Backed out changeset 65836af09dac - compilation errors
authorIgor Bukanov <igor@mir2.org>
Sun, 27 Jul 2008 23:05:52 +0200
changeset 16257 368dff48c0f78623cfa0acb0b91782d888daf0e5
parent 16255 65836af09dac302ad993e6192c581702df6e6af4
child 16258 dae7948d05602be4ffd869a857e6ffbecb597f12
push idunknown
push userunknown
push dateunknown
milestone1.9.1a2pre
backs out65836af09dac302ad993e6192c581702df6e6af4
Backed out changeset 65836af09dac - compilation errors
js/src/js.cpp
js/src/jsapi.cpp
js/src/jsdtoa.cpp
js/src/jsdtoa.h
js/src/jsinterp.cpp
js/src/jsnum.cpp
js/src/jsopcode.cpp
--- a/js/src/js.cpp
+++ b/js/src/js.cpp
@@ -1231,17 +1231,17 @@ SrcNotes(JSContext *cx, JSScript *script
             /* Check if the source note is for a switch case. */
             if (switchTableStart <= offset && offset < switchTableEnd) {
                 name = "case";
             } else {
                 JS_ASSERT(script->code[offset] == JSOP_NOP);
             }
         }
         fprintf(gOutFile, "%3u: %5u [%4u] %-8s",
-                (uintN) PTRDIFF(sn, notes, jssrcnote), offset, delta, name);
+                PTRDIFF(sn, notes, jssrcnote), offset, delta, name);
         switch (type) {
           case SRC_SETLINE:
             fprintf(gOutFile, " lineno %u", (uintN) js_GetSrcNoteOffset(sn, 0));
             break;
           case SRC_FOR:
             fprintf(gOutFile, " cond %u update %u tail %u",
                    (uintN) js_GetSrcNoteOffset(sn, 0),
                    (uintN) js_GetSrcNoteOffset(sn, 1),
--- a/js/src/jsapi.cpp
+++ b/js/src/jsapi.cpp
@@ -736,18 +736,16 @@ JS_NewRuntime(uint32 maxbytes)
         return NULL;
 
     /* Initialize infallibly first, so we can goto bad and JS_DestroyRuntime. */
     memset(rt, 0, sizeof(JSRuntime));
     JS_INIT_CLIST(&rt->contextList);
     JS_INIT_CLIST(&rt->trapList);
     JS_INIT_CLIST(&rt->watchPointList);
 
-    if (!js_InitDtoa())
-        goto bad;
     if (!js_InitGC(rt, maxbytes))
         goto bad;
     if (!js_InitAtomState(rt))
         goto bad;
     if (!js_InitDeflatedStringCache(rt))
         goto bad;
 #ifdef JS_THREADSAFE
     if (!js_InitThreadPrivateIndex(js_ThreadDestructorCB))
--- a/js/src/jsdtoa.cpp
+++ b/js/src/jsdtoa.cpp
@@ -46,148 +46,2779 @@
 #include "jsdtoa.h"
 #include "jsprf.h"
 #include "jsutil.h" /* Added by JSIFY */
 #include "jspubtd.h"
 #include "jsnum.h"
 #include "jsbit.h"
 
 #ifdef JS_THREADSAFE
-#include "jslock.h"
+#include "prlock.h"
 #endif
 
+/****************************************************************
+ *
+ * The author of this software is David M. Gay.
+ *
+ * Copyright (c) 1991 by Lucent Technologies.
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose without fee is hereby granted, provided that this entire notice
+ * is included in all copies of any software which is or includes a copy
+ * or modification of this software and in all copies of the supporting
+ * documentation for such software.
+ *
+ * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
+ * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
+ * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
+ * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
+ *
+ ***************************************************************/
+
+/* Please send bug reports to
+    David M. Gay
+    Bell Laboratories, Room 2C-463
+    600 Mountain Avenue
+    Murray Hill, NJ 07974-0636
+    U.S.A.
+    dmg@bell-labs.com
+ */
+
+/* On a machine with IEEE extended-precision registers, it is
+ * necessary to specify double-precision (53-bit) rounding precision
+ * before invoking strtod or dtoa.  If the machine uses (the equivalent
+ * of) Intel 80x87 arithmetic, the call
+ *  _control87(PC_53, MCW_PC);
+ * does this with many compilers.  Whether this or another call is
+ * appropriate depends on the compiler; for this to work, it may be
+ * necessary to #include "float.h" or another system-dependent header
+ * file.
+ */
+
+/* strtod for IEEE-arithmetic machines.
+ *
+ * This strtod returns a nearest machine number to the input decimal
+ * string (or sets err to JS_DTOA_ERANGE or JS_DTOA_ENOMEM).  With IEEE
+ * arithmetic, ties are broken by the IEEE round-even rule.  Otherwise
+ * ties are broken by biased rounding (add half and chop).
+ *
+ * Inspired loosely by William D. Clinger's paper "How to Read Floating
+ * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
+ *
+ * Modifications:
+ *
+ *  1. We only require IEEE double-precision
+ *      arithmetic (not IEEE double-extended).
+ *  2. We get by with floating-point arithmetic in a case that
+ *      Clinger missed -- when we're computing d * 10^n
+ *      for a small integer d and the integer n is not too
+ *      much larger than 22 (the maximum integer k for which
+ *      we can represent 10^k exactly), we may be able to
+ *      compute (d*10^k) * 10^(e-k) with just one roundoff.
+ *  3. Rather than a bit-at-a-time adjustment of the binary
+ *      result in the hard case, we use floating-point
+ *      arithmetic to determine the adjustment to within
+ *      one bit; only in really hard cases do we need to
+ *      compute a second residual.
+ *  4. Because of 3., we don't need a large table of powers of 10
+ *      for ten-to-e (just some small tables, e.g. of 10^k
+ *      for 0 <= k <= 22).
+ */
+
+/*
+ * #define IEEE_8087 for IEEE-arithmetic machines where the least
+ *  significant byte has the lowest address.
+ * #define IEEE_MC68k for IEEE-arithmetic machines where the most
+ *  significant byte has the lowest address.
+ * #define Long int on machines with 32-bit ints and 64-bit longs.
+ * #define Sudden_Underflow for IEEE-format machines without gradual
+ *  underflow (i.e., that flush to zero on underflow).
+ * #define No_leftright to omit left-right logic in fast floating-point
+ *  computation of js_dtoa.
+ * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
+ * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
+ *  that use extended-precision instructions to compute rounded
+ *  products and quotients) with IBM.
+ * #define ROUND_BIASED for IEEE-format with biased rounding.
+ * #define Inaccurate_Divide for IEEE-format with correctly rounded
+ *  products but inaccurate quotients, e.g., for Intel i860.
+ * #define JS_HAVE_LONG_LONG on machines that have a "long long"
+ *  integer type (of >= 64 bits).  If long long is available and the name is
+ *  something other than "long long", #define Llong to be the name,
+ *  and if "unsigned Llong" does not work as an unsigned version of
+ *  Llong, #define #ULLong to be the corresponding unsigned type.
+ * #define Bad_float_h if your system lacks a float.h or if it does not
+ *  define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
+ *  FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
+ * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
+ *  if memory is available and otherwise does something you deem
+ *  appropriate.  If MALLOC is undefined, malloc will be invoked
+ *  directly -- and assumed always to succeed.
+ * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
+ *  memory allocations from a private pool of memory when possible.
+ *  When used, the private pool is PRIVATE_MEM bytes long: 2000 bytes,
+ *  unless #defined to be a different length.  This default length
+ *  suffices to get rid of MALLOC calls except for unusual cases,
+ *  such as decimal-to-binary conversion of a very long string of
+ *  digits.
+ * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
+ *  Infinity and NaN (case insensitively).  On some systems (e.g.,
+ *  some HP systems), it may be necessary to #define NAN_WORD0
+ *  appropriately -- to the most significant word of a quiet NaN.
+ *  (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
+ * #define MULTIPLE_THREADS if the system offers preemptively scheduled
+ *  multiple threads.  In this case, you must provide (or suitably
+ *  #define) two locks, acquired by ACQUIRE_DTOA_LOCK() and released
+ *  by RELEASE_DTOA_LOCK().  (The second lock, accessed
+ *  in pow5mult, ensures lazy evaluation of only one copy of high
+ *  powers of 5; omitting this lock would introduce a small
+ *  probability of wasting memory, but would otherwise be harmless.)
+ *  You must also invoke freedtoa(s) to free the value s returned by
+ *  dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
+ * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
+ *  avoids underflows on inputs whose result does not underflow.
+ */
 #ifdef IS_LITTLE_ENDIAN
 #define IEEE_8087
 #else
 #define IEEE_MC68k
 #endif
 
 #ifndef Long
 #define Long int32
 #endif
 
 #ifndef ULong
 #define ULong uint32
 #endif
 
-/*
+#define Bug(errorMessageString) JS_ASSERT(!errorMessageString)
+
+#include "stdlib.h"
+#include "string.h"
+
+#ifdef MALLOC
+extern void *MALLOC(size_t);
+#else
+#define MALLOC malloc
+#endif
+
+#define Omit_Private_Memory
+/* Private memory currently doesn't work with JS_THREADSAFE */
+#ifndef Omit_Private_Memory
+#ifndef PRIVATE_MEM
+#define PRIVATE_MEM 2000
+#endif
+#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
+static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
+#endif
+
+#ifdef Bad_float_h
+#undef __STDC__
+
+#define DBL_DIG 15
+#define DBL_MAX_10_EXP 308
+#define DBL_MAX_EXP 1024
+#define FLT_RADIX 2
+#define FLT_ROUNDS 1
+#define DBL_MAX 1.7976931348623157e+308
+
+
+
+#ifndef LONG_MAX
+#define LONG_MAX 2147483647
+#endif
+
+#else /* ifndef Bad_float_h */
+#include "float.h"
+#endif /* Bad_float_h */
+
+#ifndef __MATH_H__
+#include "math.h"
+#endif
+
+#ifndef CONST
+#define CONST const
+#endif
+
+#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
+Exactly one of IEEE_8087 or IEEE_MC68k should be defined.
+#endif
+
+#define word0(x)        JSDOUBLE_HI32(x)
+#define set_word0(x, y) JSDOUBLE_SET_HI32(x, y)
+#define word1(x)        JSDOUBLE_LO32(x)
+#define set_word1(x, y) JSDOUBLE_SET_LO32(x, y)
+
+#define Storeinc(a,b,c) (*(a)++ = (b) << 16 | (c) & 0xffff)
+
+/* #define P DBL_MANT_DIG */
+/* Ten_pmax = floor(P*log(2)/log(5)) */
+/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
+/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
+/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
+
+#define Exp_shift  20
+#define Exp_shift1 20
+#define Exp_msk1    0x100000
+#define Exp_msk11   0x100000
+#define Exp_mask  0x7ff00000
+#define P 53
+#define Bias 1023
+#define Emin (-1022)
+#define Exp_1  0x3ff00000
+#define Exp_11 0x3ff00000
+#define Ebits 11
+#define Frac_mask  0xfffff
+#define Frac_mask1 0xfffff
+#define Ten_pmax 22
+#define Bletch 0x10
+#define Bndry_mask  0xfffff
+#define Bndry_mask1 0xfffff
+#define LSB 1
+#define Sign_bit 0x80000000
+#define Log2P 1
+#define Tiny0 0
+#define Tiny1 1
+#define Quick_max 14
+#define Int_max 14
+#define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */
+#ifndef NO_IEEE_Scale
+#define Avoid_Underflow
+#endif
+
+
+
+#ifdef RND_PRODQUOT
+#define rounded_product(a,b) a = rnd_prod(a, b)
+#define rounded_quotient(a,b) a = rnd_quot(a, b)
+extern double rnd_prod(double, double), rnd_quot(double, double);
+#else
+#define rounded_product(a,b) a *= b
+#define rounded_quotient(a,b) a /= b
+#endif
+
+#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
+#define Big1 0xffffffff
+
+#ifndef JS_HAVE_LONG_LONG
+#undef ULLong
+#else   /* long long available */
 #ifndef Llong
 #define Llong JSInt64
 #endif
+#ifndef ULLong
+#define ULLong JSUint64
+#endif
+#endif /* JS_HAVE_LONG_LONG */
 
-#ifndef ULlong
-#define ULlong JSUint64
+#ifdef JS_THREADSAFE
+#define MULTIPLE_THREADS
+static PRLock *freelist_lock;
+#define ACQUIRE_DTOA_LOCK()                                                   \
+    JS_BEGIN_MACRO                                                            \
+        if (!initialized)                                                     \
+            InitDtoa();                                                       \
+        PR_Lock(freelist_lock);                                               \
+    JS_END_MACRO
+#define RELEASE_DTOA_LOCK() PR_Unlock(freelist_lock)
+#else
+#undef MULTIPLE_THREADS
+#define ACQUIRE_DTOA_LOCK()   /*nothing*/
+#define RELEASE_DTOA_LOCK()   /*nothing*/
+#endif
+
+#define Kmax 15
+
+struct Bigint {
+    struct Bigint *next;  /* Free list link */
+    int32 k;              /* lg2(maxwds) */
+    int32 maxwds;         /* Number of words allocated for x */
+    int32 sign;           /* Zero if positive, 1 if negative.  Ignored by most Bigint routines! */
+    int32 wds;            /* Actual number of words.  If value is nonzero, the most significant word must be nonzero. */
+    ULong x[1];           /* wds words of number in little endian order */
+};
+
+#ifdef ENABLE_OOM_TESTING
+/* Out-of-memory testing.  Use a good testcase (over and over) and then use
+ * these routines to cause a memory failure on every possible Balloc allocation,
+ * to make sure that all out-of-memory paths can be followed.  See bug 14044.
+ */
+
+static int allocationNum;               /* which allocation is next? */
+static int desiredFailure;              /* which allocation should fail? */
+
+/**
+ * js_BigintTestingReset
+ *
+ * Call at the beginning of a test run to set the allocation failure position.
+ * (Set to 0 to just have the engine count allocations without failing.)
+ */
+JS_PUBLIC_API(void)
+js_BigintTestingReset(int newFailure)
+{
+    allocationNum = 0;
+    desiredFailure = newFailure;
+}
+
+/**
+ * js_BigintTestingWhere
+ *
+ * Report the current allocation position.  This is really only useful when you
+ * want to learn how many allocations a test run has.
+ */
+JS_PUBLIC_API(int)
+js_BigintTestingWhere()
+{
+    return allocationNum;
+}
+
+
+/*
+ * So here's what you do: Set up a fantastic test case that exercises the
+ * elements of the code you wish.  Set the failure point at 0 and run the test,
+ * then get the allocation position.  This number is the number of allocations
+ * your test makes.  Now loop from 1 to that number, setting the failure point
+ * at each loop count, and run the test over and over, causing failures at each
+ * step.  Any memory failure *should* cause a Out-Of-Memory exception; if it
+ * doesn't, then there's still an error here.
+ */
+#endif
+
+typedef struct Bigint Bigint;
+
+static Bigint *freelist[Kmax+1];
+
+/*
+ * Allocate a Bigint with 2^k words.
+ * This is not threadsafe. The caller must use thread locks
+ */
+static Bigint *Balloc(int32 k)
+{
+    int32 x;
+    Bigint *rv;
+#ifndef Omit_Private_Memory
+    uint32 len;
+#endif
+
+#ifdef ENABLE_OOM_TESTING
+    if (++allocationNum == desiredFailure) {
+        printf("Forced Failing Allocation number %d\n", allocationNum);
+        return NULL;
+    }
+#endif
+
+    if ((rv = freelist[k]) != NULL)
+        freelist[k] = rv->next;
+    if (rv == NULL) {
+        x = 1 << k;
+#ifdef Omit_Private_Memory
+        rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
+#else
+        len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
+            /sizeof(double);
+        if (pmem_next - private_mem + len <= PRIVATE_mem) {
+            rv = (Bigint*)pmem_next;
+            pmem_next += len;
+            }
+        else
+            rv = (Bigint*)MALLOC(len*sizeof(double));
+#endif
+        if (!rv)
+            return NULL;
+        rv->k = k;
+        rv->maxwds = x;
+    }
+    rv->sign = rv->wds = 0;
+    return rv;
+}
+
+static void Bfree(Bigint *v)
+{
+    if (v) {
+        v->next = freelist[v->k];
+        freelist[v->k] = v;
+    }
+}
+
+#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
+                          y->wds*sizeof(Long) + 2*sizeof(int32))
+
+/* Return b*m + a.  Deallocate the old b.  Both a and m must be between 0 and
+ * 65535 inclusive.  NOTE: old b is deallocated on memory failure.
+ */
+static Bigint *multadd(Bigint *b, int32 m, int32 a)
+{
+    int32 i, wds;
+#ifdef ULLong
+    ULong *x;
+    ULLong carry, y;
+#else
+    ULong carry, *x, y;
+    ULong xi, z;
+#endif
+    Bigint *b1;
+
+#ifdef ENABLE_OOM_TESTING
+    if (++allocationNum == desiredFailure) {
+        /* Faux allocation, because I'm not getting all of the failure paths
+         * without it.
+         */
+        printf("Forced Failing Allocation number %d\n", allocationNum);
+        Bfree(b);
+        return NULL;
+    }
+#endif
+
+    wds = b->wds;
+    x = b->x;
+    i = 0;
+    carry = a;
+    do {
+#ifdef ULLong
+        y = *x * (ULLong)m + carry;
+        carry = y >> 32;
+        *x++ = (ULong)(y & 0xffffffffUL);
+#else
+        xi = *x;
+        y = (xi & 0xffff) * m + carry;
+        z = (xi >> 16) * m + (y >> 16);
+        carry = z >> 16;
+        *x++ = (z << 16) + (y & 0xffff);
+#endif
+    }
+    while(++i < wds);
+    if (carry) {
+        if (wds >= b->maxwds) {
+            b1 = Balloc(b->k+1);
+            if (!b1) {
+                Bfree(b);
+                return NULL;
+            }
+            Bcopy(b1, b);
+            Bfree(b);
+            b = b1;
+        }
+        b->x[wds++] = (ULong)carry;
+        b->wds = wds;
+    }
+    return b;
+}
+
+static Bigint *s2b(CONST char *s, int32 nd0, int32 nd, ULong y9)
+{
+    Bigint *b;
+    int32 i, k;
+    Long x, y;
+
+    x = (nd + 8) / 9;
+    for(k = 0, y = 1; x > y; y <<= 1, k++) ;
+    b = Balloc(k);
+    if (!b)
+        return NULL;
+    b->x[0] = y9;
+    b->wds = 1;
+
+    i = 9;
+    if (9 < nd0) {
+        s += 9;
+        do {
+            b = multadd(b, 10, *s++ - '0');
+            if (!b)
+                return NULL;
+        } while(++i < nd0);
+        s++;
+    }
+    else
+        s += 10;
+    for(; i < nd; i++) {
+        b = multadd(b, 10, *s++ - '0');
+        if (!b)
+            return NULL;
+    }
+    return b;
+}
+
+
+/* Return the number (0 through 32) of most significant zero bits in x. */
+static int32 hi0bits(register ULong x)
+{
+#ifdef JS_HAS_BUILTIN_BITSCAN32
+    return( (!x) ? 32 : js_bitscan_clz32(x) );
+#else
+    register int32 k = 0;
+
+    if (!(x & 0xffff0000)) {
+        k = 16;
+        x <<= 16;
+    }
+    if (!(x & 0xff000000)) {
+        k += 8;
+        x <<= 8;
+    }
+    if (!(x & 0xf0000000)) {
+        k += 4;
+        x <<= 4;
+    }
+    if (!(x & 0xc0000000)) {
+        k += 2;
+        x <<= 2;
+    }
+    if (!(x & 0x80000000)) {
+        k++;
+        if (!(x & 0x40000000))
+            return 32;
+    }
+    return k;
+#endif /* JS_HAS_BUILTIN_BITSCAN32 */
+}
+
+
+/* Return the number (0 through 32) of least significant zero bits in y.
+ * Also shift y to the right past these 0 through 32 zeros so that y's
+ * least significant bit will be set unless y was originally zero. */
+static int32 lo0bits(ULong *y)
+{
+#ifdef JS_HAS_BUILTIN_BITSCAN32
+    int32 k;
+    ULong x = *y;
+
+   if (x>1)
+      *y = ( x >> (k = js_bitscan_ctz32(x)) );
+   else
+      k = ((x ^ 1) << 5);
+#else
+    register int32 k;
+    register ULong x = *y;
+
+    if (x & 7) {
+        if (x & 1)
+            return 0;
+        if (x & 2) {
+            *y = x >> 1;
+            return 1;
+        }
+        *y = x >> 2;
+        return 2;
+    }
+    k = 0;
+    if (!(x & 0xffff)) {
+        k = 16;
+        x >>= 16;
+    }
+    if (!(x & 0xff)) {
+        k += 8;
+        x >>= 8;
+    }
+    if (!(x & 0xf)) {
+        k += 4;
+        x >>= 4;
+    }
+    if (!(x & 0x3)) {
+        k += 2;
+        x >>= 2;
+    }
+    if (!(x & 1)) {
+        k++;
+        x >>= 1;
+        if (!x & 1)
+            return 32;
+    }
+    *y = x;
+#endif /* JS_HAS_BUILTIN_BITSCAN32 */
+    return k;
+}
+
+/* Return a new Bigint with the given integer value, which must be nonnegative. */
+static Bigint *i2b(int32 i)
+{
+    Bigint *b;
+
+    b = Balloc(1);
+    if (!b)
+        return NULL;
+    b->x[0] = i;
+    b->wds = 1;
+    return b;
+}
+
+/* Return a newly allocated product of a and b. */
+static Bigint *mult(CONST Bigint *a, CONST Bigint *b)
+{
+    CONST Bigint *t;
+    Bigint *c;
+    int32 k, wa, wb, wc;
+    ULong y;
+    ULong *xc, *xc0, *xce;
+    CONST ULong *x, *xa, *xae, *xb, *xbe;
+#ifdef ULLong
+    ULLong carry, z;
+#else
+    ULong carry, z;
+    ULong z2;
+#endif
+
+    if (a->wds < b->wds) {
+        t = a;
+        a = b;
+        b = t;
+    }
+    k = a->k;
+    wa = a->wds;
+    wb = b->wds;
+    wc = wa + wb;
+    if (wc > a->maxwds)
+        k++;
+    c = Balloc(k);
+    if (!c)
+        return NULL;
+    for(xc = c->x, xce = xc + wc; xc < xce; xc++)
+        *xc = 0;
+    xa = a->x;
+    xae = xa + wa;
+    xb = b->x;
+    xbe = xb + wb;
+    xc0 = c->x;
+#ifdef ULLong
+    for(; xb < xbe; xc0++) {
+        if ((y = *xb++) != 0) {
+            x = xa;
+            xc = xc0;
+            carry = 0;
+            do {
+                z = *x++ * (ULLong)y + *xc + carry;
+                carry = z >> 32;
+                *xc++ = (ULong)(z & 0xffffffffUL);
+                }
+                while(x < xae);
+            *xc = (ULong)carry;
+            }
+        }
+#else
+    for(; xb < xbe; xb++, xc0++) {
+        if ((y = *xb & 0xffff) != 0) {
+            x = xa;
+            xc = xc0;
+            carry = 0;
+            do {
+                z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
+                carry = z >> 16;
+                z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
+                carry = z2 >> 16;
+                Storeinc(xc, z2, z);
+            }
+            while(x < xae);
+            *xc = carry;
+        }
+        if ((y = *xb >> 16) != 0) {
+            x = xa;
+            xc = xc0;
+            carry = 0;
+            z2 = *xc;
+            do {
+                z = (*x & 0xffff) * y + (*xc >> 16) + carry;
+                carry = z >> 16;
+                Storeinc(xc, z, z2);
+                z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
+                carry = z2 >> 16;
+            }
+            while(x < xae);
+            *xc = z2;
+        }
+    }
+#endif
+    for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
+    c->wds = wc;
+    return c;
+}
+
+/*
+ * 'p5s' points to a linked list of Bigints that are powers of 5.
+ * This list grows on demand, and it can only grow: it won't change
+ * in any other way.  So if we read 'p5s' or the 'next' field of
+ * some Bigint on the list, and it is not NULL, we know it won't
+ * change to NULL or some other value.  Only when the value of
+ * 'p5s' or 'next' is NULL do we need to acquire the lock and add
+ * a new Bigint to the list.
+ */
+
+static Bigint *p5s;
+
+#ifdef JS_THREADSAFE
+static PRLock *p5s_lock;
 #endif
-*/
+
+/* Return b * 5^k.  Deallocate the old b.  k must be nonnegative. */
+/* NOTE: old b is deallocated on memory failure. */
+static Bigint *pow5mult(Bigint *b, int32 k)
+{
+    Bigint *b1, *p5, *p51;
+    int32 i;
+    static CONST int32 p05[3] = { 5, 25, 125 };
+
+    if ((i = k & 3) != 0) {
+        b = multadd(b, p05[i-1], 0);
+        if (!b)
+            return NULL;
+    }
+
+    if (!(k >>= 2))
+        return b;
+    if (!(p5 = p5s)) {
+#ifdef JS_THREADSAFE
+        /*
+         * We take great care to not call i2b() and Bfree()
+         * while holding the lock.
+         */
+        Bigint *wasted_effort = NULL;
+        p5 = i2b(625);
+        if (!p5) {
+            Bfree(b);
+            return NULL;
+        }
+        /* lock and check again */
+        PR_Lock(p5s_lock);
+        if (!p5s) {
+            /* first time */
+            p5s = p5;
+            p5->next = 0;
+        } else {
+            /* some other thread just beat us */
+            wasted_effort = p5;
+            p5 = p5s;
+        }
+        PR_Unlock(p5s_lock);
+        if (wasted_effort) {
+            Bfree(wasted_effort);
+        }
+#else
+        /* first time */
+        p5 = p5s = i2b(625);
+        if (!p5) {
+            Bfree(b);
+            return NULL;
+        }
+        p5->next = 0;
+#endif
+    }
+    for(;;) {
+        if (k & 1) {
+            b1 = mult(b, p5);
+            Bfree(b);
+            if (!b1)
+                return NULL;
+            b = b1;
+        }
+        if (!(k >>= 1))
+            break;
+        if (!(p51 = p5->next)) {
+#ifdef JS_THREADSAFE
+            Bigint *wasted_effort = NULL;
+            p51 = mult(p5, p5);
+            if (!p51) {
+                Bfree(b);
+                return NULL;
+            }
+            PR_Lock(p5s_lock);
+            if (!p5->next) {
+                p5->next = p51;
+                p51->next = 0;
+            } else {
+                wasted_effort = p51;
+                p51 = p5->next;
+            }
+            PR_Unlock(p5s_lock);
+            if (wasted_effort) {
+                Bfree(wasted_effort);
+            }
+#else
+            p51 = mult(p5,p5);
+            if (!p51) {
+                Bfree(b);
+                return NULL;
+            }
+            p51->next = 0;
+            p5->next = p51;
+#endif
+        }
+        p5 = p51;
+    }
+    return b;
+}
+
+/* Return b * 2^k.  Deallocate the old b.  k must be nonnegative.
+ * NOTE: on memory failure, old b is deallocated. */
+static Bigint *lshift(Bigint *b, int32 k)
+{
+    int32 i, k1, n, n1;
+    Bigint *b1;
+    ULong *x, *x1, *xe, z;
+
+    n = k >> 5;
+    k1 = b->k;
+    n1 = n + b->wds + 1;
+    for(i = b->maxwds; n1 > i; i <<= 1)
+        k1++;
+    b1 = Balloc(k1);
+    if (!b1)
+        goto done;
+    x1 = b1->x;
+    for(i = 0; i < n; i++)
+        *x1++ = 0;
+    x = b->x;
+    xe = x + b->wds;
+    if (k &= 0x1f) {
+        k1 = 32 - k;
+        z = 0;
+        do {
+            *x1++ = *x << k | z;
+            z = *x++ >> k1;
+        }
+        while(x < xe);
+        if ((*x1 = z) != 0)
+            ++n1;
+    }
+    else do
+        *x1++ = *x++;
+         while(x < xe);
+    b1->wds = n1 - 1;
+done:
+    Bfree(b);
+    return b1;
+}
+
+/* Return -1, 0, or 1 depending on whether a<b, a==b, or a>b, respectively. */
+static int32 cmp(Bigint *a, Bigint *b)
+{
+    ULong *xa, *xa0, *xb, *xb0;
+    int32 i, j;
+
+    i = a->wds;
+    j = b->wds;
+#ifdef DEBUG
+    if (i > 1 && !a->x[i-1])
+        Bug("cmp called with a->x[a->wds-1] == 0");
+    if (j > 1 && !b->x[j-1])
+        Bug("cmp called with b->x[b->wds-1] == 0");
+#endif
+    if (i -= j)
+        return i;
+    xa0 = a->x;
+    xa = xa0 + j;
+    xb0 = b->x;
+    xb = xb0 + j;
+    for(;;) {
+        if (*--xa != *--xb)
+            return *xa < *xb ? -1 : 1;
+        if (xa <= xa0)
+            break;
+    }
+    return 0;
+}
+
+static Bigint *diff(Bigint *a, Bigint *b)
+{
+    Bigint *c;
+    int32 i, wa, wb;
+    ULong *xa, *xae, *xb, *xbe, *xc;
+#ifdef ULLong
+    ULLong borrow, y;
+#else
+    ULong borrow, y;
+    ULong z;
+#endif
+
+    i = cmp(a,b);
+    if (!i) {
+        c = Balloc(0);
+        if (!c)
+            return NULL;
+        c->wds = 1;
+        c->x[0] = 0;
+        return c;
+    }
+    if (i < 0) {
+        c = a;
+        a = b;
+        b = c;
+        i = 1;
+    }
+    else
+        i = 0;
+    c = Balloc(a->k);
+    if (!c)
+        return NULL;
+    c->sign = i;
+    wa = a->wds;
+    xa = a->x;
+    xae = xa + wa;
+    wb = b->wds;
+    xb = b->x;
+    xbe = xb + wb;
+    xc = c->x;
+    borrow = 0;
+#ifdef ULLong
+    do {
+        y = (ULLong)*xa++ - *xb++ - borrow;
+        borrow = y >> 32 & 1UL;
+        *xc++ = (ULong)(y & 0xffffffffUL);
+        }
+        while(xb < xbe);
+    while(xa < xae) {
+        y = *xa++ - borrow;
+        borrow = y >> 32 & 1UL;
+        *xc++ = (ULong)(y & 0xffffffffUL);
+        }
+#else
+    do {
+        y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
+        borrow = (y & 0x10000) >> 16;
+        z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
+        borrow = (z & 0x10000) >> 16;
+        Storeinc(xc, z, y);
+        }
+        while(xb < xbe);
+    while(xa < xae) {
+        y = (*xa & 0xffff) - borrow;
+        borrow = (y & 0x10000) >> 16;
+        z = (*xa++ >> 16) - borrow;
+        borrow = (z & 0x10000) >> 16;
+        Storeinc(xc, z, y);
+        }
+#endif
+    while(!*--xc)
+        wa--;
+    c->wds = wa;
+    return c;
+}
+
+/* Return the absolute difference between x and the adjacent greater-magnitude double number (ignoring exponent overflows). */
+static double ulp(double x)
+{
+    register Long L;
+    double a = 0;
+
+    L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
+#ifndef Sudden_Underflow
+    if (L > 0) {
+#endif
+        set_word0(a, L);
+        set_word1(a, 0);
+#ifndef Sudden_Underflow
+    }
+    else {
+        L = -L >> Exp_shift;
+        if (L < Exp_shift) {
+            set_word0(a, 0x80000 >> L);
+            set_word1(a, 0);
+        }
+        else {
+            set_word0(a, 0);
+            L -= Exp_shift;
+            set_word1(a, L >= 31 ? 1 : 1 << (31 - L));
+        }
+    }
+#endif
+    return a;
+}
+
+
+static double b2d(Bigint *a, int32 *e)
+{
+    ULong *xa, *xa0, w, y, z;
+    int32 k;
+    double d = 0;
+#define d0 word0(d)
+#define d1 word1(d)
+#define set_d0(x) set_word0(d, x)
+#define set_d1(x) set_word1(d, x)
+
+    xa0 = a->x;
+    xa = xa0 + a->wds;
+    y = *--xa;
+#ifdef DEBUG
+    if (!y) Bug("zero y in b2d");
+#endif
+    k = hi0bits(y);
+    *e = 32 - k;
+    if (k < Ebits) {
+        set_d0(Exp_1 | y >> (Ebits - k));
+        w = xa > xa0 ? *--xa : 0;
+        set_d1(y << (32-Ebits + k) | w >> (Ebits - k));
+        goto ret_d;
+    }
+    z = xa > xa0 ? *--xa : 0;
+    if (k -= Ebits) {
+        set_d0(Exp_1 | y << k | z >> (32 - k));
+        y = xa > xa0 ? *--xa : 0;
+        set_d1(z << k | y >> (32 - k));
+    }
+    else {
+        set_d0(Exp_1 | y);
+        set_d1(z);
+    }
+  ret_d:
+#undef d0
+#undef d1
+#undef set_d0
+#undef set_d1
+    return d;
+}
+
+
+/* Convert d into the form b*2^e, where b is an odd integer.  b is the returned
+ * Bigint and e is the returned binary exponent.  Return the number of significant
+ * bits in b in bits.  d must be finite and nonzero. */
+static Bigint *d2b(double d, int32 *e, int32 *bits)
+{
+    Bigint *b;
+    int32 de, i, k;
+    ULong *x, y, z;
+#define d0 word0(d)
+#define d1 word1(d)
+#define set_d0(x) set_word0(d, x)
+#define set_d1(x) set_word1(d, x)
+
+    b = Balloc(1);
+    if (!b)
+        return NULL;
+    x = b->x;
+
+    z = d0 & Frac_mask;
+    set_d0(d0 & 0x7fffffff);  /* clear sign bit, which we ignore */
+#ifdef Sudden_Underflow
+    de = (int32)(d0 >> Exp_shift);
+    z |= Exp_msk11;
+#else
+    if ((de = (int32)(d0 >> Exp_shift)) != 0)
+        z |= Exp_msk1;
+#endif
+    if ((y = d1) != 0) {
+        if ((k = lo0bits(&y)) != 0) {
+            x[0] = y | z << (32 - k);
+            z >>= k;
+        }
+        else
+            x[0] = y;
+        i = b->wds = (x[1] = z) ? 2 : 1;
+    }
+    else {
+        JS_ASSERT(z);
+        k = lo0bits(&z);
+        x[0] = z;
+        i = b->wds = 1;
+        k += 32;
+    }
+#ifndef Sudden_Underflow
+    if (de) {
+#endif
+        *e = de - Bias - (P-1) + k;
+        *bits = P - k;
+#ifndef Sudden_Underflow
+    }
+    else {
+        *e = de - Bias - (P-1) + 1 + k;
+        *bits = 32*i - hi0bits(x[i-1]);
+    }
+#endif
+    return b;
+}
+#undef d0
+#undef d1
+#undef set_d0
+#undef set_d1
+
+
+static double ratio(Bigint *a, Bigint *b)
+{
+    double da, db;
+    int32 k, ka, kb;
+
+    da = b2d(a, &ka);
+    db = b2d(b, &kb);
+    k = ka - kb + 32*(a->wds - b->wds);
+    if (k > 0)
+        set_word0(da, word0(da) + k*Exp_msk1);
+    else {
+        k = -k;
+        set_word0(db, word0(db) + k*Exp_msk1);
+    }
+    return da / db;
+}
+
+static CONST double
+tens[] = {
+    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
+    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
+    1e20, 1e21, 1e22
+};
+
+static CONST double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
+static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
+#ifdef Avoid_Underflow
+        9007199254740992.e-256
+#else
+        1e-256
+#endif
+        };
+/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
+/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
+#define Scale_Bit 0x10
+#define n_bigtens 5
+
+
+#ifdef INFNAN_CHECK
+
+#ifndef NAN_WORD0
+#define NAN_WORD0 0x7ff80000
+#endif
+
+#ifndef NAN_WORD1
+#define NAN_WORD1 0
+#endif
+
+static int match(CONST char **sp, char *t)
+{
+    int c, d;
+    CONST char *s = *sp;
+
+    while(d = *t++) {
+        if ((c = *++s) >= 'A' && c <= 'Z')
+            c += 'a' - 'A';
+        if (c != d)
+            return 0;
+        }
+    *sp = s + 1;
+    return 1;
+    }
+#endif /* INFNAN_CHECK */
+
+
+#ifdef JS_THREADSAFE
+static JSBool initialized = JS_FALSE;
+
+/* hacked replica of nspr _PR_InitDtoa */
+static void InitDtoa(void)
+{
+    freelist_lock = PR_NewLock();
+        p5s_lock = PR_NewLock();
+    initialized = JS_TRUE;
+}
+#endif
+
+void js_FinishDtoa(void)
+{
+    int count;
+    Bigint *temp;
 
 #ifdef JS_THREADSAFE
-static PRLock *dtoalock;
-static JSBool _dtoainited = JS_FALSE;
-
-#define LOCK_DTOA() PR_Lock(dtoalock);
-#define UNLOCK_DTOA() PR_Unlock(dtoalock)
-#else
-#define LOCK_DTOA()
-#define UNLOCK_DTOA()
+    if (initialized == JS_TRUE) {
+        PR_DestroyLock(freelist_lock);
+        PR_DestroyLock(p5s_lock);
+        initialized = JS_FALSE;
+    }
 #endif
-#include "dtoa.c"
+
+    /* clear down the freelist array and p5s */
+
+    /* static Bigint *freelist[Kmax+1]; */
+    for (count = 0; count <= Kmax; count++) {
+        Bigint **listp = &freelist[count];
+        while ((temp = *listp) != NULL) {
+            *listp = temp->next;
+            free(temp);
+        }
+        freelist[count] = NULL;
+    }
 
-JS_FRIEND_API(JSBool)
-js_InitDtoa()
+    /* static Bigint *p5s; */
+    while (p5s) {
+        temp = p5s;
+        p5s = p5s->next;
+        free(temp);
+    }
+}
+
+/* nspr2 watcom bug ifdef omitted */
+
+JS_FRIEND_API(double)
+JS_strtod(CONST char *s00, char **se, int *err)
 {
-#ifdef JS_THREADSAFE
-    if (!_dtoainited) {
-        dtoalock = PR_NewLock();
-        JS_ASSERT(dtoalock);
-        _dtoainited = JS_TRUE;
+    int32 scale;
+    int32 bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
+        e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
+    CONST char *s, *s0, *s1;
+    double aadj, aadj1, adj, rv, rv0;
+    Long L;
+    ULong y, z;
+    Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
+
+    *err = 0;
+
+    bb = bd = bs = delta = NULL;
+    sign = nz0 = nz = 0;
+    rv = 0.;
+
+    /* Locking for Balloc's shared buffers that will be used in this block */
+    ACQUIRE_DTOA_LOCK();
+
+    for(s = s00;;s++) switch(*s) {
+    case '-':
+        sign = 1;
+        /* no break */
+    case '+':
+        if (*++s)
+            goto break2;
+        /* no break */
+    case 0:
+        s = s00;
+        goto ret;
+    case '\t':
+    case '\n':
+    case '\v':
+    case '\f':
+    case '\r':
+    case ' ':
+        continue;
+    default:
+        goto break2;
+    }
+break2:
+
+    if (*s == '0') {
+        nz0 = 1;
+        while(*++s == '0') ;
+        if (!*s)
+            goto ret;
+    }
+    s0 = s;
+    y = z = 0;
+    for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
+        if (nd < 9)
+            y = 10*y + c - '0';
+        else if (nd < 16)
+            z = 10*z + c - '0';
+    nd0 = nd;
+    if (c == '.') {
+        c = *++s;
+        if (!nd) {
+            for(; c == '0'; c = *++s)
+                nz++;
+            if (c > '0' && c <= '9') {
+                s0 = s;
+                nf += nz;
+                nz = 0;
+                goto have_dig;
+            }
+            goto dig_done;
+        }
+        for(; c >= '0' && c <= '9'; c = *++s) {
+        have_dig:
+            nz++;
+            if (c -= '0') {
+                nf += nz;
+                for(i = 1; i < nz; i++)
+                    if (nd++ < 9)
+                        y *= 10;
+                    else if (nd <= DBL_DIG + 1)
+                        z *= 10;
+                if (nd++ < 9)
+                    y = 10*y + c;
+                else if (nd <= DBL_DIG + 1)
+                    z = 10*z + c;
+                nz = 0;
+            }
+        }
+    }
+dig_done:
+    e = 0;
+    if (c == 'e' || c == 'E') {
+        if (!nd && !nz && !nz0) {
+            s = s00;
+            goto ret;
+        }
+        s00 = s;
+        esign = 0;
+        switch(c = *++s) {
+        case '-':
+            esign = 1;
+        case '+':
+            c = *++s;
+        }
+        if (c >= '0' && c <= '9') {
+            while(c == '0')
+                c = *++s;
+            if (c > '0' && c <= '9') {
+                L = c - '0';
+                s1 = s;
+                while((c = *++s) >= '0' && c <= '9')
+                    L = 10*L + c - '0';
+                if (s - s1 > 8 || L > 19999)
+                    /* Avoid confusion from exponents
+                     * so large that e might overflow.
+                     */
+                    e = 19999; /* safe for 16 bit ints */
+                else
+                    e = (int32)L;
+                if (esign)
+                    e = -e;
+            }
+            else
+                e = 0;
+        }
+        else
+            s = s00;
+    }
+    if (!nd) {
+        if (!nz && !nz0) {
+#ifdef INFNAN_CHECK
+            /* Check for Nan and Infinity */
+            switch(c) {
+              case 'i':
+              case 'I':
+                if (match(&s,"nfinity")) {
+                    set_word0(rv, 0x7ff00000);
+                    set_word1(rv, 0);
+                    goto ret;
+                    }
+                break;
+              case 'n':
+              case 'N':
+                if (match(&s, "an")) {
+                    set_word0(rv, NAN_WORD0);
+                    set_word1(rv, NAN_WORD1);
+                    goto ret;
+                    }
+              }
+#endif /* INFNAN_CHECK */
+            s = s00;
+            }
+        goto ret;
+    }
+    e1 = e -= nf;
+
+    /* Now we have nd0 digits, starting at s0, followed by a
+     * decimal point, followed by nd-nd0 digits.  The number we're
+     * after is the integer represented by those digits times
+     * 10**e */
+
+    if (!nd0)
+        nd0 = nd;
+    k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
+    rv = y;
+    if (k > 9)
+        rv = tens[k - 9] * rv + z;
+    bd0 = 0;
+    if (nd <= DBL_DIG
+#ifndef RND_PRODQUOT
+        && FLT_ROUNDS == 1
+#endif
+        ) {
+        if (!e)
+            goto ret;
+        if (e > 0) {
+            if (e <= Ten_pmax) {
+                /* rv = */ rounded_product(rv, tens[e]);
+                goto ret;
+            }
+            i = DBL_DIG - nd;
+            if (e <= Ten_pmax + i) {
+                /* A fancier test would sometimes let us do
+                 * this for larger i values.
+                 */
+                e -= i;
+                rv *= tens[i];
+                /* rv = */ rounded_product(rv, tens[e]);
+                goto ret;
+            }
+        }
+#ifndef Inaccurate_Divide
+        else if (e >= -Ten_pmax) {
+            /* rv = */ rounded_quotient(rv, tens[-e]);
+            goto ret;
+        }
+#endif
+    }
+    e1 += nd - k;
+
+    scale = 0;
+
+    /* Get starting approximation = rv * 10**e1 */
+
+    if (e1 > 0) {
+        if ((i = e1 & 15) != 0)
+            rv *= tens[i];
+        if (e1 &= ~15) {
+            if (e1 > DBL_MAX_10_EXP) {
+            ovfl:
+                *err = JS_DTOA_ERANGE;
+#ifdef __STDC__
+                rv = HUGE_VAL;
+#else
+                /* Can't trust HUGE_VAL */
+                set_word0(rv, Exp_mask);
+                set_word1(rv, 0);
+#endif
+                if (bd0)
+                    goto retfree;
+                goto ret;
+            }
+            e1 >>= 4;
+            for(j = 0; e1 > 1; j++, e1 >>= 1)
+                if (e1 & 1)
+                    rv *= bigtens[j];
+            /* The last multiplication could overflow. */
+            set_word0(rv, word0(rv) - P*Exp_msk1);
+            rv *= bigtens[j];
+            if ((z = word0(rv) & Exp_mask) > Exp_msk1*(DBL_MAX_EXP+Bias-P))
+                goto ovfl;
+            if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
+                /* set to largest number */
+                /* (Can't trust DBL_MAX) */
+                set_word0(rv, Big0);
+                set_word1(rv, Big1);
+                }
+            else
+                set_word0(rv, word0(rv) + P*Exp_msk1);
+            }
+    }
+    else if (e1 < 0) {
+        e1 = -e1;
+        if ((i = e1 & 15) != 0)
+            rv /= tens[i];
+        if (e1 &= ~15) {
+            e1 >>= 4;
+            if (e1 >= 1 << n_bigtens)
+                goto undfl;
+#ifdef Avoid_Underflow
+            if (e1 & Scale_Bit)
+                scale = P;
+            for(j = 0; e1 > 0; j++, e1 >>= 1)
+                if (e1 & 1)
+                    rv *= tinytens[j];
+            if (scale && (j = P + 1 - ((word0(rv) & Exp_mask)
+                        >> Exp_shift)) > 0) {
+                /* scaled rv is denormal; zap j low bits */
+                if (j >= 32) {
+                    set_word1(rv, 0);
+                    set_word0(rv, word0(rv) & (0xffffffff << (j-32)));
+                    if (!word0(rv))
+                        set_word0(rv, 1);
+                    }
+                else
+                    set_word1(rv, word1(rv) & (0xffffffff << j));
+                }
+#else
+            for(j = 0; e1 > 1; j++, e1 >>= 1)
+                if (e1 & 1)
+                    rv *= tinytens[j];
+            /* The last multiplication could underflow. */
+            rv0 = rv;
+            rv *= tinytens[j];
+            if (!rv) {
+                rv = 2.*rv0;
+                rv *= tinytens[j];
+#endif
+                if (!rv) {
+                undfl:
+                    rv = 0.;
+                    *err = JS_DTOA_ERANGE;
+                    if (bd0)
+                        goto retfree;
+                    goto ret;
+                }
+#ifndef Avoid_Underflow
+                set_word0(rv, Tiny0);
+                set_word1(rv, Tiny1);
+                /* The refinement below will clean
+                 * this approximation up.
+                 */
+            }
+#endif
+        }
     }
 
-    return (dtoalock != 0);
+    /* Now the hard part -- adjusting rv to the correct value.*/
+
+    /* Put digits into bd: true value = bd * 10^e */
+
+    bd0 = s2b(s0, nd0, nd, y);
+    if (!bd0)
+        goto nomem;
+
+    for(;;) {
+        bd = Balloc(bd0->k);
+        if (!bd)
+            goto nomem;
+        Bcopy(bd, bd0);
+        bb = d2b(rv, &bbe, &bbbits);    /* rv = bb * 2^bbe */
+        if (!bb)
+            goto nomem;
+        bs = i2b(1);
+        if (!bs)
+            goto nomem;
+
+        if (e >= 0) {
+            bb2 = bb5 = 0;
+            bd2 = bd5 = e;
+        }
+        else {
+            bb2 = bb5 = -e;
+            bd2 = bd5 = 0;
+        }
+        if (bbe >= 0)
+            bb2 += bbe;
+        else
+            bd2 -= bbe;
+        bs2 = bb2;
+#ifdef Sudden_Underflow
+        j = P + 1 - bbbits;
+#else
+#ifdef Avoid_Underflow
+        j = bbe - scale;
+#else
+        j = bbe;
+#endif
+        i = j + bbbits - 1; /* logb(rv) */
+        if (i < Emin)   /* denormal */
+            j += P - Emin;
+        else
+            j = P + 1 - bbbits;
+#endif
+        bb2 += j;
+        bd2 += j;
+#ifdef Avoid_Underflow
+        bd2 += scale;
+#endif
+        i = bb2 < bd2 ? bb2 : bd2;
+        if (i > bs2)
+            i = bs2;
+        if (i > 0) {
+            bb2 -= i;
+            bd2 -= i;
+            bs2 -= i;
+        }
+        if (bb5 > 0) {
+            bs = pow5mult(bs, bb5);
+            if (!bs)
+                goto nomem;
+            bb1 = mult(bs, bb);
+            if (!bb1)
+                goto nomem;
+            Bfree(bb);
+            bb = bb1;
+        }
+        if (bb2 > 0) {
+            bb = lshift(bb, bb2);
+            if (!bb)
+                goto nomem;
+        }
+        if (bd5 > 0) {
+            bd = pow5mult(bd, bd5);
+            if (!bd)
+                goto nomem;
+        }
+        if (bd2 > 0) {
+            bd = lshift(bd, bd2);
+            if (!bd)
+                goto nomem;
+        }
+        if (bs2 > 0) {
+            bs = lshift(bs, bs2);
+            if (!bs)
+                goto nomem;
+        }
+        delta = diff(bb, bd);
+        if (!delta)
+            goto nomem;
+        dsign = delta->sign;
+        delta->sign = 0;
+        i = cmp(delta, bs);
+        if (i < 0) {
+            /* Error is less than half an ulp -- check for
+             * special case of mantissa a power of two.
+             */
+            if (dsign || word1(rv) || word0(rv) & Bndry_mask
+#ifdef Avoid_Underflow
+             || (word0(rv) & Exp_mask) <= Exp_msk1 + P*Exp_msk1
+#else
+             || (word0(rv) & Exp_mask) <= Exp_msk1
+#endif
+                ) {
+#ifdef Avoid_Underflow
+                if (!delta->x[0] && delta->wds == 1)
+                    dsign = 2;
+#endif
+                break;
+                }
+            delta = lshift(delta,Log2P);
+            if (!delta)
+                goto nomem;
+            if (cmp(delta, bs) > 0)
+                goto drop_down;
+            break;
+        }
+        if (i == 0) {
+            /* exactly half-way between */
+            if (dsign) {
+                if ((word0(rv) & Bndry_mask1) == Bndry_mask1
+                    &&  word1(rv) == 0xffffffff) {
+                    /*boundary case -- increment exponent*/
+                    set_word0(rv, (word0(rv) & Exp_mask) + Exp_msk1);
+                    set_word1(rv, 0);
+#ifdef Avoid_Underflow
+                    dsign = 0;
+#endif
+                    break;
+                }
+            }
+            else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
+#ifdef Avoid_Underflow
+                dsign = 2;
+#endif
+            drop_down:
+                /* boundary case -- decrement exponent */
+#ifdef Sudden_Underflow
+                L = word0(rv) & Exp_mask;
+                if (L <= Exp_msk1)
+                    goto undfl;
+                L -= Exp_msk1;
+#else
+                L = (word0(rv) & Exp_mask) - Exp_msk1;
+#endif
+                set_word0(rv, L | Bndry_mask1);
+                set_word1(rv, 0xffffffff);
+                break;
+            }
+#ifndef ROUND_BIASED
+            if (!(word1(rv) & LSB))
+                break;
+#endif
+            if (dsign)
+                rv += ulp(rv);
+#ifndef ROUND_BIASED
+            else {
+                rv -= ulp(rv);
+#ifndef Sudden_Underflow
+                if (!rv)
+                    goto undfl;
+#endif
+            }
+#ifdef Avoid_Underflow
+            dsign = 1 - dsign;
+#endif
+#endif
+            break;
+        }
+        if ((aadj = ratio(delta, bs)) <= 2.) {
+            if (dsign)
+                aadj = aadj1 = 1.;
+            else if (word1(rv) || word0(rv) & Bndry_mask) {
+#ifndef Sudden_Underflow
+                if (word1(rv) == Tiny1 && !word0(rv))
+                    goto undfl;
+#endif
+                aadj = 1.;
+                aadj1 = -1.;
+            }
+            else {
+                /* special case -- power of FLT_RADIX to be */
+                /* rounded down... */
+
+                if (aadj < 2./FLT_RADIX)
+                    aadj = 1./FLT_RADIX;
+                else
+                    aadj *= 0.5;
+                aadj1 = -aadj;
+            }
+        }
+        else {
+            aadj *= 0.5;
+            aadj1 = dsign ? aadj : -aadj;
+#ifdef Check_FLT_ROUNDS
+            switch(FLT_ROUNDS) {
+            case 2: /* towards +infinity */
+                aadj1 -= 0.5;
+                break;
+            case 0: /* towards 0 */
+            case 3: /* towards -infinity */
+                aadj1 += 0.5;
+            }
 #else
-    return JS_TRUE;
+            if (FLT_ROUNDS == 0)
+                aadj1 += 0.5;
+#endif
+        }
+        y = word0(rv) & Exp_mask;
+
+        /* Check for overflow */
+
+        if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
+            rv0 = rv;
+            set_word0(rv, word0(rv) - P*Exp_msk1);
+            adj = aadj1 * ulp(rv);
+            rv += adj;
+            if ((word0(rv) & Exp_mask) >=
+                Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
+                if (word0(rv0) == Big0 && word1(rv0) == Big1)
+                    goto ovfl;
+                set_word0(rv, Big0);
+                set_word1(rv, Big1);
+                goto cont;
+            }
+            else
+                set_word0(rv, word0(rv) + P*Exp_msk1);
+        }
+        else {
+#ifdef Sudden_Underflow
+            if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
+                rv0 = rv;
+                set_word0(rv, word0(rv) + P*Exp_msk1);
+                adj = aadj1 * ulp(rv);
+                rv += adj;
+                    if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
+                        {
+                            if (word0(rv0) == Tiny0
+                                && word1(rv0) == Tiny1)
+                                goto undfl;
+                            set_word0(rv, Tiny0);
+                            set_word1(rv, Tiny1);
+                            goto cont;
+                        }
+                    else
+                        set_word0(rv, word0(rv) - P*Exp_msk1);
+            }
+            else {
+                adj = aadj1 * ulp(rv);
+                rv += adj;
+            }
+#else
+            /* Compute adj so that the IEEE rounding rules will
+             * correctly round rv + adj in some half-way cases.
+             * If rv * ulp(rv) is denormalized (i.e.,
+             * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
+             * trouble from bits lost to denormalization;
+             * example: 1.2e-307 .
+             */
+#ifdef Avoid_Underflow
+            if (y <= P*Exp_msk1 && aadj > 1.)
+#else
+            if (y <= (P-1)*Exp_msk1 && aadj > 1.)
+#endif
+                {
+                aadj1 = (double)(int32)(aadj + 0.5);
+                if (!dsign)
+                    aadj1 = -aadj1;
+            }
+#ifdef Avoid_Underflow
+            if (scale && y <= P*Exp_msk1)
+                set_word0(aadj1, word0(aadj1) + (P+1)*Exp_msk1 - y);
+#endif
+            adj = aadj1 * ulp(rv);
+            rv += adj;
+#endif
+        }
+        z = word0(rv) & Exp_mask;
+#ifdef Avoid_Underflow
+        if (!scale)
+#endif
+        if (y == z) {
+            /* Can we stop now? */
+            L = (Long)aadj;
+            aadj -= L;
+            /* The tolerances below are conservative. */
+            if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
+                if (aadj < .4999999 || aadj > .5000001)
+                    break;
+            }
+            else if (aadj < .4999999/FLT_RADIX)
+                break;
+        }
+    cont:
+        Bfree(bb);
+        Bfree(bd);
+        Bfree(bs);
+        Bfree(delta);
+        bb = bd = bs = delta = NULL;
+    }
+#ifdef Avoid_Underflow
+    if (scale) {
+        rv0 = 0.;
+        set_word0(rv0, Exp_1 - P*Exp_msk1);
+        set_word1(rv0, 0);
+        if ((word0(rv) & Exp_mask) <= P*Exp_msk1
+              && word1(rv) & 1
+              && dsign != 2) {
+            if (dsign) {
+#ifdef Sudden_Underflow
+                /* rv will be 0, but this would give the  */
+                /* right result if only rv *= rv0 worked. */
+                set_word0(rv, word0(rv) + P*Exp_msk1);
+                set_word0(rv0, Exp_1 - 2*P*Exp_msk1);
 #endif
+                rv += ulp(rv);
+                }
+            else
+                set_word1(rv, word1(rv) & ~1);
+        }
+        rv *= rv0;
+    }
+#endif /* Avoid_Underflow */
+retfree:
+    Bfree(bb);
+    Bfree(bd);
+    Bfree(bs);
+    Bfree(bd0);
+    Bfree(delta);
+ret:
+    RELEASE_DTOA_LOCK();
+    if (se)
+        *se = (char *)s;
+    return sign ? -rv : rv;
+
+nomem:
+    Bfree(bb);
+    Bfree(bd);
+    Bfree(bs);
+    Bfree(bd0);
+    Bfree(delta);
+    RELEASE_DTOA_LOCK();
+    *err = JS_DTOA_ENOMEM;
+    return 0;
+}
+
+
+/* Return floor(b/2^k) and set b to be the remainder.  The returned quotient must be less than 2^32. */
+static uint32 quorem2(Bigint *b, int32 k)
+{
+    ULong mask;
+    ULong result;
+    ULong *bx, *bxe;
+    int32 w;
+    int32 n = k >> 5;
+    k &= 0x1F;
+    mask = (1<<k) - 1;
+
+    w = b->wds - n;
+    if (w <= 0)
+        return 0;
+    JS_ASSERT(w <= 2);
+    bx = b->x;
+    bxe = bx + n;
+    result = *bxe >> k;
+    *bxe &= mask;
+    if (w == 2) {
+        JS_ASSERT(!(bxe[1] & ~mask));
+        if (k)
+            result |= bxe[1] << (32 - k);
+    }
+    n++;
+    while (!*bxe && bxe != bx) {
+        n--;
+        bxe--;
+    }
+    b->wds = n;
+    return result;
+}
+
+/* Return floor(b/S) and set b to be the remainder.  As added restrictions, b must not have
+ * more words than S, the most significant word of S must not start with a 1 bit, and the
+ * returned quotient must be less than 36. */
+static int32 quorem(Bigint *b, Bigint *S)
+{
+    int32 n;
+    ULong *bx, *bxe, q, *sx, *sxe;
+#ifdef ULLong
+    ULLong borrow, carry, y, ys;
+#else
+    ULong borrow, carry, y, ys;
+    ULong si, z, zs;
+#endif
+
+    n = S->wds;
+    JS_ASSERT(b->wds <= n);
+    if (b->wds < n)
+        return 0;
+    sx = S->x;
+    sxe = sx + --n;
+    bx = b->x;
+    bxe = bx + n;
+    JS_ASSERT(*sxe <= 0x7FFFFFFF);
+    q = *bxe / (*sxe + 1);  /* ensure q <= true quotient */
+    JS_ASSERT(q < 36);
+    if (q) {
+        borrow = 0;
+        carry = 0;
+        do {
+#ifdef ULLong
+            ys = *sx++ * (ULLong)q + carry;
+            carry = ys >> 32;
+            y = *bx - (ys & 0xffffffffUL) - borrow;
+            borrow = y >> 32 & 1UL;
+            *bx++ = (ULong)(y & 0xffffffffUL);
+#else
+            si = *sx++;
+            ys = (si & 0xffff) * q + carry;
+            zs = (si >> 16) * q + (ys >> 16);
+            carry = zs >> 16;
+            y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
+            borrow = (y & 0x10000) >> 16;
+            z = (*bx >> 16) - (zs & 0xffff) - borrow;
+            borrow = (z & 0x10000) >> 16;
+            Storeinc(bx, z, y);
+#endif
+        }
+        while(sx <= sxe);
+        if (!*bxe) {
+            bx = b->x;
+            while(--bxe > bx && !*bxe)
+                --n;
+            b->wds = n;
+        }
+    }
+    if (cmp(b, S) >= 0) {
+        q++;
+        borrow = 0;
+        carry = 0;
+        bx = b->x;
+        sx = S->x;
+        do {
+#ifdef ULLong
+            ys = *sx++ + carry;
+            carry = ys >> 32;
+            y = *bx - (ys & 0xffffffffUL) - borrow;
+            borrow = y >> 32 & 1UL;
+            *bx++ = (ULong)(y & 0xffffffffUL);
+#else
+            si = *sx++;
+            ys = (si & 0xffff) + carry;
+            zs = (si >> 16) + (ys >> 16);
+            carry = zs >> 16;
+            y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
+            borrow = (y & 0x10000) >> 16;
+            z = (*bx >> 16) - (zs & 0xffff) - borrow;
+            borrow = (z & 0x10000) >> 16;
+            Storeinc(bx, z, y);
+#endif
+        } while(sx <= sxe);
+        bx = b->x;
+        bxe = bx + n;
+        if (!*bxe) {
+            while(--bxe > bx && !*bxe)
+                --n;
+            b->wds = n;
+        }
+    }
+    return (int32)q;
 }
 
-JS_FRIEND_API(void)
-js_FinishDtoa()
+/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
+ *
+ * Inspired by "How to Print Floating-Point Numbers Accurately" by
+ * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
+ *
+ * Modifications:
+ *  1. Rather than iterating, we use a simple numeric overestimate
+ *     to determine k = floor(log10(d)).  We scale relevant
+ *     quantities using O(log2(k)) rather than O(k) multiplications.
+ *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
+ *     try to generate digits strictly left to right.  Instead, we
+ *     compute with fewer bits and propagate the carry if necessary
+ *     when rounding the final digit up.  This is often faster.
+ *  3. Under the assumption that input will be rounded nearest,
+ *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
+ *     That is, we allow equality in stopping tests when the
+ *     round-nearest rule will give the same floating-point value
+ *     as would satisfaction of the stopping test with strict
+ *     inequality.
+ *  4. We remove common factors of powers of 2 from relevant
+ *     quantities.
+ *  5. When converting floating-point integers less than 1e16,
+ *     we use floating-point arithmetic rather than resorting
+ *     to multiple-precision integers.
+ *  6. When asked to produce fewer than 15 digits, we first try
+ *     to get by with floating-point arithmetic; we resort to
+ *     multiple-precision integer arithmetic only if we cannot
+ *     guarantee that the floating-point calculation has given
+ *     the correctly rounded result.  For k requested digits and
+ *     "uniformly" distributed input, the probability is
+ *     something like 10^(k-15) that we must resort to the Long
+ *     calculation.
+ */
+
+/* Always emits at least one digit. */
+/* If biasUp is set, then rounding in modes 2 and 3 will round away from zero
+ * when the number is exactly halfway between two representable values.  For example,
+ * rounding 2.5 to zero digits after the decimal point will return 3 and not 2.
+ * 2.49 will still round to 2, and 2.51 will still round to 3. */
+/* bufsize should be at least 20 for modes 0 and 1.  For the other modes,
+ * bufsize should be two greater than the maximum number of output characters expected. */
+static JSBool
+js_dtoa(double d, int mode, JSBool biasUp, int ndigits,
+    int *decpt, int *sign, char **rve, char *buf, size_t bufsize)
 {
-#ifdef JS_THREADSAFE
-    if (_dtoainited) {
-        PR_DestroyLock(dtoalock);
-        dtoalock = NULL;
-        _dtoainited = JS_FALSE;
+    /*  Arguments ndigits, decpt, sign are similar to those
+        of ecvt and fcvt; trailing zeros are suppressed from
+        the returned string.  If not null, *rve is set to point
+        to the end of the return value.  If d is +-Infinity or NaN,
+        then *decpt is set to 9999.
+
+        mode:
+        0 ==> shortest string that yields d when read in
+        and rounded to nearest.
+        1 ==> like 0, but with Steele & White stopping rule;
+        e.g. with IEEE P754 arithmetic , mode 0 gives
+        1e23 whereas mode 1 gives 9.999999999999999e22.
+        2 ==> max(1,ndigits) significant digits.  This gives a
+        return value similar to that of ecvt, except
+        that trailing zeros are suppressed.
+        3 ==> through ndigits past the decimal point.  This
+        gives a return value similar to that from fcvt,
+        except that trailing zeros are suppressed, and
+        ndigits can be negative.
+        4-9 should give the same return values as 2-3, i.e.,
+        4 <= mode <= 9 ==> same return as mode
+        2 + (mode & 1).  These modes are mainly for
+        debugging; often they run slower but sometimes
+        faster than modes 2-3.
+        4,5,8,9 ==> left-to-right digit generation.
+        6-9 ==> don't try fast floating-point estimate
+        (if applicable).
+
+        Values of mode other than 0-9 are treated as mode 0.
+
+        Sufficient space is allocated to the return value
+        to hold the suppressed trailing zeros.
+    */
+
+    int32 bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
+        j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
+        spec_case, try_quick;
+    Long L;
+#ifndef Sudden_Underflow
+    int32 denorm;
+    ULong x;
+#endif
+    Bigint *b, *b1, *delta, *mlo, *mhi, *S;
+    double d2, ds, eps;
+    char *s;
+    const char *cs;
+
+    if (word0(d) & Sign_bit) {
+        /* set sign for everything, including 0's and NaNs */
+        *sign = 1;
+        set_word0(d, word0(d) & ~Sign_bit);  /* clear sign bit */
+    }
+    else
+        *sign = 0;
+
+    if ((word0(d) & Exp_mask) == Exp_mask) {
+        /* Infinity or NaN */
+        *decpt = 9999;
+        cs = !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN";
+        if ((cs[0] == 'I' && bufsize < 9) || (cs[0] == 'N' && bufsize < 4)) {
+            JS_ASSERT(JS_FALSE);
+/*          JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */
+            return JS_FALSE;
+        }
+        strcpy(buf, cs);
+        if (rve) {
+            *rve = buf[3] ? buf + 8 : buf + 3;
+            JS_ASSERT(**rve == '\0');
+        }
+        return JS_TRUE;
+    }
+
+    b = NULL;                           /* initialize for abort protection */
+    S = NULL;
+    mlo = mhi = NULL;
+
+    if (!d) {
+      no_digits:
+        *decpt = 1;
+        if (bufsize < 2) {
+            JS_ASSERT(JS_FALSE);
+/*          JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */
+            return JS_FALSE;
+        }
+        buf[0] = '0'; buf[1] = '\0';  /* copy "0" to buffer */
+        if (rve)
+            *rve = buf + 1;
+        /* We might have jumped to "no_digits" from below, so we need
+         * to be sure to free the potentially allocated Bigints to avoid
+         * memory leaks. */
+        Bfree(b);
+        Bfree(S);
+        if (mlo != mhi)
+            Bfree(mlo);
+        Bfree(mhi);
+        return JS_TRUE;
+    }
+
+    b = d2b(d, &be, &bbits);
+    if (!b)
+        goto nomem;
+#ifdef Sudden_Underflow
+    i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
+#else
+    if ((i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) {
+#endif
+        d2 = d;
+        set_word0(d2, word0(d2) & Frac_mask1);
+        set_word0(d2, word0(d2) | Exp_11);
+
+        /* log(x)   ~=~ log(1.5) + (x-1.5)/1.5
+         * log10(x)  =  log(x) / log(10)
+         *      ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
+         * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
+         *
+         * This suggests computing an approximation k to log10(d) by
+         *
+         * k = (i - Bias)*0.301029995663981
+         *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
+         *
+         * We want k to be too large rather than too small.
+         * The error in the first-order Taylor series approximation
+         * is in our favor, so we just round up the constant enough
+         * to compensate for any error in the multiplication of
+         * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
+         * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
+         * adding 1e-13 to the constant term more than suffices.
+         * Hence we adjust the constant term to 0.1760912590558.
+         * (We could get a more accurate k by invoking log10,
+         *  but this is probably not worthwhile.)
+         */
+
+        i -= Bias;
+#ifndef Sudden_Underflow
+        denorm = 0;
+    }
+    else {
+        /* d is denormalized */
+
+        i = bbits + be + (Bias + (P-1) - 1);
+        x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32) : word1(d) << (32 - i);
+        d2 = x;
+        set_word0(d2, word0(d2) - 31*Exp_msk1); /* adjust exponent */
+        i -= (Bias + (P-1) - 1) + 1;
+        denorm = 1;
     }
 #endif
+    /* At this point d = f*2^i, where 1 <= f < 2.  d2 is an approximation of f. */
+    ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
+    k = (int32)ds;
+    if (ds < 0. && ds != k)
+        k--;    /* want k = floor(ds) */
+    k_check = 1;
+    if (k >= 0 && k <= Ten_pmax) {
+        if (d < tens[k])
+            k--;
+        k_check = 0;
+    }
+    /* At this point floor(log10(d)) <= k <= floor(log10(d))+1.
+       If k_check is zero, we're guaranteed that k = floor(log10(d)). */
+    j = bbits - i - 1;
+    /* At this point d = b/2^j, where b is an odd integer. */
+    if (j >= 0) {
+        b2 = 0;
+        s2 = j;
+    }
+    else {
+        b2 = -j;
+        s2 = 0;
+    }
+    if (k >= 0) {
+        b5 = 0;
+        s5 = k;
+        s2 += k;
+    }
+    else {
+        b2 -= k;
+        b5 = -k;
+        s5 = 0;
+    }
+    /* At this point d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5), where b is an odd integer,
+       b2 >= 0, b5 >= 0, s2 >= 0, and s5 >= 0. */
+    if (mode < 0 || mode > 9)
+        mode = 0;
+    try_quick = 1;
+    if (mode > 5) {
+        mode -= 4;
+        try_quick = 0;
+    }
+    leftright = 1;
+    ilim = ilim1 = 0;
+    switch(mode) {
+    case 0:
+    case 1:
+        ilim = ilim1 = -1;
+        i = 18;
+        ndigits = 0;
+        break;
+    case 2:
+        leftright = 0;
+        /* no break */
+    case 4:
+        if (ndigits <= 0)
+            ndigits = 1;
+        ilim = ilim1 = i = ndigits;
+        break;
+    case 3:
+        leftright = 0;
+        /* no break */
+    case 5:
+        i = ndigits + k + 1;
+        ilim = i;
+        ilim1 = i - 1;
+        if (i <= 0)
+            i = 1;
+    }
+    /* ilim is the maximum number of significant digits we want, based on k and ndigits. */
+    /* ilim1 is the maximum number of significant digits we want, based on k and ndigits,
+       when it turns out that k was computed too high by one. */
+
+    /* Ensure space for at least i+1 characters, including trailing null. */
+    if (bufsize <= (size_t)i) {
+        Bfree(b);
+        JS_ASSERT(JS_FALSE);
+        return JS_FALSE;
+    }
+    s = buf;
+
+    if (ilim >= 0 && ilim <= Quick_max && try_quick) {
+
+        /* Try to get by with floating-point arithmetic. */
+
+        i = 0;
+        d2 = d;
+        k0 = k;
+        ilim0 = ilim;
+        ieps = 2; /* conservative */
+        /* Divide d by 10^k, keeping track of the roundoff error and avoiding overflows. */
+        if (k > 0) {
+            ds = tens[k&0xf];
+            j = k >> 4;
+            if (j & Bletch) {
+                /* prevent overflows */
+                j &= Bletch - 1;
+                d /= bigtens[n_bigtens-1];
+                ieps++;
+            }
+            for(; j; j >>= 1, i++)
+                if (j & 1) {
+                    ieps++;
+                    ds *= bigtens[i];
+                }
+            d /= ds;
+        }
+        else if ((j1 = -k) != 0) {
+            d *= tens[j1 & 0xf];
+            for(j = j1 >> 4; j; j >>= 1, i++)
+                if (j & 1) {
+                    ieps++;
+                    d *= bigtens[i];
+                }
+        }
+        /* Check that k was computed correctly. */
+        if (k_check && d < 1. && ilim > 0) {
+            if (ilim1 <= 0)
+                goto fast_failed;
+            ilim = ilim1;
+            k--;
+            d *= 10.;
+            ieps++;
+        }
+        /* eps bounds the cumulative error. */
+        eps = ieps*d + 7.;
+        set_word0(eps, word0(eps) - (P-1)*Exp_msk1);
+        if (ilim == 0) {
+            S = mhi = 0;
+            d -= 5.;
+            if (d > eps)
+                goto one_digit;
+            if (d < -eps)
+                goto no_digits;
+            goto fast_failed;
+        }
+#ifndef No_leftright
+        if (leftright) {
+            /* Use Steele & White method of only
+             * generating digits needed.
+             */
+            eps = 0.5/tens[ilim-1] - eps;
+            for(i = 0;;) {
+                L = (Long)d;
+                d -= L;
+                *s++ = '0' + (char)L;
+                if (d < eps)
+                    goto ret1;
+                if (1. - d < eps) {
+#ifdef DEBUG
+                    /* Clear d to avoid precision warning. */
+                    d = 0;
+#endif
+                    goto bump_up;
+                }
+                if (++i >= ilim)
+                    break;
+                eps *= 10.;
+                d *= 10.;
+            }
+        }
+        else {
+#endif
+            /* Generate ilim digits, then fix them up. */
+            eps *= tens[ilim-1];
+            for(i = 1;; i++, d *= 10.) {
+                L = (Long)d;
+                d -= L;
+                *s++ = '0' + (char)L;
+                if (i == ilim) {
+                    if (d > 0.5 + eps) {
+#ifdef DEBUG
+                        /* Clear d to avoid precision warning. */
+                        d = 0;
+#endif
+                        goto bump_up;
+                    }
+                    else if (d < 0.5 - eps) {
+                        while(*--s == '0') ;
+                        s++;
+                        goto ret1;
+                    }
+                    break;
+                }
+            }
+#ifndef No_leftright
+        }
+#endif
+    fast_failed:
+        s = buf;
+        d = d2;
+        k = k0;
+        ilim = ilim0;
+    }
+
+    /* Do we have a "small" integer? */
+
+    if (be >= 0 && k <= Int_max) {
+        /* Yes. */
+        ds = tens[k];
+        if (ndigits < 0 && ilim <= 0) {
+            S = mhi = 0;
+            if (ilim < 0 || d < 5*ds || (!biasUp && d == 5*ds))
+                goto no_digits;
+            goto one_digit;
+        }
+
+        /* Use true number of digits to limit looping. */
+        for(i = 1; i<=k+1; i++) {
+            L = (Long) (d / ds);
+            d -= L*ds;
+#ifdef Check_FLT_ROUNDS
+            /* If FLT_ROUNDS == 2, L will usually be high by 1 */
+            if (d < 0) {
+                L--;
+                d += ds;
+            }
+#endif
+            *s++ = '0' + (char)L;
+            if (i == ilim) {
+                d += d;
+                if ((d > ds) || (d == ds && (L & 1 || biasUp))) {
+                bump_up:
+                    while(*--s == '9')
+                        if (s == buf) {
+                            k++;
+                            *s = '0';
+                            break;
+                        }
+                    ++*s++;
+                }
+                break;
+            }
+            d *= 10.;
+        }
+#ifdef DEBUG
+        if (d != 0.0) {
+            fprintf(stderr,
+"WARNING: A loss of precision for double floating point is detected.\n"
+"         The result of any operation on doubles can be meaningless.\n"
+"         A possible cause is missing code to restore FPU state, see\n"
+"         bug 360282 for details.\n");
+        }
+#endif
+        goto ret1;
+    }
+
+    m2 = b2;
+    m5 = b5;
+    if (leftright) {
+        if (mode < 2) {
+            i =
+#ifndef Sudden_Underflow
+                denorm ? be + (Bias + (P-1) - 1 + 1) :
+#endif
+            1 + P - bbits;
+            /* i is 1 plus the number of trailing zero bits in d's significand. Thus,
+               (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 lsb of d)/10^k. */
+        }
+        else {
+            j = ilim - 1;
+            if (m5 >= j)
+                m5 -= j;
+            else {
+                s5 += j -= m5;
+                b5 += j;
+                m5 = 0;
+            }
+            if ((i = ilim) < 0) {
+                m2 -= i;
+                i = 0;
+            }
+            /* (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 * 10^(1-ilim))/10^k. */
+        }
+        b2 += i;
+        s2 += i;
+        mhi = i2b(1);
+        if (!mhi)
+            goto nomem;
+        /* (mhi * 2^m2 * 5^m5) / (2^s2 * 5^s5) = one-half of last printed (when mode >= 2) or
+           input (when mode < 2) significant digit, divided by 10^k. */
+    }
+    /* We still have d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5).  Reduce common factors in
+       b2, m2, and s2 without changing the equalities. */
+    if (m2 > 0 && s2 > 0) {
+        i = m2 < s2 ? m2 : s2;
+        b2 -= i;
+        m2 -= i;
+        s2 -= i;
+    }
+
+    /* Fold b5 into b and m5 into mhi. */
+    if (b5 > 0) {
+        if (leftright) {
+            if (m5 > 0) {
+                mhi = pow5mult(mhi, m5);
+                if (!mhi)
+                    goto nomem;
+                b1 = mult(mhi, b);
+                if (!b1)
+                    goto nomem;
+                Bfree(b);
+                b = b1;
+            }
+            if ((j = b5 - m5) != 0) {
+                b = pow5mult(b, j);
+                if (!b)
+                    goto nomem;
+            }
+        }
+        else {
+            b = pow5mult(b, b5);
+            if (!b)
+                goto nomem;
+        }
+    }
+    /* Now we have d/10^k = (b * 2^b2) / (2^s2 * 5^s5) and
+       (mhi * 2^m2) / (2^s2 * 5^s5) = one-half of last printed or input significant digit, divided by 10^k. */
+
+    S = i2b(1);
+    if (!S)
+        goto nomem;
+    if (s5 > 0) {
+        S = pow5mult(S, s5);
+        if (!S)
+            goto nomem;
+    }
+    /* Now we have d/10^k = (b * 2^b2) / (S * 2^s2) and
+       (mhi * 2^m2) / (S * 2^s2) = one-half of last printed or input significant digit, divided by 10^k. */
+
+    /* Check for special case that d is a normalized power of 2. */
+    spec_case = 0;
+    if (mode < 2) {
+        if (!word1(d) && !(word0(d) & Bndry_mask)
+#ifndef Sudden_Underflow
+            && word0(d) & (Exp_mask & Exp_mask << 1)
+#endif
+            ) {
+            /* The special case.  Here we want to be within a quarter of the last input
+               significant digit instead of one half of it when the decimal output string's value is less than d.  */
+            b2 += Log2P;
+            s2 += Log2P;
+            spec_case = 1;
+        }
+    }
+
+    /* Arrange for convenient computation of quotients:
+     * shift left if necessary so divisor has 4 leading 0 bits.
+     *
+     * Perhaps we should just compute leading 28 bits of S once
+     * and for all and pass them and a shift to quorem, so it
+     * can do shifts and ors to compute the numerator for q.
+     */
+    if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) != 0)
+        i = 32 - i;
+    /* i is the number of leading zero bits in the most significant word of S*2^s2. */
+    if (i > 4) {
+        i -= 4;
+        b2 += i;
+        m2 += i;
+        s2 += i;
+    }
+    else if (i < 4) {
+        i += 28;
+        b2 += i;
+        m2 += i;
+        s2 += i;
+    }
+    /* Now S*2^s2 has exactly four leading zero bits in its most significant word. */
+    if (b2 > 0) {
+        b = lshift(b, b2);
+        if (!b)
+            goto nomem;
+    }
+    if (s2 > 0) {
+        S = lshift(S, s2);
+        if (!S)
+            goto nomem;
+    }
+    /* Now we have d/10^k = b/S and
+       (mhi * 2^m2) / S = maximum acceptable error, divided by 10^k. */
+    if (k_check) {
+        if (cmp(b,S) < 0) {
+            k--;
+            b = multadd(b, 10, 0);  /* we botched the k estimate */
+            if (!b)
+                goto nomem;
+            if (leftright) {
+                mhi = multadd(mhi, 10, 0);
+                if (!mhi)
+                    goto nomem;
+            }
+            ilim = ilim1;
+        }
+    }
+    /* At this point 1 <= d/10^k = b/S < 10. */
+
+    if (ilim <= 0 && mode > 2) {
+        /* We're doing fixed-mode output and d is less than the minimum nonzero output in this mode.
+           Output either zero or the minimum nonzero output depending on which is closer to d. */
+        if (ilim < 0)
+            goto no_digits;
+        S = multadd(S,5,0);
+        if (!S)
+            goto nomem;
+        i = cmp(b,S);
+        if (i < 0 || (i == 0 && !biasUp)) {
+        /* Always emit at least one digit.  If the number appears to be zero
+           using the current mode, then emit one '0' digit and set decpt to 1. */
+        /*no_digits:
+            k = -1 - ndigits;
+            goto ret; */
+            goto no_digits;
+        }
+    one_digit:
+        *s++ = '1';
+        k++;
+        goto ret;
+    }
+    if (leftright) {
+        if (m2 > 0) {
+            mhi = lshift(mhi, m2);
+            if (!mhi)
+                goto nomem;
+        }
+
+        /* Compute mlo -- check for special case
+         * that d is a normalized power of 2.
+         */
+
+        mlo = mhi;
+        if (spec_case) {
+            mhi = Balloc(mhi->k);
+            if (!mhi)
+                goto nomem;
+            Bcopy(mhi, mlo);
+            mhi = lshift(mhi, Log2P);
+            if (!mhi)
+                goto nomem;
+        }
+        /* mlo/S = maximum acceptable error, divided by 10^k, if the output is less than d. */
+        /* mhi/S = maximum acceptable error, divided by 10^k, if the output is greater than d. */
+
+        for(i = 1;;i++) {
+            dig = quorem(b,S) + '0';
+            /* Do we yet have the shortest decimal string
+             * that will round to d?
+             */
+            j = cmp(b, mlo);
+            /* j is b/S compared with mlo/S. */
+            delta = diff(S, mhi);
+            if (!delta)
+                goto nomem;
+            j1 = delta->sign ? 1 : cmp(b, delta);
+            Bfree(delta);
+            /* j1 is b/S compared with 1 - mhi/S. */
+#ifndef ROUND_BIASED
+            if (j1 == 0 && !mode && !(word1(d) & 1)) {
+                if (dig == '9')
+                    goto round_9_up;
+                if (j > 0)
+                    dig++;
+                *s++ = (char)dig;
+                goto ret;
+            }
+#endif
+            if ((j < 0) || (j == 0 && !mode
+#ifndef ROUND_BIASED
+                && !(word1(d) & 1)
+#endif
+                )) {
+                if (j1 > 0) {
+                    /* Either dig or dig+1 would work here as the least significant decimal digit.
+                       Use whichever would produce a decimal value closer to d. */
+                    b = lshift(b, 1);
+                    if (!b)
+                        goto nomem;
+                    j1 = cmp(b, S);
+                    if (((j1 > 0) || (j1 == 0 && (dig & 1 || biasUp)))
+                        && (dig++ == '9'))
+                        goto round_9_up;
+                }
+                *s++ = (char)dig;
+                goto ret;
+            }
+            if (j1 > 0) {
+                if (dig == '9') { /* possible if i == 1 */
+                round_9_up:
+                    *s++ = '9';
+                    goto roundoff;
+                }
+                *s++ = (char)dig + 1;
+                goto ret;
+            }
+            *s++ = (char)dig;
+            if (i == ilim)
+                break;
+            b = multadd(b, 10, 0);
+            if (!b)
+                goto nomem;
+            if (mlo == mhi) {
+                mlo = mhi = multadd(mhi, 10, 0);
+                if (!mhi)
+                    goto nomem;
+            }
+            else {
+                mlo = multadd(mlo, 10, 0);
+                if (!mlo)
+                    goto nomem;
+                mhi = multadd(mhi, 10, 0);
+                if (!mhi)
+                    goto nomem;
+            }
+        }
+    }
+    else
+        for(i = 1;; i++) {
+            *s++ = (char)(dig = quorem(b,S) + '0');
+            if (i >= ilim)
+                break;
+            b = multadd(b, 10, 0);
+            if (!b)
+                goto nomem;
+        }
+
+    /* Round off last digit */
+
+    b = lshift(b, 1);
+    if (!b)
+        goto nomem;
+    j = cmp(b, S);
+    if ((j > 0) || (j == 0 && (dig & 1 || biasUp))) {
+    roundoff:
+        while(*--s == '9')
+            if (s == buf) {
+                k++;
+                *s++ = '1';
+                goto ret;
+            }
+        ++*s++;
+    }
+    else {
+        /* Strip trailing zeros */
+        while(*--s == '0') ;
+        s++;
+    }
+  ret:
+    Bfree(S);
+    if (mhi) {
+        if (mlo && mlo != mhi)
+            Bfree(mlo);
+        Bfree(mhi);
+    }
+  ret1:
+    Bfree(b);
+    JS_ASSERT(s < buf + bufsize);
+    *s = '\0';
+    if (rve)
+        *rve = s;
+    *decpt = k + 1;
+    return JS_TRUE;
+
+nomem:
+    Bfree(S);
+    if (mhi) {
+        if (mlo && mlo != mhi)
+            Bfree(mlo);
+        Bfree(mhi);
+    }
+    Bfree(b);
+    return JS_FALSE;
 }
 
+
 /* Mapping of JSDToStrMode -> js_dtoa mode */
-static const uint8 dtoaModes[] = {
+static const int dtoaModes[] = {
     0,   /* DTOSTR_STANDARD */
     0,   /* DTOSTR_STANDARD_EXPONENTIAL, */
     3,   /* DTOSTR_FIXED, */
     2,   /* DTOSTR_EXPONENTIAL, */
     2};  /* DTOSTR_PRECISION */
 
-JS_FRIEND_API(double)
-JS_strtod(const char *s00, char **se, int *err)
-{
-    double retval;
-    if (err)
-        *err = 0;
-    LOCK_DTOA();
-    retval = _strtod(s00, se);
-    UNLOCK_DTOA();
-    return retval;
-}
-
 JS_FRIEND_API(char *)
 JS_dtostr(char *buffer, size_t bufferSize, JSDToStrMode mode, int precision, double d)
 {
-    int decPt;        /* Offset of decimal point from first digit */
-    int sign;         /* Nonzero if the sign bit was set in d */
-    int nDigits;      /* Number of significand digits returned by js_dtoa */
-    char *numBegin;   /* Pointer to the digits returned by js_dtoa */
-    char *numEnd = 0; /* Pointer past the digits returned by js_dtoa */
-
-    JS_ASSERT(bufferSize >= (size_t)(mode <= DTOSTR_STANDARD_EXPONENTIAL
-                                    ? DTOSTR_STANDARD_BUFFER_SIZE
-                                    : DTOSTR_VARIABLE_BUFFER_SIZE(precision)));
+    int decPt;                  /* Position of decimal point relative to first digit returned by js_dtoa */
+    int sign;                   /* Nonzero if the sign bit was set in d */
+    int nDigits;                /* Number of significand digits returned by js_dtoa */
+    char *numBegin = buffer+2;  /* Pointer to the digits returned by js_dtoa; the +2 leaves space for */
+                                /* the sign and/or decimal point */
+    char *numEnd;               /* Pointer past the digits returned by js_dtoa */
+    JSBool dtoaRet;
 
-    /*
-     * Change mode here rather than below because the buffer may not be large
-     * enough to hold a large integer.
-     */
+    JS_ASSERT(bufferSize >= (size_t)(mode <= DTOSTR_STANDARD_EXPONENTIAL ? DTOSTR_STANDARD_BUFFER_SIZE :
+            DTOSTR_VARIABLE_BUFFER_SIZE(precision)));
+
     if (mode == DTOSTR_FIXED && (d >= 1e21 || d <= -1e21))
-        mode = DTOSTR_STANDARD;
+        mode = DTOSTR_STANDARD; /* Change mode here rather than below because the buffer may not be large enough to hold a large integer. */
 
-    LOCK_DTOA();
-    numBegin = dtoa(d, dtoaModes[mode], precision, &decPt, &sign, &numEnd);
-    if (!numBegin) {
-        UNLOCK_DTOA();
-        return NULL;
-    }
+    /* Locking for Balloc's shared buffers */
+    ACQUIRE_DTOA_LOCK();
+    dtoaRet = js_dtoa(d, dtoaModes[mode], mode >= DTOSTR_FIXED, precision, &decPt, &sign, &numEnd, numBegin, bufferSize-2);
+    RELEASE_DTOA_LOCK();
+    if (!dtoaRet)
+        return 0;
 
     nDigits = numEnd - numBegin;
-    JS_ASSERT((size_t) nDigits <= bufferSize - 2);
-    if ((size_t) nDigits > bufferSize - 2) {
-        UNLOCK_DTOA();
-        return NULL;
-    }
 
-    memcpy(buffer + 2, numBegin, nDigits);
-    freedtoa(numBegin);
-    UNLOCK_DTOA();
-    numBegin = buffer + 2; /* +2 leaves space for sign and/or decimal point */
-    numEnd = numBegin + nDigits;
-    *numEnd = '\0';
-
-    /* If Infinity, -Infinity, or NaN, return the string regardless of mode. */
+    /* If Infinity, -Infinity, or NaN, return the string regardless of the mode. */
     if (decPt != 9999) {
         JSBool exponentialNotation = JS_FALSE;
-        int minNDigits = 0;  /* Min number of significant digits required */
+        int minNDigits = 0;         /* Minimum number of significand digits required by mode and precision */
         char *p;
         char *q;
 
         switch (mode) {
             case DTOSTR_STANDARD:
                 if (decPt < -5 || decPt > 21)
                     exponentialNotation = JS_TRUE;
                 else
@@ -212,17 +2843,17 @@ JS_dtostr(char *buffer, size_t bufferSiz
             case DTOSTR_PRECISION:
                 JS_ASSERT(precision > 0);
                 minNDigits = precision;
                 if (decPt < -5 || decPt > precision)
                     exponentialNotation = JS_TRUE;
                 break;
         }
 
-        /* If the number has fewer than minNDigits, end-pad it with zeros. */
+        /* If the number has fewer than minNDigits, pad it with zeros at the end */
         if (nDigits < minNDigits) {
             p = numBegin + minNDigits;
             nDigits = minNDigits;
             do {
                 *numEnd++ = '0';
             } while (numEnd != p);
             *numEnd = '\0';
         }
@@ -306,49 +2937,16 @@ divrem(Bigint *b, uint32 divisor)
         *bp = quotientHi << 16 | quotientLo;
     } while (bp != bx);
     /* Decrease the size of the number if its most significant word is now zero. */
     if (bx[n-1] == 0)
         b->wds--;
     return remainder;
 }
 
-/* Return floor(b/2^k) and set b to be the remainder.  The returned quotient must be less than 2^32. */
-static uint32 quorem2(Bigint *b, int32 k)
-{
-    ULong mask;
-    ULong result;
-    ULong *bx, *bxe;
-    int32 w;
-    int32 n = k >> 5;
-    k &= 0x1F;
-    mask = (1<<k) - 1;
-
-    w = b->wds - n;
-    if (w <= 0)
-        return 0;
-    JS_ASSERT(w <= 2);
-    bx = b->x;
-    bxe = bx + n;
-    result = *bxe >> k;
-    *bxe &= mask;
-    if (w == 2) {
-        JS_ASSERT(!(bxe[1] & ~mask));
-        if (k)
-            result |= bxe[1] << (32 - k);
-    }
-    n++;
-    while (!*bxe && bxe != bx) {
-        n--;
-        bxe--;
-    }
-    b->wds = n;
-    return result;
-}
-
 
 /* "-0.0000...(1073 zeros after decimal point)...0001\0" is the longest string that we could produce,
  * which occurs when printing -5e-324 in binary.  We could compute a better estimate of the size of
  * the output string and malloc fewer bytes depending on d and base, but why bother? */
 #define DTOBASESTR_BUFFER_SIZE 1078
 #define BASEDIGIT(digit) ((char)(((digit) >= 10) ? 'a' - 10 + (digit) : '0' + (digit)))
 
 JS_FRIEND_API(char *)
@@ -377,42 +2975,44 @@ JS_dtobasestr(int base, double d)
         }
 
         /* Check for Infinity and NaN */
         if ((word0(d) & Exp_mask) == Exp_mask) {
             strcpy(p, !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN");
             return buffer;
         }
 
-        LOCK_DTOA();
+        /* Locking for Balloc's shared buffers */
+        ACQUIRE_DTOA_LOCK();
+
         /* Output the integer part of d with the digits in reverse order. */
         pInt = p;
         di = fd_floor(d);
         if (di <= 4294967295.0) {
             uint32 n = (uint32)di;
             if (n)
                 do {
                     uint32 m = n / base;
                     digit = n - m*base;
                     n = m;
                     JS_ASSERT(digit < (uint32)base);
                     *p++ = BASEDIGIT(digit);
                 } while (n);
             else *p++ = '0';
         } else {
-            int e;
-            int bits;  /* Number of significant bits in di; not used. */
+            int32 e;
+            int32 bits;  /* Number of significant bits in di; not used. */
             Bigint *b = d2b(di, &e, &bits);
             if (!b)
                 goto nomem1;
             b = lshift(b, e);
             if (!b) {
               nomem1:
                 Bfree(b);
-                UNLOCK_DTOA();
+                RELEASE_DTOA_LOCK();
                 free(buffer);
                 return NULL;
             }
             do {
                 digit = divrem(b, base);
                 JS_ASSERT(digit < (uint32)base);
                 *p++ = BASEDIGIT(digit);
             } while (b->wds);
@@ -424,32 +3024,31 @@ JS_dtobasestr(int base, double d)
             char ch = *pInt;
             *pInt++ = *q;
             *q-- = ch;
         }
 
         df = d - di;
         if (df != 0.0) {
             /* We have a fraction. */
-            int e, bbits;
-            int32 s2, done;
+            int32 e, bbits, s2, done;
             Bigint *b, *s, *mlo, *mhi;
 
             b = s = mlo = mhi = NULL;
 
             *p++ = '.';
             b = d2b(df, &e, &bbits);
             if (!b) {
               nomem2:
                 Bfree(b);
                 Bfree(s);
                 if (mlo != mhi)
                     Bfree(mlo);
                 Bfree(mhi);
-                UNLOCK_DTOA();
+                RELEASE_DTOA_LOCK();
                 free(buffer);
                 return NULL;
             }
             JS_ASSERT(e < 0);
             /* At this point df = b * 2^e.  e must be less than zero because 0 < df < 1. */
 
             s2 = -(int32)(word0(d) >> Exp_shift1 & Exp_mask>>Exp_shift1);
 #ifndef Sudden_Underflow
@@ -557,12 +3156,12 @@ JS_dtobasestr(int base, double d)
             Bfree(b);
             Bfree(s);
             if (mlo != mhi)
                 Bfree(mlo);
             Bfree(mhi);
         }
         JS_ASSERT(p < buffer + DTOBASESTR_BUFFER_SIZE);
         *p = '\0';
-        UNLOCK_DTOA();
+        RELEASE_DTOA_LOCK();
     }
     return buffer;
 }
--- a/js/src/jsdtoa.h
+++ b/js/src/jsdtoa.h
@@ -118,14 +118,13 @@ JS_dtostr(char *buffer, size_t bufferSiz
  */
 JS_FRIEND_API(char *)
 JS_dtobasestr(int base, double d);
 
 /*
  * Clean up any persistent RAM allocated during the execution of DtoA
  * routines, and remove any locks that might have been created.
  */
-JS_FRIEND_API(JSBool) js_InitDtoa(void);
-JS_FRIEND_API(void) js_FinishDtoa(void);
+extern void js_FinishDtoa(void);
 
 JS_END_EXTERN_C
 
 #endif /* jsdtoa_h___ */
--- a/js/src/jsinterp.cpp
+++ b/js/src/jsinterp.cpp
@@ -2115,17 +2115,17 @@ js_TraceOpcode(JSContext *cx, jsint len)
                                                          NULL);
                 if (bytes) {
                     fprintf(tracefp, "%s %s",
                             (n == -ndefs) ? "  output:" : ",",
                             bytes);
                     JS_free(cx, bytes);
                 }
             }
-            fprintf(tracefp, " @ %u\n", (uintN) (regs->sp - StackBase(fp)));
+            fprintf(tracefp, " @ %d\n", regs->sp - StackBase(fp));
         }
         fprintf(tracefp, "  stack: ");
         for (siter = StackBase(fp); siter < regs->sp; siter++) {
             str = js_ValueToString(cx, *siter);
             if (!str)
                 fputs("<null>", tracefp);
             else
                 js_FileEscapedString(tracefp, str, 0);
@@ -2146,17 +2146,17 @@ js_TraceOpcode(JSContext *cx, jsint len)
                                                      NULL);
             if (bytes) {
                 fprintf(tracefp, "%s %s",
                         (n == -nuses) ? "  inputs:" : ",",
                         bytes);
                 JS_free(cx, bytes);
             }
         }
-        fprintf(tracefp, " @ %u\n", (uintN) (regs->sp - StackBase(fp)));
+        fprintf(tracefp, " @ %d\n", regs->sp - StackBase(fp));
     }
 }
 
 #endif /* DEBUG */
 
 #ifdef JS_OPMETER
 
 # include <stdlib.h>
--- a/js/src/jsnum.cpp
+++ b/js/src/jsnum.cpp
@@ -1010,20 +1010,28 @@ js_strtod(JSContext *cx, const jschar *s
     if ((negative = (*istr == '-')) != 0 || *istr == '+')
         istr++;
     if (!strncmp(istr, js_Infinity_str, sizeof js_Infinity_str - 1)) {
         d = *(negative ? cx->runtime->jsNegativeInfinity : cx->runtime->jsPositiveInfinity);
         estr = istr + 8;
     } else {
         int err;
         d = JS_strtod(cstr, &estr, &err);
-        if (d == HUGE_VAL)
-            d = *cx->runtime->jsPositiveInfinity;
-        else if (d == -HUGE_VAL)
-            d = *cx->runtime->jsNegativeInfinity;
+        if (err == JS_DTOA_ENOMEM) {
+            JS_ReportOutOfMemory(cx);
+            if (cstr != cbuf)
+                JS_free(cx, cstr);
+            return JS_FALSE;
+        }
+        if (err == JS_DTOA_ERANGE) {
+            if (d == HUGE_VAL)
+                d = *cx->runtime->jsPositiveInfinity;
+            else if (d == -HUGE_VAL)
+                d = *cx->runtime->jsNegativeInfinity;
+        }
 #ifdef HPUX
         if (d == 0.0 && negative) {
             /*
              * "-0", "-1e-2000" come out as positive zero
              * here on HPUX. Force a negative zero instead.
              */
             JSDOUBLE_HI32(d) = JSDOUBLE_HI32_SIGNBIT;
             JSDOUBLE_LO32(d) = 0;
--- a/js/src/jsopcode.cpp
+++ b/js/src/jsopcode.cpp
@@ -292,17 +292,17 @@ js_Disassemble1(JSContext *cx, JSScript 
             op = JS_GetTrapOpcode(cx, script, pc);
             len = (ptrdiff_t) js_CodeSpec[op].length;
         }
         break;
 
       case JOF_JUMP:
       case JOF_JUMPX:
         off = GetJumpOffset(pc, pc);
-        fprintf(fp, " %u (%d)", loc + (intN) off, (intN) off);
+        fprintf(fp, " %u (%d)", loc + off, off);
         break;
 
       case JOF_ATOM:
       case JOF_OBJECT:
       case JOF_REGEXP:
         index = js_GetIndexFromBytecode(cx, script, pc, 0);
         if (type == JOF_ATOM) {
             JS_GET_SCRIPT_ATOM(script, index, atom);
@@ -339,20 +339,20 @@ js_Disassemble1(JSContext *cx, JSScript 
                                            : JUMPX_OFFSET_LEN;
         pc2 = pc;
         off = GetJumpOffset(pc, pc2);
         pc2 += jmplen;
         low = GET_JUMP_OFFSET(pc2);
         pc2 += JUMP_OFFSET_LEN;
         high = GET_JUMP_OFFSET(pc2);
         pc2 += JUMP_OFFSET_LEN;
-        fprintf(fp, " defaultOffset %d low %d high %d", (intN) off, low, high);
+        fprintf(fp, " defaultOffset %d low %d high %d", off, low, high);
         for (i = low; i <= high; i++) {
             off = GetJumpOffset(pc, pc2);
-            fprintf(fp, "\n\t%d: %d", i, (intN) off);
+            fprintf(fp, "\n\t%d: %d", i, off);
             pc2 += jmplen;
         }
         len = 1 + pc2 - pc;
         break;
       }
 
       case JOF_LOOKUPSWITCH:
       case JOF_LOOKUPSWITCHX:
@@ -362,27 +362,27 @@ js_Disassemble1(JSContext *cx, JSScript 
 
         jmplen = (type == JOF_LOOKUPSWITCH) ? JUMP_OFFSET_LEN
                                             : JUMPX_OFFSET_LEN;
         pc2 = pc;
         off = GetJumpOffset(pc, pc2);
         pc2 += jmplen;
         npairs = GET_UINT16(pc2);
         pc2 += UINT16_LEN;
-        fprintf(fp, " offset %d npairs %u", (intN) off, (uintN) npairs);
+        fprintf(fp, " offset %d npairs %u", off, (uintN) npairs);
         while (npairs) {
             JS_GET_SCRIPT_ATOM(script, GET_INDEX(pc2), atom);
             pc2 += INDEX_LEN;
             off = GetJumpOffset(pc, pc2);
             pc2 += jmplen;
 
             bytes = ToDisassemblySource(cx, ATOM_KEY(atom));
             if (!bytes)
                 return 0;
-            fprintf(fp, "\n\t%s: %d", bytes, (intN) off);
+            fprintf(fp, "\n\t%s: %d", bytes, off);
             npairs--;
         }
         len = 1 + pc2 - pc;
         break;
       }
 
       case JOF_QARG:
         fprintf(fp, " %u", GET_ARGNO(pc));