && bufsize < 4)) {
+            JS_ASSERT(JS_FALSE);
+/*          JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */
+            return JS_FALSE;
+        }
+        strcpy(buf, cs);
+        if (rve) {
+            *rve = buf[3] ? buf + 8 : buf + 3;
+            JS_ASSERT(**rve == '\0');
+        }
+        return JS_TRUE;
+    }
+
+    b = NULL;                           /* initialize for abort protection */
+    S = NULL;
+    mlo = mhi = NULL;
+
+    if (!d) {
+      no_digits:
+        *decpt = 1;
+        if (bufsize < 2) {
+            JS_ASSERT(JS_FALSE);
+/*          JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */
+            return JS_FALSE;
+        }
+        buf[0] = '0'; buf[1] = '\0';  /* copy "0" to buffer */
+        if (rve)
+            *rve = buf + 1;
+        /* We might have jumped to "no_digits" from below, so we need
+         * to be sure to free the potentially allocated Bigints to avoid
+         * memory leaks. */
+        Bfree(b);
+        Bfree(S);
+        if (mlo != mhi)
+            Bfree(mlo);
+        Bfree(mhi);
+        return JS_TRUE;
+    }
+
+    b = d2b(d, &be, &bbits);
+    if (!b)
+        goto nomem;
+#ifdef Sudden_Underflow
+    i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
+#else
+    if ((i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) {
+#endif
+        d2 = d;
+        set_word0(d2, word0(d2) & Frac_mask1);
+        set_word0(d2, word0(d2) | Exp_11);
+
+        /* log(x)   ~=~ log(1.5) + (x-1.5)/1.5
+         * log10(x)  =  log(x) / log(10)
+         *      ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
+         * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
+         *
+         * This suggests computing an approximation k to log10(d) by
+         *
+         * k = (i - Bias)*0.301029995663981
+         *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
+         *
+         * We want k to be too large rather than too small.
+         * The error in the first-order Taylor series approximation
+         * is in our favor, so we just round up the constant enough
+         * to compensate for any error in the multiplication of
+         * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
+         * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
+         * adding 1e-13 to the constant term more than suffices.
+         * Hence we adjust the constant term to 0.1760912590558.
+         * (We could get a more accurate k by invoking log10,
+         *  but this is probably not worthwhile.)
+         */
+
+        i -= Bias;
+#ifndef Sudden_Underflow
+        denorm = 0;
+    }
+    else {
+        /* d is denormalized */
+
+        i = bbits + be + (Bias + (P-1) - 1);
+        x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32) : word1(d) << (32 - i);
+        d2 = x;
+        set_word0(d2, word0(d2) - 31*Exp_msk1); /* adjust exponent */
+        i -= (Bias + (P-1) - 1) + 1;
+        denorm = 1;
     }
 #endif
+    /* At this point d = f*2^i, where 1 <= f < 2.  d2 is an approximation of f. */
+    ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
+    k = (int32)ds;
+    if (ds < 0. && ds != k)
+        k--;    /* want k = floor(ds) */
+    k_check = 1;
+    if (k >= 0 && k <= Ten_pmax) {
+        if (d < tens[k])
+            k--;
+        k_check = 0;
+    }
+    /* At this point floor(log10(d)) <= k <= floor(log10(d))+1.
+       If k_check is zero, we're guaranteed that k = floor(log10(d)). */
+    j = bbits - i - 1;
+    /* At this point d = b/2^j, where b is an odd integer. */
+    if (j >= 0) {
+        b2 = 0;
+        s2 = j;
+    }
+    else {
+        b2 = -j;
+        s2 = 0;
+    }
+    if (k >= 0) {
+        b5 = 0;
+        s5 = k;
+        s2 += k;
+    }
+    else {
+        b2 -= k;
+        b5 = -k;
+        s5 = 0;
+    }
+    /* At this point d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5), where b is an odd integer,
+       b2 >= 0, b5 >= 0, s2 >= 0, and s5 >= 0. */
+    if (mode < 0 || mode > 9)
+        mode = 0;
+    try_quick = 1;
+    if (mode > 5) {
+        mode -= 4;
+        try_quick = 0;
+    }
+    leftright = 1;
+    ilim = ilim1 = 0;
+    switch(mode) {
+    case 0:
+    case 1:
+        ilim = ilim1 = -1;
+        i = 18;
+        ndigits = 0;
+        break;
+    case 2:
+        leftright = 0;
+        /* no break */
+    case 4:
+        if (ndigits <= 0)
+            ndigits = 1;
+        ilim = ilim1 = i = ndigits;
+        break;
+    case 3:
+        leftright = 0;
+        /* no break */
+    case 5:
+        i = ndigits + k + 1;
+        ilim = i;
+        ilim1 = i - 1;
+        if (i <= 0)
+            i = 1;
+    }
+    /* ilim is the maximum number of significant digits we want, based on k and ndigits. */
+    /* ilim1 is the maximum number of significant digits we want, based on k and ndigits,
+       when it turns out that k was computed too high by one. */
+
+    /* Ensure space for at least i+1 characters, including trailing null. */
+    if (bufsize <= (size_t)i) {
+        Bfree(b);
+        JS_ASSERT(JS_FALSE);
+        return JS_FALSE;
+    }
+    s = buf;
+
+    if (ilim >= 0 && ilim <= Quick_max && try_quick) {
+
+        /* Try to get by with floating-point arithmetic. */
+
+        i = 0;
+        d2 = d;
+        k0 = k;
+        ilim0 = ilim;
+        ieps = 2; /* conservative */
+        /* Divide d by 10^k, keeping track of the roundoff error and avoiding overflows. */
+        if (k > 0) {
+            ds = tens[k&0xf];
+            j = k >> 4;
+            if (j & Bletch) {
+                /* prevent overflows */
+                j &= Bletch - 1;
+                d /= bigtens[n_bigtens-1];
+                ieps++;
+            }
+            for(; j; j >>= 1, i++)
+                if (j & 1) {
+                    ieps++;
+                    ds *= bigtens[i];
+                }
+            d /= ds;
+        }
+        else if ((j1 = -k) != 0) {
+            d *= tens[j1 & 0xf];
+            for(j = j1 >> 4; j; j >>= 1, i++)
+                if (j & 1) {
+                    ieps++;
+                    d *= bigtens[i];
+                }
+        }
+        /* Check that k was computed correctly. */
+        if (k_check && d < 1. && ilim > 0) {
+            if (ilim1 <= 0)
+                goto fast_failed;
+            ilim = ilim1;
+            k--;
+            d *= 10.;
+            ieps++;
+        }
+        /* eps bounds the cumulative error. */
+        eps = ieps*d + 7.;
+        set_word0(eps, word0(eps) - (P-1)*Exp_msk1);
+        if (ilim == 0) {
+            S = mhi = 0;
+            d -= 5.;
+            if (d > eps)
+                goto one_digit;
+            if (d < -eps)
+                goto no_digits;
+            goto fast_failed;
+        }
+#ifndef No_leftright
+        if (leftright) {
+            /* Use Steele & White method of only
+             * generating digits needed.
+             */
+            eps = 0.5/tens[ilim-1] - eps;
+            for(i = 0;;) {
+                L = (Long)d;
+                d -= L;
+                *s++ = '0' + (char)L;
+                if (d < eps)
+                    goto ret1;
+                if (1. - d < eps) {
+#ifdef DEBUG
+                    /* Clear d to avoid precision warning. */
+                    d = 0;
+#endif
+                    goto bump_up;
+                }
+                if (++i >= ilim)
+                    break;
+                eps *= 10.;
+                d *= 10.;
+            }
+        }
+        else {
+#endif
+            /* Generate ilim digits, then fix them up. */
+            eps *= tens[ilim-1];
+            for(i = 1;; i++, d *= 10.) {
+                L = (Long)d;
+                d -= L;
+                *s++ = '0' + (char)L;
+                if (i == ilim) {
+                    if (d > 0.5 + eps) {
+#ifdef DEBUG
+                        /* Clear d to avoid precision warning. */
+                        d = 0;
+#endif
+                        goto bump_up;
+                    }
+                    else if (d < 0.5 - eps) {
+                        while(*--s == '0') ;
+                        s++;
+                        goto ret1;
+                    }
+                    break;
+                }
+            }
+#ifndef No_leftright
+        }
+#endif
+    fast_failed:
+        s = buf;
+        d = d2;
+        k = k0;
+        ilim = ilim0;
+    }
+
+    /* Do we have a "small" integer? */
+
+    if (be >= 0 && k <= Int_max) {
+        /* Yes. */
+        ds = tens[k];
+        if (ndigits < 0 && ilim <= 0) {
+            S = mhi = 0;
+            if (ilim < 0 || d < 5*ds || (!biasUp && d == 5*ds))
+                goto no_digits;
+            goto one_digit;
+        }
+
+        /* Use true number of digits to limit looping. */
+        for(i = 1; i<=k+1; i++) {
+            L = (Long) (d / ds);
+            d -= L*ds;
+#ifdef Check_FLT_ROUNDS
+            /* If FLT_ROUNDS == 2, L will usually be high by 1 */
+            if (d < 0) {
+                L--;
+                d += ds;
+            }
+#endif
+            *s++ = '0' + (char)L;
+            if (i == ilim) {
+                d += d;
+                if ((d > ds) || (d == ds && (L & 1 || biasUp))) {
+                bump_up:
+                    while(*--s == '9')
+                        if (s == buf) {
+                            k++;
+                            *s = '0';
+                            break;
+                        }
+                    ++*s++;
+                }
+                break;
+            }
+            d *= 10.;
+        }
+#ifdef DEBUG
+        if (d != 0.0) {
+            fprintf(stderr,
+"WARNING: A loss of precision for double floating point is detected.\n"
+"         The result of any operation on doubles can be meaningless.\n"
+"         A possible cause is missing code to restore FPU state, see\n"
+"         bug 360282 for details.\n");
+        }
+#endif
+        goto ret1;
+    }
+
+    m2 = b2;
+    m5 = b5;
+    if (leftright) {
+        if (mode < 2) {
+            i =
+#ifndef Sudden_Underflow
+                denorm ? be + (Bias + (P-1) - 1 + 1) :
+#endif
+            1 + P - bbits;
+            /* i is 1 plus the number of trailing zero bits in d's significand. Thus,
+               (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 lsb of d)/10^k. */
+        }
+        else {
+            j = ilim - 1;
+            if (m5 >= j)
+                m5 -= j;
+            else {
+                s5 += j -= m5;
+                b5 += j;
+                m5 = 0;
+            }
+            if ((i = ilim) < 0) {
+                m2 -= i;
+                i = 0;
+            }
+            /* (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 * 10^(1-ilim))/10^k. */
+        }
+        b2 += i;
+        s2 += i;
+        mhi = i2b(1);
+        if (!mhi)
+            goto nomem;
+        /* (mhi * 2^m2 * 5^m5) / (2^s2 * 5^s5) = one-half of last printed (when mode >= 2) or
+           input (when mode < 2) significant digit, divided by 10^k. */
+    }
+    /* We still have d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5).  Reduce common factors in
+       b2, m2, and s2 without changing the equalities. */
+    if (m2 > 0 && s2 > 0) {
+        i = m2 < s2 ? m2 : s2;
+        b2 -= i;
+        m2 -= i;
+        s2 -= i;
+    }
+
+    /* Fold b5 into b and m5 into mhi. */
+    if (b5 > 0) {
+        if (leftright) {
+            if (m5 > 0) {
+                mhi = pow5mult(mhi, m5);
+                if (!mhi)
+                    goto nomem;
+                b1 = mult(mhi, b);
+                if (!b1)
+                    goto nomem;
+                Bfree(b);
+                b = b1;
+            }
+            if ((j = b5 - m5) != 0) {
+                b = pow5mult(b, j);
+                if (!b)
+                    goto nomem;
+            }
+        }
+        else {
+            b = pow5mult(b, b5);
+            if (!b)
+                goto nomem;
+        }
+    }
+    /* Now we have d/10^k = (b * 2^b2) / (2^s2 * 5^s5) and
+       (mhi * 2^m2) / (2^s2 * 5^s5) = one-half of last printed or input significant digit, divided by 10^k. */
+
+    S = i2b(1);
+    if (!S)
+        goto nomem;
+    if (s5 > 0) {
+        S = pow5mult(S, s5);
+        if (!S)
+            goto nomem;
+    }
+    /* Now we have d/10^k = (b * 2^b2) / (S * 2^s2) and
+       (mhi * 2^m2) / (S * 2^s2) = one-half of last printed or input significant digit, divided by 10^k. */
+
+    /* Check for special case that d is a normalized power of 2. */
+    spec_case = 0;
+    if (mode < 2) {
+        if (!word1(d) && !(word0(d) & Bndry_mask)
+#ifndef Sudden_Underflow
+            && word0(d) & (Exp_mask & Exp_mask << 1)
+#endif
+            ) {
+            /* The special case.  Here we want to be within a quarter of the last input
+               significant digit instead of one half of it when the decimal output string's value is less than d.  */
+            b2 += Log2P;
+            s2 += Log2P;
+            spec_case = 1;
+        }
+    }
+
+    /* Arrange for convenient computation of quotients:
+     * shift left if necessary so divisor has 4 leading 0 bits.
+     *
+     * Perhaps we should just compute leading 28 bits of S once
+     * and for all and pass them and a shift to quorem, so it
+     * can do shifts and ors to compute the numerator for q.
+     */
+    if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) != 0)
+        i = 32 - i;
+    /* i is the number of leading zero bits in the most significant word of S*2^s2. */
+    if (i > 4) {
+        i -= 4;
+        b2 += i;
+        m2 += i;
+        s2 += i;
+    }
+    else if (i < 4) {
+        i += 28;
+        b2 += i;
+        m2 += i;
+        s2 += i;
+    }
+    /* Now S*2^s2 has exactly four leading zero bits in its most significant word. */
+    if (b2 > 0) {
+        b = lshift(b, b2);
+        if (!b)
+            goto nomem;
+    }
+    if (s2 > 0) {
+        S = lshift(S, s2);
+        if (!S)
+            goto nomem;
+    }
+    /* Now we have d/10^k = b/S and
+       (mhi * 2^m2) / S = maximum acceptable error, divided by 10^k. */
+    if (k_check) {
+        if (cmp(b,S) < 0) {
+            k--;
+            b = multadd(b, 10, 0);  /* we botched the k estimate */
+            if (!b)
+                goto nomem;
+            if (leftright) {
+                mhi = multadd(mhi, 10, 0);
+                if (!mhi)
+                    goto nomem;
+            }
+            ilim = ilim1;
+        }
+    }
+    /* At this point 1 <= d/10^k = b/S < 10. */
+
+    if (ilim <= 0 && mode > 2) {
+        /* We're doing fixed-mode output and d is less than the minimum nonzero output in this mode.
+           Output either zero or the minimum nonzero output depending on which is closer to d. */
+        if (ilim < 0)
+            goto no_digits;
+        S = multadd(S,5,0);
+        if (!S)
+            goto nomem;
+        i = cmp(b,S);
+        if (i < 0 || (i == 0 && !biasUp)) {
+        /* Always emit at least one digit.  If the number appears to be zero
+           using the current mode, then emit one '0' digit and set decpt to 1. */
+        /*no_digits:
+            k = -1 - ndigits;
+            goto ret; */
+            goto no_digits;
+        }
+    one_digit:
+        *s++ = '1';
+        k++;
+        goto ret;
+    }
+    if (leftright) {
+        if (m2 > 0) {
+            mhi = lshift(mhi, m2);
+            if (!mhi)
+                goto nomem;
+        }
+
+        /* Compute mlo -- check for special case
+         * that d is a normalized power of 2.
+         */
+
+        mlo = mhi;
+        if (spec_case) {
+            mhi = Balloc(mhi->k);
+            if (!mhi)
+                goto nomem;
+            Bcopy(mhi, mlo);
+            mhi = lshift(mhi, Log2P);
+            if (!mhi)
+                goto nomem;
+        }
+        /* mlo/S = maximum acceptable error, divided by 10^k, if the output is less than d. */
+        /* mhi/S = maximum acceptable error, divided by 10^k, if the output is greater than d. */
+
+        for(i = 1;;i++) {
+            dig = quorem(b,S) + '0';
+            /* Do we yet have the shortest decimal string
+             * that will round to d?
+             */
+            j = cmp(b, mlo);
+            /* j is b/S compared with mlo/S. */
+            delta = diff(S, mhi);
+            if (!delta)
+                goto nomem;
+            j1 = delta->sign ? 1 : cmp(b, delta);
+            Bfree(delta);
+            /* j1 is b/S compared with 1 - mhi/S. */
+#ifndef ROUND_BIASED
+            if (j1 == 0 && !mode && !(word1(d) & 1)) {
+                if (dig == '9')
+                    goto round_9_up;
+                if (j > 0)
+                    dig++;
+                *s++ = (char)dig;
+                goto ret;
+            }
+#endif
+            if ((j < 0) || (j == 0 && !mode
+#ifndef ROUND_BIASED
+                && !(word1(d) & 1)
+#endif
+                )) {
+                if (j1 > 0) {
+                    /* Either dig or dig+1 would work here as the least significant decimal digit.
+                       Use whichever would produce a decimal value closer to d. */
+                    b = lshift(b, 1);
+                    if (!b)
+                        goto nomem;
+                    j1 = cmp(b, S);
+                    if (((j1 > 0) || (j1 == 0 && (dig & 1 || biasUp)))
+                        && (dig++ == '9'))
+                        goto round_9_up;
+                }
+                *s++ = (char)dig;
+                goto ret;
+            }
+            if (j1 > 0) {
+                if (dig == '9') { /* possible if i == 1 */
+                round_9_up:
+                    *s++ = '9';
+                    goto roundoff;
+                }
+                *s++ = (char)dig + 1;
+                goto ret;
+            }
+            *s++ = (char)dig;
+            if (i == ilim)
+                break;
+            b = multadd(b, 10, 0);
+            if (!b)
+                goto nomem;
+            if (mlo == mhi) {
+                mlo = mhi = multadd(mhi, 10, 0);
+                if (!mhi)
+                    goto nomem;
+            }
+            else {
+                mlo = multadd(mlo, 10, 0);
+                if (!mlo)
+                    goto nomem;
+                mhi = multadd(mhi, 10, 0);
+                if (!mhi)
+                    goto nomem;
+            }
+        }
+    }
+    else
+        for(i = 1;; i++) {
+            *s++ = (char)(dig = quorem(b,S) + '0');
+            if (i >= ilim)
+                break;
+            b = multadd(b, 10, 0);
+            if (!b)
+                goto nomem;
+        }
+
+    /* Round off last digit */
+
+    b = lshift(b, 1);
+    if (!b)
+        goto nomem;
+    j = cmp(b, S);
+    if ((j > 0) || (j == 0 && (dig & 1 || biasUp))) {
+    roundoff:
+        while(*--s == '9')
+            if (s == buf) {
+                k++;
+                *s++ = '1';
+                goto ret;
+            }
+        ++*s++;
+    }
+    else {
+        /* Strip trailing zeros */
+        while(*--s == '0') ;
+        s++;
+    }
+  ret:
+    Bfree(S);
+    if (mhi) {
+        if (mlo && mlo != mhi)
+            Bfree(mlo);
+        Bfree(mhi);
+    }
+  ret1:
+    Bfree(b);
+    JS_ASSERT(s < buf + bufsize);
+    *s = '\0';
+    if (rve)
+        *rve = s;
+    *decpt = k + 1;
+    return JS_TRUE;
+
+nomem:
+    Bfree(S);
+    if (mhi) {
+        if (mlo && mlo != mhi)
+            Bfree(mlo);
+        Bfree(mhi);
+    }
+    Bfree(b);
+    return JS_FALSE;
 }
 
+
 /* Mapping of JSDToStrMode -> js_dtoa mode */
-static const uint8 dtoaModes[] = {
+static const int dtoaModes[] = {
     0,   /* DTOSTR_STANDARD */
     0,   /* DTOSTR_STANDARD_EXPONENTIAL, */
     3,   /* DTOSTR_FIXED, */
     2,   /* DTOSTR_EXPONENTIAL, */
     2};  /* DTOSTR_PRECISION */
 
-JS_FRIEND_API(double)
-JS_strtod(const char *s00, char **se, int *err)
-{
-    double retval;
-    LOCK_DTOA();
-    retval = _strtod(s00, se);
-    UNLOCK_DTOA();
-    return retval;
-}
-
 JS_FRIEND_API(char *)
 JS_dtostr(char *buffer, size_t bufferSize, JSDToStrMode mode, int precision, double d)
 {
-    int decPt;        /* Offset of decimal point from first digit */
-    int sign;         /* Nonzero if the sign bit was set in d */
-    int nDigits;      /* Number of significand digits returned by js_dtoa */
-    char *numBegin;   /* Pointer to the digits returned by js_dtoa */
-    char *numEnd = 0; /* Pointer past the digits returned by js_dtoa */
-
-    JS_ASSERT(bufferSize >= (size_t)(mode <= DTOSTR_STANDARD_EXPONENTIAL
-                                    ? DTOSTR_STANDARD_BUFFER_SIZE
-                                    : DTOSTR_VARIABLE_BUFFER_SIZE(precision)));
+    int decPt;                  /* Position of decimal point relative to first digit returned by js_dtoa */
+    int sign;                   /* Nonzero if the sign bit was set in d */
+    int nDigits;                /* Number of significand digits returned by js_dtoa */
+    char *numBegin = buffer+2;  /* Pointer to the digits returned by js_dtoa; the +2 leaves space for */
+                                /* the sign and/or decimal point */
+    char *numEnd;               /* Pointer past the digits returned by js_dtoa */
+    JSBool dtoaRet;
 
-    /*
-     * Change mode here rather than below because the buffer may not be large
-     * enough to hold a large integer.
-     */
+    JS_ASSERT(bufferSize >= (size_t)(mode <= DTOSTR_STANDARD_EXPONENTIAL ? DTOSTR_STANDARD_BUFFER_SIZE :
+            DTOSTR_VARIABLE_BUFFER_SIZE(precision)));
+
     if (mode == DTOSTR_FIXED && (d >= 1e21 || d <= -1e21))
-        mode = DTOSTR_STANDARD;
+        mode = DTOSTR_STANDARD; /* Change mode here rather than below because the buffer may not be large enough to hold a large integer. */
 
-    LOCK_DTOA();
-    numBegin = dtoa(d, dtoaModes[mode], precision, &decPt, &sign, &numEnd);
-    if (!numBegin) {
-        UNLOCK_DTOA();
-        return NULL;
-    }
+    /* Locking for Balloc's shared buffers */
+    ACQUIRE_DTOA_LOCK();
+    dtoaRet = js_dtoa(d, dtoaModes[mode], mode >= DTOSTR_FIXED, precision, &decPt, &sign, &numEnd, numBegin, bufferSize-2);
+    RELEASE_DTOA_LOCK();
+    if (!dtoaRet)
+        return 0;
 
     nDigits = numEnd - numBegin;
-    JS_ASSERT((size_t) nDigits <= bufferSize - 2);
-    if ((size_t) nDigits > bufferSize - 2) {
-        UNLOCK_DTOA();
-        return NULL;
-    }
 
-    memcpy(buffer + 2, numBegin, nDigits);
-    freedtoa(numBegin);
-    UNLOCK_DTOA();
-    numBegin = buffer + 2; /* +2 leaves space for sign and/or decimal point */
-    numEnd = numBegin + nDigits;
-    *numEnd = '\0';
-
-    /* If Infinity, -Infinity, or NaN, return the string regardless of mode. */
+    /* If Infinity, -Infinity, or NaN, return the string regardless of the mode. */
     if (decPt != 9999) {
         JSBool exponentialNotation = JS_FALSE;
-        int minNDigits = 0;  /* Min number of significant digits required */
+        int minNDigits = 0;         /* Minimum number of significand digits required by mode and precision */
         char *p;
         char *q;
 
         switch (mode) {
             case DTOSTR_STANDARD:
                 if (decPt < -5 || decPt > 21)
                     exponentialNotation = JS_TRUE;
                 else
@@ -210,17 +2843,17 @@ JS_dtostr(char *buffer, size_t bufferSiz
             case DTOSTR_PRECISION:
                 JS_ASSERT(precision > 0);
                 minNDigits = precision;
                 if (decPt < -5 || decPt > precision)
                     exponentialNotation = JS_TRUE;
                 break;
         }
 
-        /* If the number has fewer than minNDigits, end-pad it with zeros. */
+        /* If the number has fewer than minNDigits, pad it with zeros at the end */
         if (nDigits < minNDigits) {
             p = numBegin + minNDigits;
             nDigits = minNDigits;
             do {
                 *numEnd++ = '0';
             } while (numEnd != p);
             *numEnd = '\0';
         }
@@ -304,49 +2937,16 @@ divrem(Bigint *b, uint32 divisor)
         *bp = quotientHi << 16 | quotientLo;
     } while (bp != bx);
     /* Decrease the size of the number if its most significant word is now zero. */
     if (bx[n-1] == 0)
         b->wds--;
     return remainder;
 }
 
-/* Return floor(b/2^k) and set b to be the remainder.  The returned quotient must be less than 2^32. */
-static uint32 quorem2(Bigint *b, int32 k)
-{
-    ULong mask;
-    ULong result;
-    ULong *bx, *bxe;
-    int32 w;
-    int32 n = k >> 5;
-    k &= 0x1F;
-    mask = (1<<k) - 1;
-
-    w = b->wds - n;
-    if (w <= 0)
-        return 0;
-    JS_ASSERT(w <= 2);
-    bx = b->x;
-    bxe = bx + n;
-    result = *bxe >> k;
-    *bxe &= mask;
-    if (w == 2) {
-        JS_ASSERT(!(bxe[1] & ~mask));
-        if (k)
-            result |= bxe[1] << (32 - k);
-    }
-    n++;
-    while (!*bxe && bxe != bx) {
-        n--;
-        bxe--;
-    }
-    b->wds = n;
-    return result;
-}
-
 
 /* "-0.0000...(1073 zeros after decimal point)...0001\0" is the longest string that we could produce,
  * which occurs when printing -5e-324 in binary.  We could compute a better estimate of the size of
  * the output string and malloc fewer bytes depending on d and base, but why bother? */
 #define DTOBASESTR_BUFFER_SIZE 1078
 #define BASEDIGIT(digit) ((char)(((digit) >= 10) ? 'a' - 10 + (digit) : '0' + (digit)))
 
 JS_FRIEND_API(char *)
@@ -375,42 +2975,44 @@ JS_dtobasestr(int base, double d)
         }
 
         /* Check for Infinity and NaN */
         if ((word0(d) & Exp_mask) == Exp_mask) {
             strcpy(p, !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN");
             return buffer;
         }
 
-        LOCK_DTOA();
+        /* Locking for Balloc's shared buffers */
+        ACQUIRE_DTOA_LOCK();
+
         /* Output the integer part of d with the digits in reverse order. */
         pInt = p;
         di = fd_floor(d);
         if (di <= 4294967295.0) {
             uint32 n = (uint32)di;
             if (n)
                 do {
                     uint32 m = n / base;
                     digit = n - m*base;
                     n = m;
                     JS_ASSERT(digit < (uint32)base);
                     *p++ = BASEDIGIT(digit);
                 } while (n);
             else *p++ = '0';
         } else {
-            int e;
-            int bits;  /* Number of significant bits in di; not used. */
+            int32 e;
+            int32 bits;  /* Number of significant bits in di; not used. */
             Bigint *b = d2b(di, &e, &bits);
             if (!b)
                 goto nomem1;
             b = lshift(b, e);
             if (!b) {
               nomem1:
                 Bfree(b);
-                UNLOCK_DTOA();
+                RELEASE_DTOA_LOCK();
                 free(buffer);
                 return NULL;
             }
             do {
                 digit = divrem(b, base);
                 JS_ASSERT(digit < (uint32)base);
                 *p++ = BASEDIGIT(digit);
             } while (b->wds);
@@ -422,32 +3024,31 @@ JS_dtobasestr(int base, double d)
             char ch = *pInt;
             *pInt++ = *q;
             *q-- = ch;
         }
 
         df = d - di;
         if (df != 0.0) {
             /* We have a fraction. */
-            int e, bbits;
-            int32 s2, done;
+            int32 e, bbits, s2, done;
             Bigint *b, *s, *mlo, *mhi;
 
             b = s = mlo = mhi = NULL;
 
             *p++ = '.';
             b = d2b(df, &e, &bbits);
             if (!b) {
               nomem2:
                 Bfree(b);
                 Bfree(s);
                 if (mlo != mhi)
                     Bfree(mlo);
                 Bfree(mhi);
-                UNLOCK_DTOA();
+                RELEASE_DTOA_LOCK();
                 free(buffer);
                 return NULL;
             }
             JS_ASSERT(e < 0);
             /* At this point df = b * 2^e.  e must be less than zero because 0 < df < 1. */
 
             s2 = -(int32)(word0(d) >> Exp_shift1 & Exp_mask>>Exp_shift1);
 #ifndef Sudden_Underflow
@@ -555,12 +3156,12 @@ JS_dtobasestr(int base, double d)
             Bfree(b);
             Bfree(s);
             if (mlo != mhi)
                 Bfree(mlo);
             Bfree(mhi);
         }
         JS_ASSERT(p < buffer + DTOBASESTR_BUFFER_SIZE);
         *p = '\0';
-        UNLOCK_DTOA();
+        RELEASE_DTOA_LOCK();
     }
     return buffer;
 }
--- a/js/src/jsdtoa.h
+++ b/js/src/jsdtoa.h
@@ -118,14 +118,13 @@ JS_dtostr(char *buffer, size_t bufferSiz
  */
 JS_FRIEND_API(char *)
 JS_dtobasestr(int base, double d);
 
 /*
  * Clean up any persistent RAM allocated during the execution of DtoA
  * routines, and remove any locks that might have been created.
  */
-JS_FRIEND_API(JSBool) js_InitDtoa(void);
-JS_FRIEND_API(void) js_FinishDtoa(void);
+extern void js_FinishDtoa(void);
 
 JS_END_EXTERN_C
 
 #endif /* jsdtoa_h___ */
--- a/js/src/jsnum.cpp
+++ b/js/src/jsnum.cpp
@@ -1010,20 +1010,28 @@ js_strtod(JSContext *cx, const jschar *s
     if ((negative = (*istr == '-')) != 0 || *istr == '+')
         istr++;
     if (!strncmp(istr, js_Infinity_str, sizeof js_Infinity_str - 1)) {
         d = *(negative ? cx->runtime->jsNegativeInfinity : cx->runtime->jsPositiveInfinity);
         estr = istr + 8;
     } else {
         int err;
         d = JS_strtod(cstr, &estr, &err);
-        if (d == HUGE_VAL)
-            d = *cx->runtime->jsPositiveInfinity;
-        else if (d == -HUGE_VAL)
-            d = *cx->runtime->jsNegativeInfinity;
+        if (err == JS_DTOA_ENOMEM) {
+            JS_ReportOutOfMemory(cx);
+            if (cstr != cbuf)
+                JS_free(cx, cstr);
+            return JS_FALSE;
+        }
+        if (err == JS_DTOA_ERANGE) {
+            if (d == HUGE_VAL)
+                d = *cx->runtime->jsPositiveInfinity;
+            else if (d == -HUGE_VAL)
+                d = *cx->runtime->jsNegativeInfinity;
+        }
 #ifdef HPUX
         if (d == 0.0 && negative) {
             /*
              * "-0", "-1e-2000" come out as positive zero
              * here on HPUX. Force a negative zero instead.
              */
             JSDOUBLE_HI32(d) = JSDOUBLE_HI32_SIGNBIT;
             JSDOUBLE_LO32(d) = 0;