Bug 573137: Upgrade to zlib 1.2.5. The patch is contributed
authorWan-Teh Chang <wtc@google.com>
Sat, 18 Sep 2010 17:17:37 -0700
changeset 54332 fb3a132de4ece5b2c6251d768b68ab008b243ce4
parent 54331 cf2461dc5055635ae4a733dde61bd64b751bc38c
child 54333 2e571d635a604b5c1f0cb3375bc2aa7b34c02cff
push idunknown
push userunknown
push dateunknown
bugs573137
milestone2.0b7pre
Bug 573137: Upgrade to zlib 1.2.5. The patch is contributed by Daniel Jeter II <djeter@ripleycable.net>. r=wtc,joedrew. a=joedrew and blocking2.0:final
modules/zlib/src/ChangeLog
modules/zlib/src/ChangeLog.moz
modules/zlib/src/FAQ
modules/zlib/src/INDEX
modules/zlib/src/README
modules/zlib/src/adler32.c
modules/zlib/src/compress.c
modules/zlib/src/crc32.c
modules/zlib/src/deflate.c
modules/zlib/src/deflate.h
modules/zlib/src/gzclose.c
modules/zlib/src/gzguts.h
modules/zlib/src/gzio.c
modules/zlib/src/gzlib.c
modules/zlib/src/gzread.c
modules/zlib/src/gzwrite.c
modules/zlib/src/infback.c
modules/zlib/src/inffast.c
modules/zlib/src/inffast.h
modules/zlib/src/inflate.c
modules/zlib/src/inflate.h
modules/zlib/src/inftrees.c
modules/zlib/src/inftrees.h
modules/zlib/src/mozzconf.h
modules/zlib/src/objs.mk
modules/zlib/src/trees.c
modules/zlib/src/trees.h
modules/zlib/src/uncompr.c
modules/zlib/src/zconf.h
modules/zlib/src/zlib.def
modules/zlib/src/zlib.h
modules/zlib/src/zutil.c
modules/zlib/src/zutil.h
--- a/modules/zlib/src/ChangeLog
+++ b/modules/zlib/src/ChangeLog
@@ -1,24 +1,377 @@
 
                 ChangeLog file for zlib
 
+Changes in 1.2.5 (19 Apr 2010)
+- Disable visibility attribute in win32/Makefile.gcc [Bar-Lev]
+- Default to libdir as sharedlibdir in configure [Nieder]
+- Update copyright dates on modified source files
+- Update trees.c to be able to generate modified trees.h
+- Exit configure for MinGW, suggesting win32/Makefile.gcc
+
+Changes in 1.2.4.5 (18 Apr 2010)
+- Set sharedlibdir in configure [Torok]
+- Set LDFLAGS in Makefile.in [Bar-Lev]
+- Avoid mkdir objs race condition in Makefile.in [Bowler]
+- Add ZLIB_INTERNAL in front of internal inter-module functions and arrays
+- Define ZLIB_INTERNAL to hide internal functions and arrays for GNU C
+- Don't use hidden attribute when it is a warning generator (e.g. Solaris)
+
+Changes in 1.2.4.4 (18 Apr 2010)
+- Fix CROSS_PREFIX executable testing, CHOST extract, mingw* [Torok]
+- Undefine _LARGEFILE64_SOURCE in zconf.h if it is zero, but not if empty
+- Try to use bash or ksh regardless of functionality of /bin/sh
+- Fix configure incompatibility with NetBSD sh
+- Remove attempt to run under bash or ksh since have better NetBSD fix
+- Fix win32/Makefile.gcc for MinGW [Bar-Lev]
+- Add diagnostic messages when using CROSS_PREFIX in configure
+- Added --sharedlibdir option to configure [Weigelt]
+- Use hidden visibility attribute when available [Frysinger]
+
+Changes in 1.2.4.3 (10 Apr 2010)
+- Only use CROSS_PREFIX in configure for ar and ranlib if they exist
+- Use CROSS_PREFIX for nm [Bar-Lev]
+- Assume _LARGEFILE64_SOURCE defined is equivalent to true
+- Avoid use of undefined symbols in #if with && and ||
+- Make *64 prototypes in gzguts.h consistent with functions
+- Add -shared load option for MinGW in configure [Bowler]
+- Move z_off64_t to public interface, use instead of off64_t
+- Remove ! from shell test in configure (not portable to Solaris)
+- Change +0 macro tests to -0 for possibly increased portability
+
+Changes in 1.2.4.2 (9 Apr 2010)
+- Add consistent carriage returns to readme.txt's in masmx86 and masmx64
+- Really provide prototypes for *64 functions when building without LFS
+- Only define unlink() in minigzip.c if unistd.h not included
+- Update README to point to contrib/vstudio project files
+- Move projects/vc6 to old/ and remove projects/
+- Include stdlib.h in minigzip.c for setmode() definition under WinCE
+- Clean up assembler builds in win32/Makefile.msc [Rowe]
+- Include sys/types.h for Microsoft for off_t definition
+- Fix memory leak on error in gz_open()
+- Symbolize nm as $NM in configure [Weigelt]
+- Use TEST_LDSHARED instead of LDSHARED to link test programs [Weigelt]
+- Add +0 to _FILE_OFFSET_BITS and _LFS64_LARGEFILE in case not defined
+- Fix bug in gzeof() to take into account unused input data
+- Avoid initialization of structures with variables in puff.c
+- Updated win32/README-WIN32.txt [Rowe]
+
+Changes in 1.2.4.1 (28 Mar 2010)
+- Remove the use of [a-z] constructs for sed in configure [gentoo 310225]
+- Remove $(SHAREDLIB) from LIBS in Makefile.in [Creech]
+- Restore "for debugging" comment on sprintf() in gzlib.c
+- Remove fdopen for MVS from gzguts.h
+- Put new README-WIN32.txt in win32 [Rowe]
+- Add check for shell to configure and invoke another shell if needed
+- Fix big fat stinking bug in gzseek() on uncompressed files
+- Remove vestigial F_OPEN64 define in zutil.h
+- Set and check the value of _LARGEFILE_SOURCE and _LARGEFILE64_SOURCE
+- Avoid errors on non-LFS systems when applications define LFS macros
+- Set EXE to ".exe" in configure for MINGW [Kahle]
+- Match crc32() in crc32.c exactly to the prototype in zlib.h [Sherrill]
+- Add prefix for cross-compilation in win32/makefile.gcc [Bar-Lev]
+- Add DLL install in win32/makefile.gcc [Bar-Lev]
+- Allow Linux* or linux* from uname in configure [Bar-Lev]
+- Allow ldconfig to be redefined in configure and Makefile.in [Bar-Lev]
+- Add cross-compilation prefixes to configure [Bar-Lev]
+- Match type exactly in gz_load() invocation in gzread.c
+- Match type exactly of zcalloc() in zutil.c to zlib.h alloc_func
+- Provide prototypes for *64 functions when building zlib without LFS
+- Don't use -lc when linking shared library on MinGW
+- Remove errno.h check in configure and vestigial errno code in zutil.h
+
+Changes in 1.2.4 (14 Mar 2010)
+- Fix VER3 extraction in configure for no fourth subversion
+- Update zlib.3, add docs to Makefile.in to make .pdf out of it
+- Add zlib.3.pdf to distribution
+- Don't set error code in gzerror() if passed pointer is NULL
+- Apply destination directory fixes to CMakeLists.txt [Lowman]
+- Move #cmakedefine's to a new zconf.in.cmakein
+- Restore zconf.h for builds that don't use configure or cmake
+- Add distclean to dummy Makefile for convenience
+- Update and improve INDEX, README, and FAQ
+- Update CMakeLists.txt for the return of zconf.h [Lowman]
+- Update contrib/vstudio/vc9 and vc10 [Vollant]
+- Change libz.dll.a back to libzdll.a in win32/Makefile.gcc
+- Apply license and readme changes to contrib/asm686 [Raiter]
+- Check file name lengths and add -c option in minigzip.c [Li]
+- Update contrib/amd64 and contrib/masmx86/ [Vollant]
+- Avoid use of "eof" parameter in trees.c to not shadow library variable
+- Update make_vms.com for removal of zlibdefs.h [Zinser]
+- Update assembler code and vstudio projects in contrib [Vollant]
+- Remove outdated assembler code contrib/masm686 and contrib/asm586
+- Remove old vc7 and vc8 from contrib/vstudio
+- Update win32/Makefile.msc, add ZLIB_VER_SUBREVISION [Rowe]
+- Fix memory leaks in gzclose_r() and gzclose_w(), file leak in gz_open()
+- Add contrib/gcc_gvmat64 for longest_match and inflate_fast [Vollant]
+- Remove *64 functions from win32/zlib.def (they're not 64-bit yet)
+- Fix bug in void-returning vsprintf() case in gzwrite.c
+- Fix name change from inflate.h in contrib/inflate86/inffas86.c
+- Check if temporary file exists before removing in make_vms.com [Zinser]
+- Fix make install and uninstall for --static option
+- Fix usage of _MSC_VER in gzguts.h and zutil.h [Truta]
+- Update readme.txt in contrib/masmx64 and masmx86 to assemble
+
+Changes in 1.2.3.9 (21 Feb 2010)
+- Expunge gzio.c
+- Move as400 build information to old
+- Fix updates in contrib/minizip and contrib/vstudio
+- Add const to vsnprintf test in configure to avoid warnings [Weigelt]
+- Delete zconf.h (made by configure) [Weigelt]
+- Change zconf.in.h to zconf.h.in per convention [Weigelt]
+- Check for NULL buf in gzgets()
+- Return empty string for gzgets() with len == 1 (like fgets())
+- Fix description of gzgets() in zlib.h for end-of-file, NULL return
+- Update minizip to 1.1 [Vollant]
+- Avoid MSVC loss of data warnings in gzread.c, gzwrite.c
+- Note in zlib.h that gzerror() should be used to distinguish from EOF
+- Remove use of snprintf() from gzlib.c
+- Fix bug in gzseek()
+- Update contrib/vstudio, adding vc9 and vc10 [Kuno, Vollant]
+- Fix zconf.h generation in CMakeLists.txt [Lowman]
+- Improve comments in zconf.h where modified by configure
+
+Changes in 1.2.3.8 (13 Feb 2010)
+- Clean up text files (tabs, trailing whitespace, etc.) [Oberhumer]
+- Use z_off64_t in gz_zero() and gz_skip() to match state->skip
+- Avoid comparison problem when sizeof(int) == sizeof(z_off64_t)
+- Revert to Makefile.in from 1.2.3.6 (live with the clutter)
+- Fix missing error return in gzflush(), add zlib.h note
+- Add *64 functions to zlib.map [Levin]
+- Fix signed/unsigned comparison in gz_comp()
+- Use SFLAGS when testing shared linking in configure
+- Add --64 option to ./configure to use -m64 with gcc
+- Fix ./configure --help to correctly name options
+- Have make fail if a test fails [Levin]
+- Avoid buffer overrun in contrib/masmx64/gvmat64.asm [Simpson]
+- Remove assembler object files from contrib
+
+Changes in 1.2.3.7 (24 Jan 2010)
+- Always gzopen() with O_LARGEFILE if available
+- Fix gzdirect() to work immediately after gzopen() or gzdopen()
+- Make gzdirect() more precise when the state changes while reading
+- Improve zlib.h documentation in many places
+- Catch memory allocation failure in gz_open()
+- Complete close operation if seek forward in gzclose_w() fails
+- Return Z_ERRNO from gzclose_r() if close() fails
+- Return Z_STREAM_ERROR instead of EOF for gzclose() being passed NULL
+- Return zero for gzwrite() errors to match zlib.h description
+- Return -1 on gzputs() error to match zlib.h description
+- Add zconf.in.h to allow recovery from configure modification [Weigelt]
+- Fix static library permissions in Makefile.in [Weigelt]
+- Avoid warnings in configure tests that hide functionality [Weigelt]
+- Add *BSD and DragonFly to Linux case in configure [gentoo 123571]
+- Change libzdll.a to libz.dll.a in win32/Makefile.gcc [gentoo 288212]
+- Avoid access of uninitialized data for first inflateReset2 call [Gomes]
+- Keep object files in subdirectories to reduce the clutter somewhat
+- Remove default Makefile and zlibdefs.h, add dummy Makefile
+- Add new external functions to Z_PREFIX, remove duplicates, z_z_ -> z_
+- Remove zlibdefs.h completely -- modify zconf.h instead
+
+Changes in 1.2.3.6 (17 Jan 2010)
+- Avoid void * arithmetic in gzread.c and gzwrite.c
+- Make compilers happier with const char * for gz_error message
+- Avoid unused parameter warning in inflate.c
+- Avoid signed-unsigned comparison warning in inflate.c
+- Indent #pragma's for traditional C
+- Fix usage of strwinerror() in glib.c, change to gz_strwinerror()
+- Correct email address in configure for system options
+- Update make_vms.com and add make_vms.com to contrib/minizip [Zinser]
+- Update zlib.map [Brown]
+- Fix Makefile.in for Solaris 10 make of example64 and minizip64 [Torok]
+- Apply various fixes to CMakeLists.txt [Lowman]
+- Add checks on len in gzread() and gzwrite()
+- Add error message for no more room for gzungetc()
+- Remove zlib version check in gzwrite()
+- Defer compression of gzprintf() result until need to
+- Use snprintf() in gzdopen() if available
+- Remove USE_MMAP configuration determination (only used by minigzip)
+- Remove examples/pigz.c (available separately)
+- Update examples/gun.c to 1.6
+
+Changes in 1.2.3.5 (8 Jan 2010)
+- Add space after #if in zutil.h for some compilers
+- Fix relatively harmless bug in deflate_fast() [Exarevsky]
+- Fix same problem in deflate_slow()
+- Add $(SHAREDLIBV) to LIBS in Makefile.in [Brown]
+- Add deflate_rle() for faster Z_RLE strategy run-length encoding
+- Add deflate_huff() for faster Z_HUFFMAN_ONLY encoding
+- Change name of "write" variable in inffast.c to avoid library collisions
+- Fix premature EOF from gzread() in gzio.c [Brown]
+- Use zlib header window size if windowBits is 0 in inflateInit2()
+- Remove compressBound() call in deflate.c to avoid linking compress.o
+- Replace use of errno in gz* with functions, support WinCE [Alves]
+- Provide alternative to perror() in minigzip.c for WinCE [Alves]
+- Don't use _vsnprintf on later versions of MSVC [Lowman]
+- Add CMake build script and input file [Lowman]
+- Update contrib/minizip to 1.1 [Svensson, Vollant]
+- Moved nintendods directory from contrib to .
+- Replace gzio.c with a new set of routines with the same functionality
+- Add gzbuffer(), gzoffset(), gzclose_r(), gzclose_w() as part of above
+- Update contrib/minizip to 1.1b
+- Change gzeof() to return 0 on error instead of -1 to agree with zlib.h
+
+Changes in 1.2.3.4 (21 Dec 2009)
+- Use old school .SUFFIXES in Makefile.in for FreeBSD compatibility
+- Update comments in configure and Makefile.in for default --shared
+- Fix test -z's in configure [Marquess]
+- Build examplesh and minigzipsh when not testing
+- Change NULL's to Z_NULL's in deflate.c and in comments in zlib.h
+- Import LDFLAGS from the environment in configure
+- Fix configure to populate SFLAGS with discovered CFLAGS options
+- Adapt make_vms.com to the new Makefile.in [Zinser]
+- Add zlib2ansi script for C++ compilation [Marquess]
+- Add _FILE_OFFSET_BITS=64 test to make test (when applicable)
+- Add AMD64 assembler code for longest match to contrib [Teterin]
+- Include options from $SFLAGS when doing $LDSHARED
+- Simplify 64-bit file support by introducing z_off64_t type
+- Make shared object files in objs directory to work around old Sun cc
+- Use only three-part version number for Darwin shared compiles
+- Add rc option to ar in Makefile.in for when ./configure not run
+- Add -WI,-rpath,. to LDFLAGS for OSF 1 V4*
+- Set LD_LIBRARYN32_PATH for SGI IRIX shared compile
+- Protect against _FILE_OFFSET_BITS being defined when compiling zlib
+- Rename Makefile.in targets allstatic to static and allshared to shared
+- Fix static and shared Makefile.in targets to be independent
+- Correct error return bug in gz_open() by setting state [Brown]
+- Put spaces before ;;'s in configure for better sh compatibility
+- Add pigz.c (parallel implementation of gzip) to examples/
+- Correct constant in crc32.c to UL [Leventhal]
+- Reject negative lengths in crc32_combine()
+- Add inflateReset2() function to work like inflateEnd()/inflateInit2()
+- Include sys/types.h for _LARGEFILE64_SOURCE [Brown]
+- Correct typo in doc/algorithm.txt [Janik]
+- Fix bug in adler32_combine() [Zhu]
+- Catch missing-end-of-block-code error in all inflates and in puff
+    Assures that random input to inflate eventually results in an error
+- Added enough.c (calculation of ENOUGH for inftrees.h) to examples/
+- Update ENOUGH and its usage to reflect discovered bounds
+- Fix gzerror() error report on empty input file [Brown]
+- Add ush casts in trees.c to avoid pedantic runtime errors
+- Fix typo in zlib.h uncompress() description [Reiss]
+- Correct inflate() comments with regard to automatic header detection
+- Remove deprecation comment on Z_PARTIAL_FLUSH (it stays)
+- Put new version of gzlog (2.0) in examples with interruption recovery
+- Add puff compile option to permit invalid distance-too-far streams
+- Add puff TEST command options, ability to read piped input
+- Prototype the *64 functions in zlib.h when _FILE_OFFSET_BITS == 64, but
+  _LARGEFILE64_SOURCE not defined
+- Fix Z_FULL_FLUSH to truly erase the past by resetting s->strstart
+- Fix deflateSetDictionary() to use all 32K for output consistency
+- Remove extraneous #define MIN_LOOKAHEAD in deflate.c (in deflate.h)
+- Clear bytes after deflate lookahead to avoid use of uninitialized data
+- Change a limit in inftrees.c to be more transparent to Coverity Prevent
+- Update win32/zlib.def with exported symbols from zlib.h
+- Correct spelling error in zlib.h [Willem]
+- Allow Z_BLOCK for deflate() to force a new block
+- Allow negative bits in inflatePrime() to delete existing bit buffer
+- Add Z_TREES flush option to inflate() to return at end of trees
+- Add inflateMark() to return current state information for random access
+- Add Makefile for NintendoDS to contrib [Costa]
+- Add -w in configure compile tests to avoid spurious warnings [Beucler]
+- Fix typos in zlib.h comments for deflateSetDictionary()
+- Fix EOF detection in transparent gzread() [Maier]
+
+Changes in 1.2.3.3 (2 October 2006)
+- Make --shared the default for configure, add a --static option
+- Add compile option to permit invalid distance-too-far streams
+- Add inflateUndermine() function which is required to enable above
+- Remove use of "this" variable name for C++ compatibility [Marquess]
+- Add testing of shared library in make test, if shared library built
+- Use ftello() and fseeko() if available instead of ftell() and fseek()
+- Provide two versions of all functions that use the z_off_t type for
+  binary compatibility -- a normal version and a 64-bit offset version,
+  per the Large File Support Extension when _LARGEFILE64_SOURCE is
+  defined; use the 64-bit versions by default when _FILE_OFFSET_BITS
+  is defined to be 64
+- Add a --uname= option to configure to perhaps help with cross-compiling
+
+Changes in 1.2.3.2 (3 September 2006)
+- Turn off silly Borland warnings [Hay]
+- Use off64_t and define _LARGEFILE64_SOURCE when present
+- Fix missing dependency on inffixed.h in Makefile.in
+- Rig configure --shared to build both shared and static [Teredesai, Truta]
+- Remove zconf.in.h and instead create a new zlibdefs.h file
+- Fix contrib/minizip/unzip.c non-encrypted after encrypted [Vollant]
+- Add treebuild.xml (see http://treebuild.metux.de/) [Weigelt]
+
+Changes in 1.2.3.1 (16 August 2006)
+- Add watcom directory with OpenWatcom make files [Daniel]
+- Remove #undef of FAR in zconf.in.h for MVS [Fedtke]
+- Update make_vms.com [Zinser]
+- Use -fPIC for shared build in configure [Teredesai, Nicholson]
+- Use only major version number for libz.so on IRIX and OSF1 [Reinholdtsen]
+- Use fdopen() (not _fdopen()) for Interix in zutil.h [Bck]
+- Add some FAQ entries about the contrib directory
+- Update the MVS question in the FAQ
+- Avoid extraneous reads after EOF in gzio.c [Brown]
+- Correct spelling of "successfully" in gzio.c [Randers-Pehrson]
+- Add comments to zlib.h about gzerror() usage [Brown]
+- Set extra flags in gzip header in gzopen() like deflate() does
+- Make configure options more compatible with double-dash conventions
+  [Weigelt]
+- Clean up compilation under Solaris SunStudio cc [Rowe, Reinholdtsen]
+- Fix uninstall target in Makefile.in [Truta]
+- Add pkgconfig support [Weigelt]
+- Use $(DESTDIR) macro in Makefile.in [Reinholdtsen, Weigelt]
+- Replace set_data_type() with a more accurate detect_data_type() in
+  trees.c, according to the txtvsbin.txt document [Truta]
+- Swap the order of #include <stdio.h> and #include "zlib.h" in
+  gzio.c, example.c and minigzip.c [Truta]
+- Shut up annoying VS2005 warnings about standard C deprecation [Rowe,
+  Truta] (where?)
+- Fix target "clean" from win32/Makefile.bor [Truta]
+- Create .pdb and .manifest files in win32/makefile.msc [Ziegler, Rowe]
+- Update zlib www home address in win32/DLL_FAQ.txt [Truta]
+- Update contrib/masmx86/inffas32.asm for VS2005 [Vollant, Van Wassenhove]
+- Enable browse info in the "Debug" and "ASM Debug" configurations in
+  the Visual C++ 6 project, and set (non-ASM) "Debug" as default [Truta]
+- Add pkgconfig support [Weigelt]
+- Add ZLIB_VER_MAJOR, ZLIB_VER_MINOR and ZLIB_VER_REVISION in zlib.h,
+  for use in win32/zlib1.rc [Polushin, Rowe, Truta]
+- Add a document that explains the new text detection scheme to
+  doc/txtvsbin.txt [Truta]
+- Add rfc1950.txt, rfc1951.txt and rfc1952.txt to doc/ [Truta]
+- Move algorithm.txt into doc/ [Truta]
+- Synchronize FAQ with website
+- Fix compressBound(), was low for some pathological cases [Fearnley]
+- Take into account wrapper variations in deflateBound()
+- Set examples/zpipe.c input and output to binary mode for Windows
+- Update examples/zlib_how.html with new zpipe.c (also web site)
+- Fix some warnings in examples/gzlog.c and examples/zran.c (it seems
+  that gcc became pickier in 4.0)
+- Add zlib.map for Linux: "All symbols from zlib-1.1.4 remain
+  un-versioned, the patch adds versioning only for symbols introduced in
+  zlib-1.2.0 or later.  It also declares as local those symbols which are
+  not designed to be exported." [Levin]
+- Update Z_PREFIX list in zconf.in.h, add --zprefix option to configure
+- Do not initialize global static by default in trees.c, add a response
+  NO_INIT_GLOBAL_POINTERS to initialize them if needed [Marquess]
+- Don't use strerror() in gzio.c under WinCE [Yakimov]
+- Don't use errno.h in zutil.h under WinCE [Yakimov]
+- Move arguments for AR to its usage to allow replacing ar [Marot]
+- Add HAVE_VISIBILITY_PRAGMA in zconf.in.h for Mozilla [Randers-Pehrson]
+- Improve inflateInit() and inflateInit2() documentation
+- Fix structure size comment in inflate.h
+- Change configure help option from --h* to --help [Santos]
+
 Changes in 1.2.3 (18 July 2005)
 - Apply security vulnerability fixes to contrib/infback9 as well
 - Clean up some text files (carriage returns, trailing space)
 - Update testzlib, vstudio, masmx64, and masmx86 in contrib [Vollant]
 
 Changes in 1.2.2.4 (11 July 2005)
 - Add inflatePrime() function for starting inflation at bit boundary
 - Avoid some Visual C warnings in deflate.c
 - Avoid more silly Visual C warnings in inflate.c and inftrees.c for 64-bit
   compile
 - Fix some spelling errors in comments [Betts]
 - Correct inflateInit2() error return documentation in zlib.h
-- Added zran.c example of compressed data random access to examples
+- Add zran.c example of compressed data random access to examples
   directory, shows use of inflatePrime()
 - Fix cast for assignments to strm->state in inflate.c and infback.c
 - Fix zlibCompileFlags() in zutil.c to use 1L for long shifts [Oberhumer]
 - Move declarations of gf2 functions to right place in crc32.c [Oberhumer]
 - Add cast in trees.c t avoid a warning [Oberhumer]
 - Avoid some warnings in fitblk.c, gun.c, gzjoin.c in examples [Oberhumer]
 - Update make_vms.com [Zinser]
 - Initialize state->write in inflateReset() since copied in inflate_fast()
@@ -594,17 +947,17 @@ Changes in 1.0.6 (19 Jan 1998)
 - defined STDC for OS/2 (David Charlap)
 - limit external names to 8 chars for MVS (Thomas Lund)
 - in minigzip.c, use static buffers only for 16-bit systems
 - fix suffix check for "minigzip -d foo.gz"
 - do not return an error for the 2nd of two consecutive gzflush() (Felix Lee)
 - use _fdopen instead of fdopen for MSC >= 6.0 (Thomas Fanslau)
 - added makelcc.bat for lcc-win32 (Tom St Denis)
 - in Makefile.dj2, use copy and del instead of install and rm (Frank Donahoe)
-- Avoid expanded $Id: ChangeLog,v 1.6 2005/08/04 19:14:14 tor%cs.brown.edu Exp $. Use "rcs -kb" or "cvs admin -kb" to avoid Id expansion.
+- Avoid expanded $Id$. Use "rcs -kb" or "cvs admin -kb" to avoid Id expansion.
 - check for unistd.h in configure (for off_t)
 - remove useless check parameter in inflate_blocks_free
 - avoid useless assignment of s->check to itself in inflate_blocks_new
 - do not flush twice in gzclose (thanks to Ken Raeburn)
 - rename FOPEN as F_OPEN to avoid clash with /usr/include/sys/file.h
 - use NO_ERRNO_H instead of enumeration of operating systems with errno.h
 - work around buggy fclose on pipes for HP/UX
 - support zlib DLL with BORLAND C++ 5.0 (thanks to Glenn Randers-Pehrson)
--- a/modules/zlib/src/ChangeLog.moz
+++ b/modules/zlib/src/ChangeLog.moz
@@ -37,8 +37,13 @@ Mozilla.org changes:
 - 24 July 2005
   Added treatment of HAVE_VISIBILITY_PRAGMA in mozzconf.h
 
 - 24 July 2005
   Updated zlib.def with new symbols in zlib version 1.2.3
 
 - 13 September 2009
   Don't enable zlib's debug output when the Mozilla build is in debug mode (bug 431950)
+
+- 18 September 2010
+  Sync'ed with 1.2.5 release
+  (keeping '#include "mozzconf.h"' in zconf.h)
+  See bug #573137
--- a/modules/zlib/src/FAQ
+++ b/modules/zlib/src/FAQ
@@ -1,71 +1,68 @@
 
                 Frequently Asked Questions about zlib
 
 
 If your question is not there, please check the zlib home page
-http://www.zlib.org which may have more recent information.
-The lastest zlib FAQ is at http://www.gzip.org/zlib/zlib_faq.html
+http://zlib.net/ which may have more recent information.
+The lastest zlib FAQ is at http://zlib.net/zlib_faq.html
 
 
  1. Is zlib Y2K-compliant?
 
     Yes. zlib doesn't handle dates.
 
  2. Where can I get a Windows DLL version?
 
-    The zlib sources can be compiled without change to produce a DLL.
-    See the file win32/DLL_FAQ.txt in the zlib distribution.
-    Pointers to the precompiled DLL are found in the zlib web site at
-    http://www.zlib.org.
+    The zlib sources can be compiled without change to produce a DLL.  See the
+    file win32/DLL_FAQ.txt in the zlib distribution.  Pointers to the
+    precompiled DLL are found in the zlib web site at http://zlib.net/ .
 
  3. Where can I get a Visual Basic interface to zlib?
 
     See
-        * http://www.dogma.net/markn/articles/zlibtool/zlibtool.htm
-        * contrib/visual-basic.txt in the zlib distribution
+        * http://marknelson.us/1997/01/01/zlib-engine/
         * win32/DLL_FAQ.txt in the zlib distribution
 
  4. compress() returns Z_BUF_ERROR.
 
-    Make sure that before the call of compress, the length of the compressed
-    buffer is equal to the total size of the compressed buffer and not
-    zero. For Visual Basic, check that this parameter is passed by reference
+    Make sure that before the call of compress(), the length of the compressed
+    buffer is equal to the available size of the compressed buffer and not
+    zero.  For Visual Basic, check that this parameter is passed by reference
     ("as any"), not by value ("as long").
 
  5. deflate() or inflate() returns Z_BUF_ERROR.
 
-    Before making the call, make sure that avail_in and avail_out are not
-    zero. When setting the parameter flush equal to Z_FINISH, also make sure
-    that avail_out is big enough to allow processing all pending input.
-    Note that a Z_BUF_ERROR is not fatal--another call to deflate() or
-    inflate() can be made with more input or output space. A Z_BUF_ERROR
-    may in fact be unavoidable depending on how the functions are used, since
-    it is not possible to tell whether or not there is more output pending
-    when strm.avail_out returns with zero.
+    Before making the call, make sure that avail_in and avail_out are not zero.
+    When setting the parameter flush equal to Z_FINISH, also make sure that
+    avail_out is big enough to allow processing all pending input.  Note that a
+    Z_BUF_ERROR is not fatal--another call to deflate() or inflate() can be
+    made with more input or output space.  A Z_BUF_ERROR may in fact be
+    unavoidable depending on how the functions are used, since it is not
+    possible to tell whether or not there is more output pending when
+    strm.avail_out returns with zero.  See http://zlib.net/zlib_how.html for a
+    heavily annotated example.
 
  6. Where's the zlib documentation (man pages, etc.)?
 
-    It's in zlib.h for the moment, and Francis S. Lin has converted it to a
-    web page zlib.html. Volunteers to transform this to Unix-style man pages,
-    please contact us (zlib@gzip.org). Examples of zlib usage are in the files
-    example.c and minigzip.c.
+    It's in zlib.h .  Examples of zlib usage are in the files example.c and
+    minigzip.c, with more in examples/ .
 
  7. Why don't you use GNU autoconf or libtool or ...?
 
-    Because we would like to keep zlib as a very small and simple
-    package. zlib is rather portable and doesn't need much configuration.
+    Because we would like to keep zlib as a very small and simple package.
+    zlib is rather portable and doesn't need much configuration.
 
  8. I found a bug in zlib.
 
-    Most of the time, such problems are due to an incorrect usage of
-    zlib. Please try to reproduce the problem with a small program and send
-    the corresponding source to us at zlib@gzip.org . Do not send
-    multi-megabyte data files without prior agreement.
+    Most of the time, such problems are due to an incorrect usage of zlib.
+    Please try to reproduce the problem with a small program and send the
+    corresponding source to us at zlib@gzip.org .  Do not send multi-megabyte
+    data files without prior agreement.
 
  9. Why do I get "undefined reference to gzputc"?
 
     If "make test" produces something like
 
        example.o(.text+0x154): undefined reference to `gzputc'
 
     check that you don't have old files libz.* in /usr/lib, /usr/local/lib or
@@ -77,263 +74,293 @@ 10. I need a Delphi interface to zlib.
 
 11. Can zlib handle .zip archives?
 
     Not by itself, no.  See the directory contrib/minizip in the zlib
     distribution.
 
 12. Can zlib handle .Z files?
 
-    No, sorry. You have to spawn an uncompress or gunzip subprocess, or adapt
+    No, sorry.  You have to spawn an uncompress or gunzip subprocess, or adapt
     the code of uncompress on your own.
 
 13. How can I make a Unix shared library?
 
     make clean
     ./configure -s
     make
 
 14. How do I install a shared zlib library on Unix?
 
     After the above, then:
 
     make install
 
     However, many flavors of Unix come with a shared zlib already installed.
     Before going to the trouble of compiling a shared version of zlib and
-    trying to install it, you may want to check if it's already there! If you
-    can #include <zlib.h>, it's there. The -lz option will probably link to it.
+    trying to install it, you may want to check if it's already there!  If you
+    can #include <zlib.h>, it's there.  The -lz option will probably link to
+    it.  You can check the version at the top of zlib.h or with the
+    ZLIB_VERSION symbol defined in zlib.h .
 
 15. I have a question about OttoPDF.
 
     We are not the authors of OttoPDF. The real author is on the OttoPDF web
     site: Joel Hainley, jhainley@myndkryme.com.
 
 16. Can zlib decode Flate data in an Adobe PDF file?
 
-    Yes. See http://www.fastio.com/ (ClibPDF), or http://www.pdflib.com/ .
-    To modify PDF forms, see http://sourceforge.net/projects/acroformtool/ .
+    Yes. See http://www.pdflib.com/ . To modify PDF forms, see
+    http://sourceforge.net/projects/acroformtool/ .
 
 17. Why am I getting this "register_frame_info not found" error on Solaris?
 
     After installing zlib 1.1.4 on Solaris 2.6, running applications using zlib
     generates an error such as:
 
         ld.so.1: rpm: fatal: relocation error: file /usr/local/lib/libz.so:
         symbol __register_frame_info: referenced symbol not found
 
     The symbol __register_frame_info is not part of zlib, it is generated by
-    the C compiler (cc or gcc). You must recompile applications using zlib
-    which have this problem. This problem is specific to Solaris. See
+    the C compiler (cc or gcc).  You must recompile applications using zlib
+    which have this problem.  This problem is specific to Solaris.  See
     http://www.sunfreeware.com for Solaris versions of zlib and applications
     using zlib.
 
 18. Why does gzip give an error on a file I make with compress/deflate?
 
     The compress and deflate functions produce data in the zlib format, which
-    is different and incompatible with the gzip format. The gz* functions in
-    zlib on the other hand use the gzip format. Both the zlib and gzip
-    formats use the same compressed data format internally, but have different
-    headers and trailers around the compressed data.
+    is different and incompatible with the gzip format.  The gz* functions in
+    zlib on the other hand use the gzip format.  Both the zlib and gzip formats
+    use the same compressed data format internally, but have different headers
+    and trailers around the compressed data.
 
 19. Ok, so why are there two different formats?
 
-    The gzip format was designed to retain the directory information about
-    a single file, such as the name and last modification date. The zlib
-    format on the other hand was designed for in-memory and communication
-    channel applications, and has a much more compact header and trailer and
-    uses a faster integrity check than gzip.
+    The gzip format was designed to retain the directory information about a
+    single file, such as the name and last modification date.  The zlib format
+    on the other hand was designed for in-memory and communication channel
+    applications, and has a much more compact header and trailer and uses a
+    faster integrity check than gzip.
 
 20. Well that's nice, but how do I make a gzip file in memory?
 
     You can request that deflate write the gzip format instead of the zlib
-    format using deflateInit2(). You can also request that inflate decode
-    the gzip format using inflateInit2(). Read zlib.h for more details.
+    format using deflateInit2().  You can also request that inflate decode the
+    gzip format using inflateInit2().  Read zlib.h for more details.
 
 21. Is zlib thread-safe?
 
-    Yes. However any library routines that zlib uses and any application-
-    provided memory allocation routines must also be thread-safe. zlib's gz*
+    Yes.  However any library routines that zlib uses and any application-
+    provided memory allocation routines must also be thread-safe.  zlib's gz*
     functions use stdio library routines, and most of zlib's functions use the
-    library memory allocation routines by default. zlib's Init functions allow
-    for the application to provide custom memory allocation routines.
+    library memory allocation routines by default.  zlib's *Init* functions
+    allow for the application to provide custom memory allocation routines.
 
     Of course, you should only operate on any given zlib or gzip stream from a
     single thread at a time.
 
 22. Can I use zlib in my commercial application?
 
-    Yes. Please read the license in zlib.h.
+    Yes.  Please read the license in zlib.h.
 
 23. Is zlib under the GNU license?
 
-    No. Please read the license in zlib.h.
+    No.  Please read the license in zlib.h.
 
 24. The license says that altered source versions must be "plainly marked". So
     what exactly do I need to do to meet that requirement?
 
-    You need to change the ZLIB_VERSION and ZLIB_VERNUM #defines in zlib.h. In
+    You need to change the ZLIB_VERSION and ZLIB_VERNUM #defines in zlib.h.  In
     particular, the final version number needs to be changed to "f", and an
-    identification string should be appended to ZLIB_VERSION. Version numbers
+    identification string should be appended to ZLIB_VERSION.  Version numbers
     x.x.x.f are reserved for modifications to zlib by others than the zlib
-    maintainers. For example, if the version of the base zlib you are altering
+    maintainers.  For example, if the version of the base zlib you are altering
     is "1.2.3.4", then in zlib.h you should change ZLIB_VERNUM to 0x123f, and
-    ZLIB_VERSION to something like "1.2.3.f-zachary-mods-v3". You can also
+    ZLIB_VERSION to something like "1.2.3.f-zachary-mods-v3".  You can also
     update the version strings in deflate.c and inftrees.c.
 
     For altered source distributions, you should also note the origin and
     nature of the changes in zlib.h, as well as in ChangeLog and README, along
-    with the dates of the alterations. The origin should include at least your
+    with the dates of the alterations.  The origin should include at least your
     name (or your company's name), and an email address to contact for help or
     issues with the library.
 
     Note that distributing a compiled zlib library along with zlib.h and
     zconf.h is also a source distribution, and so you should change
     ZLIB_VERSION and ZLIB_VERNUM and note the origin and nature of the changes
     in zlib.h as you would for a full source distribution.
 
 25. Will zlib work on a big-endian or little-endian architecture, and can I
     exchange compressed data between them?
 
     Yes and yes.
 
 26. Will zlib work on a 64-bit machine?
 
-    It should. It has been tested on 64-bit machines, and has no dependence
-    on any data types being limited to 32-bits in length. If you have any
+    Yes.  It has been tested on 64-bit machines, and has no dependence on any
+    data types being limited to 32-bits in length.  If you have any
     difficulties, please provide a complete problem report to zlib@gzip.org
 
 27. Will zlib decompress data from the PKWare Data Compression Library?
 
-    No. The PKWare DCL uses a completely different compressed data format
-    than does PKZIP and zlib. However, you can look in zlib's contrib/blast
+    No.  The PKWare DCL uses a completely different compressed data format than
+    does PKZIP and zlib.  However, you can look in zlib's contrib/blast
     directory for a possible solution to your problem.
 
 28. Can I access data randomly in a compressed stream?
 
-    No, not without some preparation. If when compressing you periodically
-    use Z_FULL_FLUSH, carefully write all the pending data at those points,
-    and keep an index of those locations, then you can start decompression
-    at those points. You have to be careful to not use Z_FULL_FLUSH too
-    often, since it can significantly degrade compression.
+    No, not without some preparation.  If when compressing you periodically use
+    Z_FULL_FLUSH, carefully write all the pending data at those points, and
+    keep an index of those locations, then you can start decompression at those
+    points.  You have to be careful to not use Z_FULL_FLUSH too often, since it
+    can significantly degrade compression.  Alternatively, you can scan a
+    deflate stream once to generate an index, and then use that index for
+    random access.  See examples/zran.c .
 
 29. Does zlib work on MVS, OS/390, CICS, etc.?
 
-    We don't know for sure. We have heard occasional reports of success on
-    these systems. If you do use it on one of these, please provide us with
-    a report, instructions, and patches that we can reference when we get
-    these questions. Thanks.
+    It has in the past, but we have not heard of any recent evidence.  There
+    were working ports of zlib 1.1.4 to MVS, but those links no longer work.
+    If you know of recent, successful applications of zlib on these operating
+    systems, please let us know.  Thanks.
 
-30. Is there some simpler, easier to read version of inflate I can look at
-    to understand the deflate format?
+30. Is there some simpler, easier to read version of inflate I can look at to
+    understand the deflate format?
 
-    First off, you should read RFC 1951. Second, yes. Look in zlib's
+    First off, you should read RFC 1951.  Second, yes.  Look in zlib's
     contrib/puff directory.
 
 31. Does zlib infringe on any patents?
 
-    As far as we know, no. In fact, that was originally the whole point behind
-    zlib. Look here for some more information:
+    As far as we know, no.  In fact, that was originally the whole point behind
+    zlib.  Look here for some more information:
 
     http://www.gzip.org/#faq11
 
 32. Can zlib work with greater than 4 GB of data?
 
-    Yes. inflate() and deflate() will process any amount of data correctly.
+    Yes.  inflate() and deflate() will process any amount of data correctly.
     Each call of inflate() or deflate() is limited to input and output chunks
     of the maximum value that can be stored in the compiler's "unsigned int"
-    type, but there is no limit to the number of chunks. Note however that the
-    strm.total_in and strm_total_out counters may be limited to 4 GB. These
+    type, but there is no limit to the number of chunks.  Note however that the
+    strm.total_in and strm_total_out counters may be limited to 4 GB.  These
     counters are provided as a convenience and are not used internally by
-    inflate() or deflate(). The application can easily set up its own counters
+    inflate() or deflate().  The application can easily set up its own counters
     updated after each call of inflate() or deflate() to count beyond 4 GB.
     compress() and uncompress() may be limited to 4 GB, since they operate in a
-    single call. gzseek() and gztell() may be limited to 4 GB depending on how
-    zlib is compiled. See the zlibCompileFlags() function in zlib.h.
+    single call.  gzseek() and gztell() may be limited to 4 GB depending on how
+    zlib is compiled.  See the zlibCompileFlags() function in zlib.h.
 
-    The word "may" appears several times above since there is a 4 GB limit
-    only if the compiler's "long" type is 32 bits. If the compiler's "long"
-    type is 64 bits, then the limit is 16 exabytes.
+    The word "may" appears several times above since there is a 4 GB limit only
+    if the compiler's "long" type is 32 bits.  If the compiler's "long" type is
+    64 bits, then the limit is 16 exabytes.
 
 33. Does zlib have any security vulnerabilities?
 
-    The only one that we are aware of is potentially in gzprintf(). If zlib
-    is compiled to use sprintf() or vsprintf(), then there is no protection
-    against a buffer overflow of a 4K string space, other than the caller of
-    gzprintf() assuring that the output will not exceed 4K. On the other
-    hand, if zlib is compiled to use snprintf() or vsnprintf(), which should
-    normally be the case, then there is no vulnerability. The ./configure
-    script will display warnings if an insecure variation of sprintf() will
-    be used by gzprintf(). Also the zlibCompileFlags() function will return
-    information on what variant of sprintf() is used by gzprintf().
+    The only one that we are aware of is potentially in gzprintf().  If zlib is
+    compiled to use sprintf() or vsprintf(), then there is no protection
+    against a buffer overflow of an 8K string space (or other value as set by
+    gzbuffer()), other than the caller of gzprintf() assuring that the output
+    will not exceed 8K.  On the other hand, if zlib is compiled to use
+    snprintf() or vsnprintf(), which should normally be the case, then there is
+    no vulnerability.  The ./configure script will display warnings if an
+    insecure variation of sprintf() will be used by gzprintf().  Also the
+    zlibCompileFlags() function will return information on what variant of
+    sprintf() is used by gzprintf().
 
     If you don't have snprintf() or vsnprintf() and would like one, you can
     find a portable implementation here:
 
         http://www.ijs.si/software/snprintf/
 
-    Note that you should be using the most recent version of zlib. Versions
-    1.1.3 and before were subject to a double-free vulnerability.
+    Note that you should be using the most recent version of zlib.  Versions
+    1.1.3 and before were subject to a double-free vulnerability, and versions
+    1.2.1 and 1.2.2 were subject to an access exception when decompressing
+    invalid compressed data.
 
 34. Is there a Java version of zlib?
 
     Probably what you want is to use zlib in Java. zlib is already included
     as part of the Java SDK in the java.util.zip package. If you really want
     a version of zlib written in the Java language, look on the zlib home
-    page for links: http://www.zlib.org/
+    page for links: http://zlib.net/ .
 
 35. I get this or that compiler or source-code scanner warning when I crank it
     up to maximally-pedantic. Can't you guys write proper code?
 
     Many years ago, we gave up attempting to avoid warnings on every compiler
-    in the universe. It just got to be a waste of time, and some compilers
-    were downright silly. So now, we simply make sure that the code always
-    works.
+    in the universe.  It just got to be a waste of time, and some compilers
+    were downright silly as well as contradicted each other.  So now, we simply
+    make sure that the code always works.
 
 36. Valgrind (or some similar memory access checker) says that deflate is
     performing a conditional jump that depends on an uninitialized value.
     Isn't that a bug?
 
-    No.  That is intentional for performance reasons, and the output of
-    deflate is not affected.  This only started showing up recently since
-    zlib 1.2.x uses malloc() by default for allocations, whereas earlier
-    versions used calloc(), which zeros out the allocated memory.
+    No.  That is intentional for performance reasons, and the output of deflate
+    is not affected.  This only started showing up recently since zlib 1.2.x
+    uses malloc() by default for allocations, whereas earlier versions used
+    calloc(), which zeros out the allocated memory.  Even though the code was
+    correct, versions 1.2.4 and later was changed to not stimulate these
+    checkers.
 
 37. Will zlib read the (insert any ancient or arcane format here) compressed
     data format?
 
     Probably not. Look in the comp.compression FAQ for pointers to various
     formats and associated software.
 
 38. How can I encrypt/decrypt zip files with zlib?
 
-    zlib doesn't support encryption. The original PKZIP encryption is very weak
-    and can be broken with freely available programs. To get strong encryption,
-    use GnuPG, http://www.gnupg.org/ , which already includes zlib compression.
-    For PKZIP compatible "encryption", look at http://www.info-zip.org/
+    zlib doesn't support encryption.  The original PKZIP encryption is very
+    weak and can be broken with freely available programs.  To get strong
+    encryption, use GnuPG, http://www.gnupg.org/ , which already includes zlib
+    compression.  For PKZIP compatible "encryption", look at
+    http://www.info-zip.org/
 
 39. What's the difference between the "gzip" and "deflate" HTTP 1.1 encodings?
 
-    "gzip" is the gzip format, and "deflate" is the zlib format. They should
-    probably have called the second one "zlib" instead to avoid confusion
-    with the raw deflate compressed data format. While the HTTP 1.1 RFC 2616
+    "gzip" is the gzip format, and "deflate" is the zlib format.  They should
+    probably have called the second one "zlib" instead to avoid confusion with
+    the raw deflate compressed data format.  While the HTTP 1.1 RFC 2616
     correctly points to the zlib specification in RFC 1950 for the "deflate"
     transfer encoding, there have been reports of servers and browsers that
     incorrectly produce or expect raw deflate data per the deflate
-    specficiation in RFC 1951, most notably Microsoft. So even though the
+    specficiation in RFC 1951, most notably Microsoft.  So even though the
     "deflate" transfer encoding using the zlib format would be the more
     efficient approach (and in fact exactly what the zlib format was designed
     for), using the "gzip" transfer encoding is probably more reliable due to
     an unfortunate choice of name on the part of the HTTP 1.1 authors.
 
     Bottom line: use the gzip format for HTTP 1.1 encoding.
 
 40. Does zlib support the new "Deflate64" format introduced by PKWare?
 
-    No. PKWare has apparently decided to keep that format proprietary, since
-    they have not documented it as they have previous compression formats.
-    In any case, the compression improvements are so modest compared to other
-    more modern approaches, that it's not worth the effort to implement.
+    No.  PKWare has apparently decided to keep that format proprietary, since
+    they have not documented it as they have previous compression formats.  In
+    any case, the compression improvements are so modest compared to other more
+    modern approaches, that it's not worth the effort to implement.
+
+41. I'm having a problem with the zip functions in zlib, can you help?
+
+    There are no zip functions in zlib.  You are probably using minizip by
+    Giles Vollant, which is found in the contrib directory of zlib.  It is not
+    part of zlib.  In fact none of the stuff in contrib is part of zlib.  The
+    files in there are not supported by the zlib authors.  You need to contact
+    the authors of the respective contribution for help.
 
-41. Can you please sign these lengthy legal documents and fax them back to us
+42. The match.asm code in contrib is under the GNU General Public License.
+    Since it's part of zlib, doesn't that mean that all of zlib falls under the
+    GNU GPL?
+
+    No.  The files in contrib are not part of zlib.  They were contributed by
+    other authors and are provided as a convenience to the user within the zlib
+    distribution.  Each item in contrib has its own license.
+
+43. Is zlib subject to export controls?  What is its ECCN?
+
+    zlib is not subject to export controls, and so is classified as EAR99.
+
+44. Can you please sign these lengthy legal documents and fax them back to us
     so that we can use your software in our product?
 
     No. Go away. Shoo.
--- a/modules/zlib/src/INDEX
+++ b/modules/zlib/src/INDEX
@@ -1,39 +1,52 @@
+CMakeLists.txt  cmake build file
 ChangeLog       history of changes
 FAQ             Frequently Asked Questions about zlib
 INDEX           this file
-Makefile        makefile for Unix (generated by configure)
-Makefile.in     makefile for Unix (template for configure)
+Makefile        dummy Makefile that tells you to ./configure
+Makefile.in     template for Unix Makefile
 README          guess what
-algorithm.txt   description of the (de)compression algorithm
 configure       configure script for Unix
-zconf.in.h      template for zconf.h (used by configure)
+make_vms.com    makefile for VMS
+treebuild.xml   XML description of source file dependencies
+zconf.h.cmakein zconf.h template for cmake
+zconf.h.in      zconf.h template for configure
+zlib.3          Man page for zlib
+zlib.3.pdf      Man page in PDF format
+zlib.map        Linux symbol information
+zlib.pc.in      Template for pkg-config descriptor
+zlib2ansi       perl script to convert source files for C++ compilation
 
 amiga/          makefiles for Amiga SAS C
-as400/          makefiles for IBM AS/400
+doc/            documentation for formats and algorithms
 msdos/          makefiles for MSDOS
+nintendods/     makefile for Nintendo DS
 old/            makefiles for various architectures and zlib documentation
                 files that have not yet been updated for zlib 1.2.x
-projects/       projects for various Integrated Development Environments
 qnx/            makefiles for QNX
+watcom/         makefiles for OpenWatcom
 win32/          makefiles for Windows
 
-                zlib public header files (must be kept):
+                zlib public header files (required for library use):
 zconf.h
 zlib.h
 
                 private source files used to build the zlib library:
 adler32.c
 compress.c
 crc32.c
 crc32.h
 deflate.c
 deflate.h
-gzio.c
+gzclose.c
+gzguts.h
+gzlib.c
+gzread.c
+gzwrite.c
 infback.c
 inffast.c
 inffast.h
 inffixed.h
 inflate.c
 inflate.h
 inftrees.c
 inftrees.h
@@ -41,11 +54,12 @@ trees.c
 trees.h
 uncompr.c
 zutil.c
 zutil.h
 
                 source files for sample programs:
 example.c
 minigzip.c
+See examples/README.examples for more
 
                 unsupported contribution by third parties
 See contrib/README.contrib
--- a/modules/zlib/src/README
+++ b/modules/zlib/src/README
@@ -1,61 +1,57 @@
 ZLIB DATA COMPRESSION LIBRARY
 
-zlib 1.2.3 is a general purpose data compression library.  All the code is
+zlib 1.2.5 is a general purpose data compression library.  All the code is
 thread safe.  The data format used by the zlib library is described by RFCs
 (Request for Comments) 1950 to 1952 in the files
 http://www.ietf.org/rfc/rfc1950.txt (zlib format), rfc1951.txt (deflate format)
-and rfc1952.txt (gzip format). These documents are also available in other
-formats from ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html
+and rfc1952.txt (gzip format).
 
 All functions of the compression library are documented in the file zlib.h
-(volunteer to write man pages welcome, contact zlib@gzip.org). A usage example
+(volunteer to write man pages welcome, contact zlib@gzip.org).  A usage example
 of the library is given in the file example.c which also tests that the library
-is working correctly. Another example is given in the file minigzip.c. The
+is working correctly.  Another example is given in the file minigzip.c.  The
 compression library itself is composed of all source files except example.c and
 minigzip.c.
 
 To compile all files and run the test program, follow the instructions given at
-the top of Makefile. In short "make test; make install" should work for most
-machines. For Unix: "./configure; make test; make install". For MSDOS, use one
-of the special makefiles such as Makefile.msc. For VMS, use make_vms.com.
+the top of Makefile.in.  In short "./configure; make test", and if that goes
+well, "make install" should work for most flavors of Unix.  For Windows, use one
+of the special makefiles in win32/ or contrib/vstudio/ .  For VMS, use
+make_vms.com.
 
 Questions about zlib should be sent to <zlib@gzip.org>, or to Gilles Vollant
-<info@winimage.com> for the Windows DLL version. The zlib home page is
-http://www.zlib.org or http://www.gzip.org/zlib/ Before reporting a problem,
-please check this site to verify that you have the latest version of zlib;
-otherwise get the latest version and check whether the problem still exists or
-not.
+<info@winimage.com> for the Windows DLL version.  The zlib home page is
+http://zlib.net/ .  Before reporting a problem, please check this site to
+verify that you have the latest version of zlib; otherwise get the latest
+version and check whether the problem still exists or not.
 
-PLEASE read the zlib FAQ http://www.gzip.org/zlib/zlib_faq.html before asking
-for help.
+PLEASE read the zlib FAQ http://zlib.net/zlib_faq.html before asking for help.
+
+Mark Nelson <markn@ieee.org> wrote an article about zlib for the Jan.  1997
+issue of Dr.  Dobb's Journal; a copy of the article is available at
+http://marknelson.us/1997/01/01/zlib-engine/ .
 
-Mark Nelson <markn@ieee.org> wrote an article about zlib for the Jan. 1997
-issue of  Dr. Dobb's Journal; a copy of the article is available in
-http://dogma.net/markn/articles/zlibtool/zlibtool.htm
+The changes made in version 1.2.5 are documented in the file ChangeLog.
 
-The changes made in version 1.2.3 are documented in the file ChangeLog.
-
-Unsupported third party contributions are provided in directory "contrib".
+Unsupported third party contributions are provided in directory contrib/ .
 
-A Java implementation of zlib is available in the Java Development Kit
-http://java.sun.com/j2se/1.4.2/docs/api/java/util/zip/package-summary.html
-See the zlib home page http://www.zlib.org for details.
+zlib is available in Java using the java.util.zip package, documented at
+http://java.sun.com/developer/technicalArticles/Programming/compression/ .
 
-A Perl interface to zlib written by Paul Marquess <pmqs@cpan.org> is in the
-CPAN (Comprehensive Perl Archive Network) sites
-http://www.cpan.org/modules/by-module/Compress/
+A Perl interface to zlib written by Paul Marquess <pmqs@cpan.org> is available
+at CPAN (Comprehensive Perl Archive Network) sites, including
+http://search.cpan.org/~pmqs/IO-Compress-Zlib/ .
 
 A Python interface to zlib written by A.M. Kuchling <amk@amk.ca> is
 available in Python 1.5 and later versions, see
-http://www.python.org/doc/lib/module-zlib.html
+http://www.python.org/doc/lib/module-zlib.html .
 
-A zlib binding for TCL written by Andreas Kupries <a.kupries@westend.com> is
-availlable at http://www.oche.de/~akupries/soft/trf/trf_zip.html
+zlib is built into tcl: http://wiki.tcl.tk/4610 .
 
 An experimental package to read and write files in .zip format, written on top
 of zlib by Gilles Vollant <info@winimage.com>, is available in the
 contrib/minizip directory of zlib.
 
 
 Notes for some targets:
 
@@ -69,35 +65,31 @@ Notes for some targets:
   when compiled with cc.
 
 - On Digital Unix 4.0D (formely OSF/1) on AlphaServer, the cc option -std1 is
   necessary to get gzprintf working correctly. This is done by configure.
 
 - zlib doesn't work on HP-UX 9.05 with some versions of /bin/cc. It works with
   other compilers. Use "make test" to check your compiler.
 
-- gzdopen is not supported on RISCOS, BEOS and by some Mac compilers.
+- gzdopen is not supported on RISCOS or BEOS.
 
 - For PalmOs, see http://palmzlib.sourceforge.net/
 
-- When building a shared, i.e. dynamic library on Mac OS X, the library must be
-  installed before testing (do "make install" before "make test"), since the
-  library location is specified in the library.
-
 
 Acknowledgments:
 
-  The deflate format used by zlib was defined by Phil Katz. The deflate
-  and zlib specifications were written by L. Peter Deutsch. Thanks to all the
-  people who reported problems and suggested various improvements in zlib;
-  they are too numerous to cite here.
+  The deflate format used by zlib was defined by Phil Katz.  The deflate and
+  zlib specifications were written by L.  Peter Deutsch.  Thanks to all the
+  people who reported problems and suggested various improvements in zlib; they
+  are too numerous to cite here.
 
 Copyright notice:
 
- (C) 1995-2004 Jean-loup Gailly and Mark Adler
+ (C) 1995-2010 Jean-loup Gailly and Mark Adler
 
   This software is provided 'as-is', without any express or implied
   warranty.  In no event will the authors be held liable for any damages
   arising from the use of this software.
 
   Permission is granted to anyone to use this software for any purpose,
   including commercial applications, and to alter it and redistribute it
   freely, subject to the following restrictions:
@@ -108,18 +100,16 @@ Copyright notice:
      appreciated but is not required.
   2. Altered source versions must be plainly marked as such, and must not be
      misrepresented as being the original software.
   3. This notice may not be removed or altered from any source distribution.
 
   Jean-loup Gailly        Mark Adler
   jloup@gzip.org          madler@alumni.caltech.edu
 
-If you use the zlib library in a product, we would appreciate *not*
-receiving lengthy legal documents to sign. The sources are provided
-for free but without warranty of any kind.  The library has been
-entirely written by Jean-loup Gailly and Mark Adler; it does not
-include third-party code.
+If you use the zlib library in a product, we would appreciate *not* receiving
+lengthy legal documents to sign.  The sources are provided for free but without
+warranty of any kind.  The library has been entirely written by Jean-loup
+Gailly and Mark Adler; it does not include third-party code.
 
-If you redistribute modified sources, we would appreciate that you include
-in the file ChangeLog history information documenting your changes. Please
-read the FAQ for more information on the distribution of modified source
-versions.
+If you redistribute modified sources, we would appreciate that you include in
+the file ChangeLog history information documenting your changes.  Please read
+the FAQ for more information on the distribution of modified source versions.
--- a/modules/zlib/src/adler32.c
+++ b/modules/zlib/src/adler32.c
@@ -1,17 +1,20 @@
 /* adler32.c -- compute the Adler-32 checksum of a data stream
- * Copyright (C) 1995-2004 Mark Adler
+ * Copyright (C) 1995-2007 Mark Adler
  * For conditions of distribution and use, see copyright notice in zlib.h
  */
 
-/* @(#) $Id: adler32.c,v 3.6 2005/08/04 19:14:14 tor%cs.brown.edu Exp $ */
+/* @(#) $Id$ */
+
+#include "zutil.h"
 
-#define ZLIB_INTERNAL
-#include "zlib.h"
+#define local static
+
+local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2);
 
 #define BASE 65521UL    /* largest prime smaller than 65536 */
 #define NMAX 5552
 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
 
 #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
@@ -120,30 +123,47 @@ uLong ZEXPORT adler32(adler, buf, len)
         MOD(sum2);
     }
 
     /* return recombined sums */
     return adler | (sum2 << 16);
 }
 
 /* ========================================================================= */
-uLong ZEXPORT adler32_combine(adler1, adler2, len2)
+local uLong adler32_combine_(adler1, adler2, len2)
     uLong adler1;
     uLong adler2;
-    z_off_t len2;
+    z_off64_t len2;
 {
     unsigned long sum1;
     unsigned long sum2;
     unsigned rem;
 
     /* the derivation of this formula is left as an exercise for the reader */
     rem = (unsigned)(len2 % BASE);
     sum1 = adler1 & 0xffff;
     sum2 = rem * sum1;
     MOD(sum2);
     sum1 += (adler2 & 0xffff) + BASE - 1;
     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
-    if (sum1 > BASE) sum1 -= BASE;
-    if (sum1 > BASE) sum1 -= BASE;
-    if (sum2 > (BASE << 1)) sum2 -= (BASE << 1);
-    if (sum2 > BASE) sum2 -= BASE;
+    if (sum1 >= BASE) sum1 -= BASE;
+    if (sum1 >= BASE) sum1 -= BASE;
+    if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1);
+    if (sum2 >= BASE) sum2 -= BASE;
     return sum1 | (sum2 << 16);
 }
+
+/* ========================================================================= */
+uLong ZEXPORT adler32_combine(adler1, adler2, len2)
+    uLong adler1;
+    uLong adler2;
+    z_off_t len2;
+{
+    return adler32_combine_(adler1, adler2, len2);
+}
+
+uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
+    uLong adler1;
+    uLong adler2;
+    z_off64_t len2;
+{
+    return adler32_combine_(adler1, adler2, len2);
+}
--- a/modules/zlib/src/compress.c
+++ b/modules/zlib/src/compress.c
@@ -1,14 +1,14 @@
 /* compress.c -- compress a memory buffer
- * Copyright (C) 1995-2003 Jean-loup Gailly.
+ * Copyright (C) 1995-2005 Jean-loup Gailly.
  * For conditions of distribution and use, see copyright notice in zlib.h
  */
 
-/* @(#) $Id: compress.c,v 3.6 2005/08/04 19:14:14 tor%cs.brown.edu Exp $ */
+/* @(#) $Id$ */
 
 #define ZLIB_INTERNAL
 #include "zlib.h"
 
 /* ===========================================================================
      Compresses the source buffer into the destination buffer. The level
    parameter has the same meaning as in deflateInit.  sourceLen is the byte
    length of the source buffer. Upon entry, destLen is the total size of the
@@ -70,10 +70,11 @@ int ZEXPORT compress (dest, destLen, sou
 
 /* ===========================================================================
      If the default memLevel or windowBits for deflateInit() is changed, then
    this function needs to be updated.
  */
 uLong ZEXPORT compressBound (sourceLen)
     uLong sourceLen;
 {
-    return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + 11;
+    return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
+           (sourceLen >> 25) + 13;
 }
--- a/modules/zlib/src/crc32.c
+++ b/modules/zlib/src/crc32.c
@@ -1,20 +1,20 @@
 /* crc32.c -- compute the CRC-32 of a data stream
- * Copyright (C) 1995-2005 Mark Adler
+ * Copyright (C) 1995-2006, 2010 Mark Adler
  * For conditions of distribution and use, see copyright notice in zlib.h
  *
  * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
  * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
  * tables for updating the shift register in one step with three exclusive-ors
  * instead of four steps with four exclusive-ors.  This results in about a
  * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
  */
 
-/* @(#) $Id: crc32.c,v 3.6 2005/08/04 19:14:14 tor%cs.brown.edu Exp $ */
+/* @(#) $Id$ */
 
 /*
   Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
   protection on the static variables used to control the first-use generation
   of the crc tables.  Therefore, if you #define DYNAMIC_CRC_TABLE, you should
   first call get_crc_table() to initialize the tables before allowing more than
   one thread to use crc32().
  */
@@ -48,31 +48,33 @@
 #        endif
 #      endif
 #    endif
 #  endif /* STDC */
 #endif /* !NOBYFOUR */
 
 /* Definitions for doing the crc four data bytes at a time. */
 #ifdef BYFOUR
-#  define REV(w) (((w)>>24)+(((w)>>8)&0xff00)+ \
+#  define REV(w) ((((w)>>24)&0xff)+(((w)>>8)&0xff00)+ \
                 (((w)&0xff00)<<8)+(((w)&0xff)<<24))
    local unsigned long crc32_little OF((unsigned long,
                         const unsigned char FAR *, unsigned));
    local unsigned long crc32_big OF((unsigned long,
                         const unsigned char FAR *, unsigned));
 #  define TBLS 8
 #else
 #  define TBLS 1
 #endif /* BYFOUR */
 
 /* Local functions for crc concatenation */
 local unsigned long gf2_matrix_times OF((unsigned long *mat,
                                          unsigned long vec));
 local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
+local uLong crc32_combine_(uLong crc1, uLong crc2, z_off64_t len2);
+
 
 #ifdef DYNAMIC_CRC_TABLE
 
 local volatile int crc_table_empty = 1;
 local unsigned long FAR crc_table[TBLS][256];
 local void make_crc_table OF((void));
 #ifdef MAKECRCH
    local void write_table OF((FILE *, const unsigned long FAR *));
@@ -214,17 +216,17 @@ const unsigned long FAR * ZEXPORT get_cr
 /* ========================================================================= */
 #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
 #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
 
 /* ========================================================================= */
 unsigned long ZEXPORT crc32(crc, buf, len)
     unsigned long crc;
     const unsigned char FAR *buf;
-    unsigned len;
+    uInt len;
 {
     if (buf == Z_NULL) return 0UL;
 
 #ifdef DYNAMIC_CRC_TABLE
     if (crc_table_empty)
         make_crc_table();
 #endif /* DYNAMIC_CRC_TABLE */
 
@@ -362,32 +364,32 @@ local void gf2_matrix_square(square, mat
 {
     int n;
 
     for (n = 0; n < GF2_DIM; n++)
         square[n] = gf2_matrix_times(mat, mat[n]);
 }
 
 /* ========================================================================= */
-uLong ZEXPORT crc32_combine(crc1, crc2, len2)
+local uLong crc32_combine_(crc1, crc2, len2)
     uLong crc1;
     uLong crc2;
-    z_off_t len2;
+    z_off64_t len2;
 {
     int n;
     unsigned long row;
     unsigned long even[GF2_DIM];    /* even-power-of-two zeros operator */
     unsigned long odd[GF2_DIM];     /* odd-power-of-two zeros operator */
 
-    /* degenerate case */
-    if (len2 == 0)
+    /* degenerate case (also disallow negative lengths) */
+    if (len2 <= 0)
         return crc1;
 
     /* put operator for one zero bit in odd */
-    odd[0] = 0xedb88320L;           /* CRC-32 polynomial */
+    odd[0] = 0xedb88320UL;          /* CRC-32 polynomial */
     row = 1;
     for (n = 1; n < GF2_DIM; n++) {
         odd[n] = row;
         row <<= 1;
     }
 
     /* put operator for two zero bits in even */
     gf2_matrix_square(even, odd);
@@ -416,8 +418,25 @@ uLong ZEXPORT crc32_combine(crc1, crc2, 
 
         /* if no more bits set, then done */
     } while (len2 != 0);
 
     /* return combined crc */
     crc1 ^= crc2;
     return crc1;
 }
+
+/* ========================================================================= */
+uLong ZEXPORT crc32_combine(crc1, crc2, len2)
+    uLong crc1;
+    uLong crc2;
+    z_off_t len2;
+{
+    return crc32_combine_(crc1, crc2, len2);
+}
+
+uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
+    uLong crc1;
+    uLong crc2;
+    z_off64_t len2;
+{
+    return crc32_combine_(crc1, crc2, len2);
+}
--- a/modules/zlib/src/deflate.c
+++ b/modules/zlib/src/deflate.c
@@ -1,10 +1,10 @@
 /* deflate.c -- compress data using the deflation algorithm
- * Copyright (C) 1995-2005 Jean-loup Gailly.
+ * Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler
  * For conditions of distribution and use, see copyright notice in zlib.h
  */
 
 /*
  *  ALGORITHM
  *
  *      The "deflation" process depends on being able to identify portions
  *      of the input text which are identical to earlier input (within a
@@ -42,22 +42,22 @@
  *      A description of the Rabin and Karp algorithm is given in the book
  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
  *
  *      Fiala,E.R., and Greene,D.H.
  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
  *
  */
 
-/* @(#) $Id: deflate.c,v 3.6 2005/08/04 19:14:14 tor%cs.brown.edu Exp $ */
+/* @(#) $Id$ */
 
 #include "deflate.h"
 
 const char deflate_copyright[] =
-   " deflate 1.2.3 Copyright 1995-2005 Jean-loup Gailly ";
+   " deflate 1.2.5 Copyright 1995-2010 Jean-loup Gailly and Mark Adler ";
 /*
   If you use the zlib library in a product, an acknowledgment is welcome
   in the documentation of your product. If for some reason you cannot
   include such an acknowledgment, I would appreciate that you keep this
   copyright string in the executable of your product.
  */
 
 /* ===========================================================================
@@ -74,29 +74,28 @@ typedef block_state (*compress_func) OF(
 /* Compression function. Returns the block state after the call. */
 
 local void fill_window    OF((deflate_state *s));
 local block_state deflate_stored OF((deflate_state *s, int flush));
 local block_state deflate_fast   OF((deflate_state *s, int flush));
 #ifndef FASTEST
 local block_state deflate_slow   OF((deflate_state *s, int flush));
 #endif
+local block_state deflate_rle    OF((deflate_state *s, int flush));
+local block_state deflate_huff   OF((deflate_state *s, int flush));
 local void lm_init        OF((deflate_state *s));
 local void putShortMSB    OF((deflate_state *s, uInt b));
 local void flush_pending  OF((z_streamp strm));
 local int read_buf        OF((z_streamp strm, Bytef *buf, unsigned size));
-#ifndef FASTEST
 #ifdef ASMV
       void match_init OF((void)); /* asm code initialization */
       uInt longest_match  OF((deflate_state *s, IPos cur_match));
 #else
 local uInt longest_match  OF((deflate_state *s, IPos cur_match));
 #endif
-#endif
-local uInt longest_match_fast OF((deflate_state *s, IPos cur_match));
 
 #ifdef DEBUG
 local  void check_match OF((deflate_state *s, IPos start, IPos match,
                             int length));
 #endif
 
 /* ===========================================================================
  * Local data
@@ -105,21 +104,16 @@ local  void check_match OF((deflate_stat
 #define NIL 0
 /* Tail of hash chains */
 
 #ifndef TOO_FAR
 #  define TOO_FAR 4096
 #endif
 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
 
-#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
-/* Minimum amount of lookahead, except at the end of the input file.
- * See deflate.c for comments about the MIN_MATCH+1.
- */
-
 /* Values for max_lazy_match, good_match and max_chain_length, depending on
  * the desired pack level (0..9). The values given below have been tuned to
  * exclude worst case performance for pathological files. Better values may be
  * found for specific files.
  */
 typedef struct config_s {
    ush good_length; /* reduce lazy search above this match length */
    ush max_lazy;    /* do not perform lazy search above this match length */
@@ -283,16 +277,18 @@ int ZEXPORT deflateInit2_(strm, level, m
     s->hash_size = 1 << s->hash_bits;
     s->hash_mask = s->hash_size - 1;
     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
 
     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
 
+    s->high_water = 0;      /* nothing written to s->window yet */
+
     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
 
     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
     s->pending_buf = (uchf *) overlay;
     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
 
     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
         s->pending_buf == Z_NULL) {
@@ -327,18 +323,18 @@ int ZEXPORT deflateSetDictionary (strm, 
         (strm->state->wrap == 1 && strm->state->status != INIT_STATE))
         return Z_STREAM_ERROR;
 
     s = strm->state;
     if (s->wrap)
         strm->adler = adler32(strm->adler, dictionary, dictLength);
 
     if (length < MIN_MATCH) return Z_OK;
-    if (length > MAX_DIST(s)) {
-        length = MAX_DIST(s);
+    if (length > s->w_size) {
+        length = s->w_size;
         dictionary += dictLength - length; /* use the tail of the dictionary */
     }
     zmemcpy(s->window, dictionary, length);
     s->strstart = length;
     s->block_start = (long)length;
 
     /* Insert all strings in the hash table (except for the last two bytes).
      * s->lookahead stays null, so s->ins_h will be recomputed at the next
@@ -430,19 +426,20 @@ int ZEXPORT deflateParams(strm, level, s
 #else
     if (level == Z_DEFAULT_COMPRESSION) level = 6;
 #endif
     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
         return Z_STREAM_ERROR;
     }
     func = configuration_table[s->level].func;
 
-    if (func != configuration_table[level].func && strm->total_in != 0) {
+    if ((strategy != s->strategy || func != configuration_table[level].func) &&
+        strm->total_in != 0) {
         /* Flush the last buffer: */
-        err = deflate(strm, Z_PARTIAL_FLUSH);
+        err = deflate(strm, Z_BLOCK);
     }
     if (s->level != level) {
         s->level = level;
         s->max_lazy_match   = configuration_table[level].max_lazy;
         s->good_match       = configuration_table[level].good_length;
         s->nice_match       = configuration_table[level].nice_length;
         s->max_chain_length = configuration_table[level].max_chain;
     }
@@ -476,43 +473,76 @@ int ZEXPORT deflateTune(strm, good_lengt
  * changed, then this function needs to be changed as well.  The return
  * value for 15 and 8 only works for those exact settings.
  *
  * For any setting other than those defaults for windowBits and memLevel,
  * the value returned is a conservative worst case for the maximum expansion
  * resulting from using fixed blocks instead of stored blocks, which deflate
  * can emit on compressed data for some combinations of the parameters.
  *
- * This function could be more sophisticated to provide closer upper bounds
- * for every combination of windowBits and memLevel, as well as wrap.
- * But even the conservative upper bound of about 14% expansion does not
- * seem onerous for output buffer allocation.
+ * This function could be more sophisticated to provide closer upper bounds for
+ * every combination of windowBits and memLevel.  But even the conservative
+ * upper bound of about 14% expansion does not seem onerous for output buffer
+ * allocation.
  */
 uLong ZEXPORT deflateBound(strm, sourceLen)
     z_streamp strm;
     uLong sourceLen;
 {
     deflate_state *s;
-    uLong destLen;
+    uLong complen, wraplen;
+    Bytef *str;
+
+    /* conservative upper bound for compressed data */
+    complen = sourceLen +
+              ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
+
+    /* if can't get parameters, return conservative bound plus zlib wrapper */
+    if (strm == Z_NULL || strm->state == Z_NULL)
+        return complen + 6;
 
-    /* conservative upper bound */
-    destLen = sourceLen +
-              ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 11;
-
-    /* if can't get parameters, return conservative bound */
-    if (strm == Z_NULL || strm->state == Z_NULL)
-        return destLen;
+    /* compute wrapper length */
+    s = strm->state;
+    switch (s->wrap) {
+    case 0:                                 /* raw deflate */
+        wraplen = 0;
+        break;
+    case 1:                                 /* zlib wrapper */
+        wraplen = 6 + (s->strstart ? 4 : 0);
+        break;
+    case 2:                                 /* gzip wrapper */
+        wraplen = 18;
+        if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
+            if (s->gzhead->extra != Z_NULL)
+                wraplen += 2 + s->gzhead->extra_len;
+            str = s->gzhead->name;
+            if (str != Z_NULL)
+                do {
+                    wraplen++;
+                } while (*str++);
+            str = s->gzhead->comment;
+            if (str != Z_NULL)
+                do {
+                    wraplen++;
+                } while (*str++);
+            if (s->gzhead->hcrc)
+                wraplen += 2;
+        }
+        break;
+    default:                                /* for compiler happiness */
+        wraplen = 6;
+    }
 
     /* if not default parameters, return conservative bound */
-    s = strm->state;
     if (s->w_bits != 15 || s->hash_bits != 8 + 7)
-        return destLen;
+        return complen + wraplen;
 
     /* default settings: return tight bound for that case */
-    return compressBound(sourceLen);
+    return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
+           (sourceLen >> 25) + 13 - 6 + wraplen;
 }
 
 /* =========================================================================
  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
  * IN assertion: the stream state is correct and there is enough room in
  * pending_buf.
  */
 local void putShortMSB (s, b)
@@ -552,17 +582,17 @@ local void flush_pending(strm)
 int ZEXPORT deflate (strm, flush)
     z_streamp strm;
     int flush;
 {
     int old_flush; /* value of flush param for previous deflate call */
     deflate_state *s;
 
     if (strm == Z_NULL || strm->state == Z_NULL ||
-        flush > Z_FINISH || flush < 0) {
+        flush > Z_BLOCK || flush < 0) {
         return Z_STREAM_ERROR;
     }
     s = strm->state;
 
     if (strm->next_out == Z_NULL ||
         (strm->next_in == Z_NULL && strm->avail_in != 0) ||
         (s->status == FINISH_STATE && flush != Z_FINISH)) {
         ERR_RETURN(strm, Z_STREAM_ERROR);
@@ -576,17 +606,17 @@ int ZEXPORT deflate (strm, flush)
     /* Write the header */
     if (s->status == INIT_STATE) {
 #ifdef GZIP
         if (s->wrap == 2) {
             strm->adler = crc32(0L, Z_NULL, 0);
             put_byte(s, 31);
             put_byte(s, 139);
             put_byte(s, 8);
-            if (s->gzhead == NULL) {
+            if (s->gzhead == Z_NULL) {
                 put_byte(s, 0);
                 put_byte(s, 0);
                 put_byte(s, 0);
                 put_byte(s, 0);
                 put_byte(s, 0);
                 put_byte(s, s->level == 9 ? 2 :
                             (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
                              4 : 0));
@@ -603,17 +633,17 @@ int ZEXPORT deflate (strm, flush)
                 put_byte(s, (Byte)(s->gzhead->time & 0xff));
                 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
                 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
                 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
                 put_byte(s, s->level == 9 ? 2 :
                             (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
                              4 : 0));
                 put_byte(s, s->gzhead->os & 0xff);
-                if (s->gzhead->extra != NULL) {
+                if (s->gzhead->extra != Z_NULL) {
                     put_byte(s, s->gzhead->extra_len & 0xff);
                     put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
                 }
                 if (s->gzhead->hcrc)
                     strm->adler = crc32(strm->adler, s->pending_buf,
                                         s->pending);
                 s->gzindex = 0;
                 s->status = EXTRA_STATE;
@@ -645,17 +675,17 @@ int ZEXPORT deflate (strm, flush)
                 putShortMSB(s, (uInt)(strm->adler >> 16));
                 putShortMSB(s, (uInt)(strm->adler & 0xffff));
             }
             strm->adler = adler32(0L, Z_NULL, 0);
         }
     }
 #ifdef GZIP
     if (s->status == EXTRA_STATE) {
-        if (s->gzhead->extra != NULL) {
+        if (s->gzhead->extra != Z_NULL) {
             uInt beg = s->pending;  /* start of bytes to update crc */
 
             while (s->gzindex < (s->gzhead->extra_len & 0xffff)) {
                 if (s->pending == s->pending_buf_size) {
                     if (s->gzhead->hcrc && s->pending > beg)
                         strm->adler = crc32(strm->adler, s->pending_buf + beg,
                                             s->pending - beg);
                     flush_pending(strm);
@@ -673,17 +703,17 @@ int ZEXPORT deflate (strm, flush)
                 s->gzindex = 0;
                 s->status = NAME_STATE;
             }
         }
         else
             s->status = NAME_STATE;
     }
     if (s->status == NAME_STATE) {
-        if (s->gzhead->name != NULL) {
+        if (s->gzhead->name != Z_NULL) {
             uInt beg = s->pending;  /* start of bytes to update crc */
             int val;
 
             do {
                 if (s->pending == s->pending_buf_size) {
                     if (s->gzhead->hcrc && s->pending > beg)
                         strm->adler = crc32(strm->adler, s->pending_buf + beg,
                                             s->pending - beg);
@@ -704,17 +734,17 @@ int ZEXPORT deflate (strm, flush)
                 s->gzindex = 0;
                 s->status = COMMENT_STATE;
             }
         }
         else
             s->status = COMMENT_STATE;
     }
     if (s->status == COMMENT_STATE) {
-        if (s->gzhead->comment != NULL) {
+        if (s->gzhead->comment != Z_NULL) {
             uInt beg = s->pending;  /* start of bytes to update crc */
             int val;
 
             do {
                 if (s->pending == s->pending_buf_size) {
                     if (s->gzhead->hcrc && s->pending > beg)
                         strm->adler = crc32(strm->adler, s->pending_buf + beg,
                                             s->pending - beg);
@@ -782,17 +812,19 @@ int ZEXPORT deflate (strm, flush)
     }
 
     /* Start a new block or continue the current one.
      */
     if (strm->avail_in != 0 || s->lookahead != 0 ||
         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
         block_state bstate;
 
-        bstate = (*(configuration_table[s->level].func))(s, flush);
+        bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
+                    (s->strategy == Z_RLE ? deflate_rle(s, flush) :
+                        (*(configuration_table[s->level].func))(s, flush));
 
         if (bstate == finish_started || bstate == finish_done) {
             s->status = FINISH_STATE;
         }
         if (bstate == need_more || bstate == finish_started) {
             if (strm->avail_out == 0) {
                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
             }
@@ -803,23 +835,27 @@ int ZEXPORT deflate (strm, flush)
              * empty block here, this will be done at next call. This also
              * ensures that for a very small output buffer, we emit at most
              * one empty block.
              */
         }
         if (bstate == block_done) {
             if (flush == Z_PARTIAL_FLUSH) {
                 _tr_align(s);
-            } else { /* FULL_FLUSH or SYNC_FLUSH */
+            } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
                 _tr_stored_block(s, (char*)0, 0L, 0);
                 /* For a full flush, this empty block will be recognized
                  * as a special marker by inflate_sync().
                  */
                 if (flush == Z_FULL_FLUSH) {
                     CLEAR_HASH(s);             /* forget history */
+                    if (s->lookahead == 0) {
+                        s->strstart = 0;
+                        s->block_start = 0L;
+                    }
                 }
             }
             flush_pending(strm);
             if (strm->avail_out == 0) {
               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
               return Z_OK;
             }
         }
@@ -1162,22 +1198,23 @@ local uInt longest_match(s, cur_match)
         }
     } while ((cur_match = prev[cur_match & wmask]) > limit
              && --chain_length != 0);
 
     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
     return s->lookahead;
 }
 #endif /* ASMV */
-#endif /* FASTEST */
+
+#else /* FASTEST */
 
 /* ---------------------------------------------------------------------------
- * Optimized version for level == 1 or strategy == Z_RLE only
+ * Optimized version for FASTEST only
  */
-local uInt longest_match_fast(s, cur_match)
+local uInt longest_match(s, cur_match)
     deflate_state *s;
     IPos cur_match;                             /* current match */
 {
     register Bytef *scan = s->window + s->strstart; /* current string */
     register Bytef *match;                       /* matched string */
     register int len;                           /* length of current match */
     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
 
@@ -1220,16 +1257,18 @@ local uInt longest_match_fast(s, cur_mat
     len = MAX_MATCH - (int)(strend - scan);
 
     if (len < MIN_MATCH) return MIN_MATCH - 1;
 
     s->match_start = cur_match;
     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
 }
 
+#endif /* FASTEST */
+
 #ifdef DEBUG
 /* ===========================================================================
  * Check that the match at match_start is indeed a match.
  */
 local void check_match(s, start, match, length)
     deflate_state *s;
     IPos start, match;
     int length;
@@ -1298,17 +1337,16 @@ local void fill_window(s)
             s->block_start -= (long) wsize;
 
             /* Slide the hash table (could be avoided with 32 bit values
                at the expense of memory usage). We slide even when level == 0
                to keep the hash table consistent if we switch back to level > 0
                later. (Using level 0 permanently is not an optimal usage of
                zlib, so we don't care about this pathological case.)
              */
-            /* %%% avoid this when Z_RLE */
             n = s->hash_size;
             p = &s->head[n];
             do {
                 m = *--p;
                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
             } while (--n);
 
             n = wsize;
@@ -1350,37 +1388,71 @@ local void fill_window(s)
             Call UPDATE_HASH() MIN_MATCH-3 more times
 #endif
         }
         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
          * but this is not important since only literal bytes will be emitted.
          */
 
     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
+
+    /* If the WIN_INIT bytes after the end of the current data have never been
+     * written, then zero those bytes in order to avoid memory check reports of
+     * the use of uninitialized (or uninitialised as Julian writes) bytes by
+     * the longest match routines.  Update the high water mark for the next
+     * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
+     * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
+     */
+    if (s->high_water < s->window_size) {
+        ulg curr = s->strstart + (ulg)(s->lookahead);
+        ulg init;
+
+        if (s->high_water < curr) {
+            /* Previous high water mark below current data -- zero WIN_INIT
+             * bytes or up to end of window, whichever is less.
+             */
+            init = s->window_size - curr;
+            if (init > WIN_INIT)
+                init = WIN_INIT;
+            zmemzero(s->window + curr, (unsigned)init);
+            s->high_water = curr + init;
+        }
+        else if (s->high_water < (ulg)curr + WIN_INIT) {
+            /* High water mark at or above current data, but below current data
+             * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
+             * to end of window, whichever is less.
+             */
+            init = (ulg)curr + WIN_INIT - s->high_water;
+            if (init > s->window_size - s->high_water)
+                init = s->window_size - s->high_water;
+            zmemzero(s->window + s->high_water, (unsigned)init);
+            s->high_water += init;
+        }
+    }
 }
 
 /* ===========================================================================
  * Flush the current block, with given end-of-file flag.
  * IN assertion: strstart is set to the end of the current match.
  */
-#define FLUSH_BLOCK_ONLY(s, eof) { \
+#define FLUSH_BLOCK_ONLY(s, last) { \
    _tr_flush_block(s, (s->block_start >= 0L ? \
                    (charf *)&s->window[(unsigned)s->block_start] : \
                    (charf *)Z_NULL), \
                 (ulg)((long)s->strstart - s->block_start), \
-                (eof)); \
+                (last)); \
    s->block_start = s->strstart; \
    flush_pending(s->strm); \
    Tracev((stderr,"[FLUSH]")); \
 }
 
 /* Same but force premature exit if necessary. */
-#define FLUSH_BLOCK(s, eof) { \
-   FLUSH_BLOCK_ONLY(s, eof); \
-   if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
+#define FLUSH_BLOCK(s, last) { \
+   FLUSH_BLOCK_ONLY(s, last); \
+   if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
 }
 
 /* ===========================================================================
  * Copy without compression as much as possible from the input stream, return
  * the current block state.
  * This function does not insert new strings in the dictionary since
  * uncompressible data is probably not useful. This function is used
  * only for the level=0 compression option.
@@ -1444,17 +1516,17 @@ local block_state deflate_stored(s, flus
  * This function does not perform lazy evaluation of matches and inserts
  * new strings in the dictionary only for unmatched strings or for short
  * matches. It is used only for the fast compression options.
  */
 local block_state deflate_fast(s, flush)
     deflate_state *s;
     int flush;
 {
-    IPos hash_head = NIL; /* head of the hash chain */
+    IPos hash_head;       /* head of the hash chain */
     int bflush;           /* set if current block must be flushed */
 
     for (;;) {
         /* Make sure that we always have enough lookahead, except
          * at the end of the input file. We need MAX_MATCH bytes
          * for the next match, plus MIN_MATCH bytes to insert the
          * string following the next match.
          */
@@ -1464,41 +1536,31 @@ local block_state deflate_fast(s, flush)
                 return need_more;
             }
             if (s->lookahead == 0) break; /* flush the current block */
         }
 
         /* Insert the string window[strstart .. strstart+2] in the
          * dictionary, and set hash_head to the head of the hash chain:
          */
+        hash_head = NIL;
         if (s->lookahead >= MIN_MATCH) {
             INSERT_STRING(s, s->strstart, hash_head);
         }
 
         /* Find the longest match, discarding those <= prev_length.
          * At this point we have always match_length < MIN_MATCH
          */
         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
             /* To simplify the code, we prevent matches with the string
              * of window index 0 (in particular we have to avoid a match
              * of the string with itself at the start of the input file).
              */
-#ifdef FASTEST
-            if ((s->strategy != Z_HUFFMAN_ONLY && s->strategy != Z_RLE) ||
-                (s->strategy == Z_RLE && s->strstart - hash_head == 1)) {
-                s->match_length = longest_match_fast (s, hash_head);
-            }
-#else
-            if (s->strategy != Z_HUFFMAN_ONLY && s->strategy != Z_RLE) {
-                s->match_length = longest_match (s, hash_head);
-            } else if (s->strategy == Z_RLE && s->strstart - hash_head == 1) {
-                s->match_length = longest_match_fast (s, hash_head);
-            }
-#endif
-            /* longest_match() or longest_match_fast() sets match_start */
+            s->match_length = longest_match (s, hash_head);
+            /* longest_match() sets match_start */
         }
         if (s->match_length >= MIN_MATCH) {
             check_match(s, s->strstart, s->match_start, s->match_length);
 
             _tr_tally_dist(s, s->strstart - s->match_start,
                            s->match_length - MIN_MATCH, bflush);
 
             s->lookahead -= s->match_length;
@@ -1550,17 +1612,17 @@ local block_state deflate_fast(s, flush)
  * Same as above, but achieves better compression. We use a lazy
  * evaluation for matches: a match is finally adopted only if there is
  * no better match at the next window position.
  */
 local block_state deflate_slow(s, flush)
     deflate_state *s;
     int flush;
 {
-    IPos hash_head = NIL;    /* head of hash chain */
+    IPos hash_head;          /* head of hash chain */
     int bflush;              /* set if current block must be flushed */
 
     /* Process the input block. */
     for (;;) {
         /* Make sure that we always have enough lookahead, except
          * at the end of the input file. We need MAX_MATCH bytes
          * for the next match, plus MIN_MATCH bytes to insert the
          * string following the next match.
@@ -1571,37 +1633,34 @@ local block_state deflate_slow(s, flush)
                 return need_more;
             }
             if (s->lookahead == 0) break; /* flush the current block */
         }
 
         /* Insert the string window[strstart .. strstart+2] in the
          * dictionary, and set hash_head to the head of the hash chain:
          */
+        hash_head = NIL;
         if (s->lookahead >= MIN_MATCH) {
             INSERT_STRING(s, s->strstart, hash_head);
         }
 
         /* Find the longest match, discarding those <= prev_length.
          */
         s->prev_length = s->match_length, s->prev_match = s->match_start;
         s->match_length = MIN_MATCH-1;
 
         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
             s->strstart - hash_head <= MAX_DIST(s)) {
             /* To simplify the code, we prevent matches with the string
              * of window index 0 (in particular we have to avoid a match
              * of the string with itself at the start of the input file).
              */
-            if (s->strategy != Z_HUFFMAN_ONLY && s->strategy != Z_RLE) {
-                s->match_length = longest_match (s, hash_head);
-            } else if (s->strategy == Z_RLE && s->strstart - hash_head == 1) {
-                s->match_length = longest_match_fast (s, hash_head);
-            }
-            /* longest_match() or longest_match_fast() sets match_start */
+            s->match_length = longest_match (s, hash_head);
+            /* longest_match() sets match_start */
 
             if (s->match_length <= 5 && (s->strategy == Z_FILTERED
 #if TOO_FAR <= 32767
                 || (s->match_length == MIN_MATCH &&
                     s->strstart - s->match_start > TOO_FAR)
 #endif
                 )) {
 
@@ -1669,68 +1728,107 @@ local block_state deflate_slow(s, flush)
         _tr_tally_lit(s, s->window[s->strstart-1], bflush);
         s->match_available = 0;
     }
     FLUSH_BLOCK(s, flush == Z_FINISH);
     return flush == Z_FINISH ? finish_done : block_done;
 }
 #endif /* FASTEST */
 
-#if 0
 /* ===========================================================================
  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
  * deflate switches away from Z_RLE.)
  */
 local block_state deflate_rle(s, flush)
     deflate_state *s;
     int flush;
 {
-    int bflush;         /* set if current block must be flushed */
-    uInt run;           /* length of run */
-    uInt max;           /* maximum length of run */
-    uInt prev;          /* byte at distance one to match */
-    Bytef *scan;        /* scan for end of run */
+    int bflush;             /* set if current block must be flushed */
+    uInt prev;              /* byte at distance one to match */
+    Bytef *scan, *strend;   /* scan goes up to strend for length of run */
 
     for (;;) {
         /* Make sure that we always have enough lookahead, except
          * at the end of the input file. We need MAX_MATCH bytes
          * for the longest encodable run.
          */
         if (s->lookahead < MAX_MATCH) {
             fill_window(s);
             if (s->lookahead < MAX_MATCH && flush == Z_NO_FLUSH) {
                 return need_more;
             }
             if (s->lookahead == 0) break; /* flush the current block */
         }
 
         /* See how many times the previous byte repeats */
-        run = 0;
-        if (s->strstart > 0) {      /* if there is a previous byte, that is */
-            max = s->lookahead < MAX_MATCH ? s->lookahead : MAX_MATCH;
+        s->match_length = 0;
+        if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
             scan = s->window + s->strstart - 1;
-            prev = *scan++;
-            do {
-                if (*scan++ != prev)
-                    break;
-            } while (++run < max);
+            prev = *scan;
+            if (prev == *++scan && prev == *++scan && prev == *++scan) {
+                strend = s->window + s->strstart + MAX_MATCH;
+                do {
+                } while (prev == *++scan && prev == *++scan &&
+                         prev == *++scan && prev == *++scan &&
+                         prev == *++scan && prev == *++scan &&
+                         prev == *++scan && prev == *++scan &&
+                         scan < strend);
+                s->match_length = MAX_MATCH - (int)(strend - scan);
+                if (s->match_length > s->lookahead)
+                    s->match_length = s->lookahead;
+            }
         }
 
         /* Emit match if have run of MIN_MATCH or longer, else emit literal */
-        if (run >= MIN_MATCH) {
-            check_match(s, s->strstart, s->strstart - 1, run);
-            _tr_tally_dist(s, 1, run - MIN_MATCH, bflush);
-            s->lookahead -= run;
-            s->strstart += run;
+        if (s->match_length >= MIN_MATCH) {
+            check_match(s, s->strstart, s->strstart - 1, s->match_length);
+
+            _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
+
+            s->lookahead -= s->match_length;
+            s->strstart += s->match_length;
+            s->match_length = 0;
         } else {
             /* No match, output a literal byte */
             Tracevv((stderr,"%c", s->window[s->strstart]));
             _tr_tally_lit (s, s->window[s->strstart], bflush);
             s->lookahead--;
             s->strstart++;
         }
         if (bflush) FLUSH_BLOCK(s, 0);
     }
     FLUSH_BLOCK(s, flush == Z_FINISH);
     return flush == Z_FINISH ? finish_done : block_done;
 }
-#endif
+
+/* ===========================================================================
+ * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
+ * (It will be regenerated if this run of deflate switches away from Huffman.)
+ */
+local block_state deflate_huff(s, flush)
+    deflate_state *s;
+    int flush;
+{
+    int bflush;             /* set if current block must be flushed */
+
+    for (;;) {
+        /* Make sure that we have a literal to write. */
+        if (s->lookahead == 0) {
+            fill_window(s);
+            if (s->lookahead == 0) {
+                if (flush == Z_NO_FLUSH)
+                    return need_more;
+                break;      /* flush the current block */
+            }
+        }
+
+        /* Output a literal byte */
+        s->match_length = 0;
+        Tracevv((stderr,"%c", s->window[s->strstart]));
+        _tr_tally_lit (s, s->window[s->strstart], bflush);
+        s->lookahead--;
+        s->strstart++;
+        if (bflush) FLUSH_BLOCK(s, 0);
+    }
+    FLUSH_BLOCK(s, flush == Z_FINISH);
+    return flush == Z_FINISH ? finish_done : block_done;
+}
--- a/modules/zlib/src/deflate.h
+++ b/modules/zlib/src/deflate.h
@@ -1,19 +1,19 @@
 /* deflate.h -- internal compression state
- * Copyright (C) 1995-2004 Jean-loup Gailly
+ * Copyright (C) 1995-2010 Jean-loup Gailly
  * For conditions of distribution and use, see copyright notice in zlib.h
  */
 
 /* WARNING: this file should *not* be used by applications. It is
    part of the implementation of the compression library and is
    subject to change. Applications should only use zlib.h.
  */
 
-/* @(#) $Id: deflate.h,v 3.6 2005/08/04 19:14:14 tor%cs.brown.edu Exp $ */
+/* @(#) $Id$ */
 
 #ifndef DEFLATE_H
 #define DEFLATE_H
 
 #include "zutil.h"
 
 /* define NO_GZIP when compiling if you want to disable gzip header and
    trailer creation by deflate().  NO_GZIP would be used to avoid linking in
@@ -255,16 +255,23 @@ typedef struct internal_state {
     /* Output buffer. bits are inserted starting at the bottom (least
      * significant bits).
      */
     int bi_valid;
     /* Number of valid bits in bi_buf.  All bits above the last valid bit
      * are always zero.
      */
 
+    ulg high_water;
+    /* High water mark offset in window for initialized bytes -- bytes above
+     * this are set to zero in order to avoid memory check warnings when
+     * longest match routines access bytes past the input.  This is then
+     * updated to the new high water mark.
+     */
+
 } FAR deflate_state;
 
 /* Output a byte on the stream.
  * IN assertion: there is enough room in pending_buf.
  */
 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
 
 
@@ -273,41 +280,45 @@ typedef struct internal_state {
  * See deflate.c for comments about the MIN_MATCH+1.
  */
 
 #define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
 /* In order to simplify the code, particularly on 16 bit machines, match
  * distances are limited to MAX_DIST instead of WSIZE.
  */
 
+#define WIN_INIT MAX_MATCH
+/* Number of bytes after end of data in window to initialize in order to avoid
+   memory checker errors from longest match routines */
+
         /* in trees.c */
-void _tr_init         OF((deflate_state *s));
-int  _tr_tally        OF((deflate_state *s, unsigned dist, unsigned lc));
-void _tr_flush_block  OF((deflate_state *s, charf *buf, ulg stored_len,
-                          int eof));
-void _tr_align        OF((deflate_state *s));
-void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
-                          int eof));
+void ZLIB_INTERNAL _tr_init OF((deflate_state *s));
+int ZLIB_INTERNAL _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc));
+void ZLIB_INTERNAL _tr_flush_block OF((deflate_state *s, charf *buf,
+                        ulg stored_len, int last));
+void ZLIB_INTERNAL _tr_align OF((deflate_state *s));
+void ZLIB_INTERNAL _tr_stored_block OF((deflate_state *s, charf *buf,
+                        ulg stored_len, int last));
 
 #define d_code(dist) \
    ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)])
 /* Mapping from a distance to a distance code. dist is the distance - 1 and
  * must not have side effects. _dist_code[256] and _dist_code[257] are never
  * used.
  */
 
 #ifndef DEBUG
 /* Inline versions of _tr_tally for speed: */
 
 #if defined(GEN_TREES_H) || !defined(STDC)
-  extern uch _length_code[];
-  extern uch _dist_code[];
+  extern uch ZLIB_INTERNAL _length_code[];
+  extern uch ZLIB_INTERNAL _dist_code[];
 #else
-  extern const uch _length_code[];
-  extern const uch _dist_code[];
+  extern const uch ZLIB_INTERNAL _length_code[];
+  extern const uch ZLIB_INTERNAL _dist_code[];
 #endif
 
 # define _tr_tally_lit(s, c, flush) \
   { uch cc = (c); \
     s->d_buf[s->last_lit] = 0; \
     s->l_buf[s->last_lit++] = cc; \
     s->dyn_ltree[cc].Freq++; \
     flush = (s->last_lit == s->lit_bufsize-1); \
new file mode 100644
--- /dev/null
+++ b/modules/zlib/src/gzclose.c
@@ -0,0 +1,25 @@
+/* gzclose.c -- zlib gzclose() function
+ * Copyright (C) 2004, 2010 Mark Adler
+ * For conditions of distribution and use, see copyright notice in zlib.h
+ */
+
+#include "gzguts.h"
+
+/* gzclose() is in a separate file so that it is linked in only if it is used.
+   That way the other gzclose functions can be used instead to avoid linking in
+   unneeded compression or decompression routines. */
+int ZEXPORT gzclose(file)
+    gzFile file;
+{
+#ifndef NO_GZCOMPRESS
+    gz_statep state;
+
+    if (file == NULL)
+        return Z_STREAM_ERROR;
+    state = (gz_statep)file;
+
+    return state->mode == GZ_READ ? gzclose_r(file) : gzclose_w(file);
+#else
+    return gzclose_r(file);
+#endif
+}
new file mode 100644
--- /dev/null
+++ b/modules/zlib/src/gzguts.h
@@ -0,0 +1,132 @@
+/* gzguts.h -- zlib internal header definitions for gz* operations
+ * Copyright (C) 2004, 2005, 2010 Mark Adler
+ * For conditions of distribution and use, see copyright notice in zlib.h
+ */
+
+#ifdef _LARGEFILE64_SOURCE
+#  ifndef _LARGEFILE_SOURCE
+#    define _LARGEFILE_SOURCE 1
+#  endif
+#  ifdef _FILE_OFFSET_BITS
+#    undef _FILE_OFFSET_BITS
+#  endif
+#endif
+
+#if ((__GNUC__-0) * 10 + __GNUC_MINOR__-0 >= 33) && !defined(NO_VIZ)
+#  define ZLIB_INTERNAL __attribute__((visibility ("hidden")))
+#else
+#  define ZLIB_INTERNAL
+#endif
+
+#include <stdio.h>
+#include "zlib.h"
+#ifdef STDC
+#  include <string.h>
+#  include <stdlib.h>
+#  include <limits.h>
+#endif
+#include <fcntl.h>
+
+#ifdef NO_DEFLATE       /* for compatibility with old definition */
+#  define NO_GZCOMPRESS
+#endif
+
+#ifdef _MSC_VER
+#  include <io.h>
+#  define vsnprintf _vsnprintf
+#endif
+
+#ifndef local
+#  define local static
+#endif
+/* compile with -Dlocal if your debugger can't find static symbols */
+
+/* gz* functions always use library allocation functions */
+#ifndef STDC
+  extern voidp  malloc OF((uInt size));
+  extern void   free   OF((voidpf ptr));
+#endif
+
+/* get errno and strerror definition */
+#if defined UNDER_CE
+#  include <windows.h>
+#  define zstrerror() gz_strwinerror((DWORD)GetLastError())
+#else
+#  ifdef STDC
+#    include <errno.h>
+#    define zstrerror() strerror(errno)
+#  else
+#    define zstrerror() "stdio error (consult errno)"
+#  endif
+#endif
+
+/* provide prototypes for these when building zlib without LFS */
+#if !defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0
+    ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *));
+    ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int));
+    ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile));
+    ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile));
+#endif
+
+/* default i/o buffer size -- double this for output when reading */
+#define GZBUFSIZE 8192
+
+/* gzip modes, also provide a little integrity check on the passed structure */
+#define GZ_NONE 0
+#define GZ_READ 7247
+#define GZ_WRITE 31153
+#define GZ_APPEND 1     /* mode set to GZ_WRITE after the file is opened */
+
+/* values for gz_state how */
+#define LOOK 0      /* look for a gzip header */
+#define COPY 1      /* copy input directly */
+#define GZIP 2      /* decompress a gzip stream */
+
+/* internal gzip file state data structure */
+typedef struct {
+        /* used for both reading and writing */
+    int mode;               /* see gzip modes above */
+    int fd;                 /* file descriptor */
+    char *path;             /* path or fd for error messages */
+    z_off64_t pos;          /* current position in uncompressed data */
+    unsigned size;          /* buffer size, zero if not allocated yet */
+    unsigned want;          /* requested buffer size, default is GZBUFSIZE */
+    unsigned char *in;      /* input buffer */
+    unsigned char *out;     /* output buffer (double-sized when reading) */
+    unsigned char *next;    /* next output data to deliver or write */
+        /* just for reading */
+    unsigned have;          /* amount of output data unused at next */
+    int eof;                /* true if end of input file reached */
+    z_off64_t start;        /* where the gzip data started, for rewinding */
+    z_off64_t raw;          /* where the raw data started, for seeking */
+    int how;                /* 0: get header, 1: copy, 2: decompress */
+    int direct;             /* true if last read direct, false if gzip */
+        /* just for writing */
+    int level;              /* compression level */
+    int strategy;           /* compression strategy */
+        /* seek request */
+    z_off64_t skip;         /* amount to skip (already rewound if backwards) */
+    int seek;               /* true if seek request pending */
+        /* error information */
+    int err;                /* error code */
+    char *msg;              /* error message */
+        /* zlib inflate or deflate stream */
+    z_stream strm;          /* stream structure in-place (not a pointer) */
+} gz_state;
+typedef gz_state FAR *gz_statep;
+
+/* shared functions */
+void ZLIB_INTERNAL gz_error OF((gz_statep, int, const char *));
+#if defined UNDER_CE
+char ZLIB_INTERNAL *gz_strwinerror OF((DWORD error));
+#endif
+
+/* GT_OFF(x), where x is an unsigned value, is true if x > maximum z_off64_t
+   value -- needed when comparing unsigned to z_off64_t, which is signed
+   (possible z_off64_t types off_t, off64_t, and long are all signed) */
+#ifdef INT_MAX
+#  define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > INT_MAX)
+#else
+unsigned ZLIB_INTERNAL gz_intmax OF((void));
+#  define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > gz_intmax())
+#endif
deleted file mode 100644
--- a/modules/zlib/src/gzio.c
+++ /dev/null
@@ -1,1026 +0,0 @@
-/* gzio.c -- IO on .gz files
- * Copyright (C) 1995-2005 Jean-loup Gailly.
- * For conditions of distribution and use, see copyright notice in zlib.h
- *
- * Compile this file with -DNO_GZCOMPRESS to avoid the compression code.
- */
-
-/* @(#) $Id: gzio.c,v 3.7 2005/08/04 19:14:14 tor%cs.brown.edu Exp $ */
-
-#include <stdio.h>
-
-#include "zutil.h"
-
-#ifdef NO_DEFLATE       /* for compatibility with old definition */
-#  define NO_GZCOMPRESS
-#endif
-
-#ifndef NO_DUMMY_DECL
-struct internal_state {int dummy;}; /* for buggy compilers */
-#endif
-
-#ifndef Z_BUFSIZE
-#  ifdef MAXSEG_64K
-#    define Z_BUFSIZE 4096 /* minimize memory usage for 16-bit DOS */
-#  else
-#    define Z_BUFSIZE 16384
-#  endif
-#endif
-#ifndef Z_PRINTF_BUFSIZE
-#  define Z_PRINTF_BUFSIZE 4096
-#endif
-
-#ifdef __MVS__
-#  pragma map (fdopen , "\174\174FDOPEN")
-   FILE *fdopen(int, const char *);
-#endif
-
-#ifndef STDC
-extern voidp  malloc OF((uInt size));
-extern void   free   OF((voidpf ptr));
-#endif
-
-#define ALLOC(size) malloc(size)
-#define TRYFREE(p) {if (p) free(p);}
-
-static int const gz_magic[2] = {0x1f, 0x8b}; /* gzip magic header */
-
-/* gzip flag byte */
-#define ASCII_FLAG   0x01 /* bit 0 set: file probably ascii text */
-#define HEAD_CRC     0x02 /* bit 1 set: header CRC present */
-#define EXTRA_FIELD  0x04 /* bit 2 set: extra field present */
-#define ORIG_NAME    0x08 /* bit 3 set: original file name present */
-#define COMMENT      0x10 /* bit 4 set: file comment present */
-#define RESERVED     0xE0 /* bits 5..7: reserved */
-
-typedef struct gz_stream {
-    z_stream stream;
-    int      z_err;   /* error code for last stream operation */
-    int      z_eof;   /* set if end of input file */
-    FILE     *file;   /* .gz file */
-    Byte     *inbuf;  /* input buffer */
-    Byte     *outbuf; /* output buffer */
-    uLong    crc;     /* crc32 of uncompressed data */
-    char     *msg;    /* error message */
-    char     *path;   /* path name for debugging only */
-    int      transparent; /* 1 if input file is not a .gz file */
-    char     mode;    /* 'w' or 'r' */
-    z_off_t  start;   /* start of compressed data in file (header skipped) */
-    z_off_t  in;      /* bytes into deflate or inflate */
-    z_off_t  out;     /* bytes out of deflate or inflate */
-    int      back;    /* one character push-back */
-    int      last;    /* true if push-back is last character */
-} gz_stream;
-
-
-local gzFile gz_open      OF((const char *path, const char *mode, int  fd));
-local int do_flush        OF((gzFile file, int flush));
-local int    get_byte     OF((gz_stream *s));
-local void   check_header OF((gz_stream *s));
-local int    destroy      OF((gz_stream *s));
-local void   putLong      OF((FILE *file, uLong x));
-local uLong  getLong      OF((gz_stream *s));
-
-/* ===========================================================================
-     Opens a gzip (.gz) file for reading or writing. The mode parameter
-   is as in fopen ("rb" or "wb"). The file is given either by file descriptor
-   or path name (if fd == -1).
-     gz_open returns NULL if the file could not be opened or if there was
-   insufficient memory to allocate the (de)compression state; errno
-   can be checked to distinguish the two cases (if errno is zero, the
-   zlib error is Z_MEM_ERROR).
-*/
-local gzFile gz_open (path, mode, fd)
-    const char *path;
-    const char *mode;
-    int  fd;
-{
-    int err;
-    int level = Z_DEFAULT_COMPRESSION; /* compression level */
-    int strategy = Z_DEFAULT_STRATEGY; /* compression strategy */
-    char *p = (char*)mode;
-    gz_stream *s;
-    char fmode[80]; /* copy of mode, without the compression level */
-    char *m = fmode;
-
-    if (!path || !mode) return Z_NULL;
-
-    s = (gz_stream *)ALLOC(sizeof(gz_stream));
-    if (!s) return Z_NULL;
-
-    s->stream.zalloc = (alloc_func)0;
-    s->stream.zfree = (free_func)0;
-    s->stream.opaque = (voidpf)0;
-    s->stream.next_in = s->inbuf = Z_NULL;
-    s->stream.next_out = s->outbuf = Z_NULL;
-    s->stream.avail_in = s->stream.avail_out = 0;
-    s->file = NULL;
-    s->z_err = Z_OK;
-    s->z_eof = 0;
-    s->in = 0;
-    s->out = 0;
-    s->back = EOF;
-    s->crc = crc32(0L, Z_NULL, 0);
-    s->msg = NULL;
-    s->transparent = 0;
-
-    s->path = (char*)ALLOC(strlen(path)+1);
-    if (s->path == NULL) {
-        return destroy(s), (gzFile)Z_NULL;
-    }
-    strcpy(s->path, path); /* do this early for debugging */
-
-    s->mode = '\0';
-    do {
-        if (*p == 'r') s->mode = 'r';
-        if (*p == 'w' || *p == 'a') s->mode = 'w';
-        if (*p >= '0' && *p <= '9') {
-            level = *p - '0';
-        } else if (*p == 'f') {
-          strategy = Z_FILTERED;
-        } else if (*p == 'h') {
-          strategy = Z_HUFFMAN_ONLY;
-        } else if (*p == 'R') {
-          strategy = Z_RLE;
-        } else {
-            *m++ = *p; /* copy the mode */
-        }
-    } while (*p++ && m != fmode + sizeof(fmode));
-    if (s->mode == '\0') return destroy(s), (gzFile)Z_NULL;
-
-    if (s->mode == 'w') {
-#ifdef NO_GZCOMPRESS
-        err = Z_STREAM_ERROR;
-#else
-        err = deflateInit2(&(s->stream), level,
-                           Z_DEFLATED, -MAX_WBITS, DEF_MEM_LEVEL, strategy);
-        /* windowBits is passed < 0 to suppress zlib header */
-
-        s->stream.next_out = s->outbuf = (Byte*)ALLOC(Z_BUFSIZE);
-#endif
-        if (err != Z_OK || s->outbuf == Z_NULL) {
-            return destroy(s), (gzFile)Z_NULL;
-        }
-    } else {
-        s->stream.next_in  = s->inbuf = (Byte*)ALLOC(Z_BUFSIZE);
-
-        err = inflateInit2(&(s->stream), -MAX_WBITS);
-        /* windowBits is passed < 0 to tell that there is no zlib header.
-         * Note that in this case inflate *requires* an extra "dummy" byte
-         * after the compressed stream in order to complete decompression and
-         * return Z_STREAM_END. Here the gzip CRC32 ensures that 4 bytes are
-         * present after the compressed stream.
-         */
-        if (err != Z_OK || s->inbuf == Z_NULL) {
-            return destroy(s), (gzFile)Z_NULL;
-        }
-    }
-    s->stream.avail_out = Z_BUFSIZE;
-
-    errno = 0;
-    s->file = fd < 0 ? F_OPEN(path, fmode) : (FILE*)fdopen(fd, fmode);
-
-    if (s->file == NULL) {
-        return destroy(s), (gzFile)Z_NULL;
-    }
-    if (s->mode == 'w') {
-        /* Write a very simple .gz header:
-         */
-        fprintf(s->file, "%c%c%c%c%c%c%c%c%c%c", gz_magic[0], gz_magic[1],
-             Z_DEFLATED, 0 /*flags*/, 0,0,0,0 /*time*/, 0 /*xflags*/, OS_CODE);
-        s->start = 10L;
-        /* We use 10L instead of ftell(s->file) to because ftell causes an
-         * fflush on some systems. This version of the library doesn't use
-         * start anyway in write mode, so this initialization is not
-         * necessary.
-         */
-    } else {
-        check_header(s); /* skip the .gz header */
-        s->start = ftell(s->file) - s->stream.avail_in;
-    }
-
-    return (gzFile)s;
-}
-
-/* ===========================================================================
-     Opens a gzip (.gz) file for reading or writing.
-*/
-gzFile ZEXPORT gzopen (path, mode)
-    const char *path;
-    const char *mode;
-{
-    return gz_open (path, mode, -1);
-}
-
-/* ===========================================================================
-     Associate a gzFile with the file descriptor fd. fd is not dup'ed here
-   to mimic the behavio(u)r of fdopen.
-*/
-gzFile ZEXPORT gzdopen (fd, mode)
-    int fd;
-    const char *mode;
-{
-    char name[46];      /* allow for up to 128-bit integers */
-
-    if (fd < 0) return (gzFile)Z_NULL;
-    sprintf(name, "<fd:%d>", fd); /* for debugging */
-
-    return gz_open (name, mode, fd);
-}
-
-/* ===========================================================================
- * Update the compression level and strategy
- */
-int ZEXPORT gzsetparams (file, level, strategy)
-    gzFile file;
-    int level;
-    int strategy;
-{
-    gz_stream *s = (gz_stream*)file;
-
-    if (s == NULL || s->mode != 'w') return Z_STREAM_ERROR;
-
-    /* Make room to allow flushing */
-    if (s->stream.avail_out == 0) {
-
-        s->stream.next_out = s->outbuf;
-        if (fwrite(s->outbuf, 1, Z_BUFSIZE, s->file) != Z_BUFSIZE) {
-            s->z_err = Z_ERRNO;
-        }
-        s->stream.avail_out = Z_BUFSIZE;
-    }
-
-    return deflateParams (&(s->stream), level, strategy);
-}
-
-/* ===========================================================================
-     Read a byte from a gz_stream; update next_in and avail_in. Return EOF
-   for end of file.
-   IN assertion: the stream s has been sucessfully opened for reading.
-*/
-local int get_byte(s)
-    gz_stream *s;
-{
-    if (s->z_eof) return EOF;
-    if (s->stream.avail_in == 0) {
-        errno = 0;
-        s->stream.avail_in = (uInt)fread(s->inbuf, 1, Z_BUFSIZE, s->file);
-        if (s->stream.avail_in == 0) {
-            s->z_eof = 1;
-            if (ferror(s->file)) s->z_err = Z_ERRNO;
-            return EOF;
-        }
-        s->stream.next_in = s->inbuf;
-    }
-    s->stream.avail_in--;
-    return *(s->stream.next_in)++;
-}
-
-/* ===========================================================================
-      Check the gzip header of a gz_stream opened for reading. Set the stream
-    mode to transparent if the gzip magic header is not present; set s->err
-    to Z_DATA_ERROR if the magic header is present but the rest of the header
-    is incorrect.
-    IN assertion: the stream s has already been created sucessfully;
-       s->stream.avail_in is zero for the first time, but may be non-zero
-       for concatenated .gz files.
-*/
-local void check_header(s)
-    gz_stream *s;
-{
-    int method; /* method byte */
-    int flags;  /* flags byte */
-    uInt len;
-    int c;
-
-    /* Assure two bytes in the buffer so we can peek ahead -- handle case
-       where first byte of header is at the end of the buffer after the last
-       gzip segment */
-    len = s->stream.avail_in;
-    if (len < 2) {
-        if (len) s->inbuf[0] = s->stream.next_in[0];
-        errno = 0;
-        len = (uInt)fread(s->inbuf + len, 1, Z_BUFSIZE >> len, s->file);
-        if (len == 0 && ferror(s->file)) s->z_err = Z_ERRNO;
-        s->stream.avail_in += len;
-        s->stream.next_in = s->inbuf;
-        if (s->stream.avail_in < 2) {
-            s->transparent = s->stream.avail_in;
-            return;
-        }
-    }
-
-    /* Peek ahead to check the gzip magic header */
-    if (s->stream.next_in[0] != gz_magic[0] ||
-        s->stream.next_in[1] != gz_magic[1]) {
-        s->transparent = 1;
-        return;
-    }
-    s->stream.avail_in -= 2;
-    s->stream.next_in += 2;
-
-    /* Check the rest of the gzip header */
-    method = get_byte(s);
-    flags = get_byte(s);
-    if (method != Z_DEFLATED || (flags & RESERVED) != 0) {
-        s->z_err = Z_DATA_ERROR;
-        return;
-    }
-
-    /* Discard time, xflags and OS code: */
-    for (len = 0; len < 6; len++) (void)get_byte(s);
-
-    if ((flags & EXTRA_FIELD) != 0) { /* skip the extra field */
-        len  =  (uInt)get_byte(s);
-        len += ((uInt)get_byte(s))<<8;
-        /* len is garbage if EOF but the loop below will quit anyway */
-        while (len-- != 0 && get_byte(s) != EOF) ;
-    }
-    if ((flags & ORIG_NAME) != 0) { /* skip the original file name */
-        while ((c = get_byte(s)) != 0 && c != EOF) ;
-    }
-    if ((flags & COMMENT) != 0) {   /* skip the .gz file comment */
-        while ((c = get_byte(s)) != 0 && c != EOF) ;
-    }
-    if ((flags & HEAD_CRC) != 0) {  /* skip the header crc */
-        for (len = 0; len < 2; len++) (void)get_byte(s);
-    }
-    s->z_err = s->z_eof ? Z_DATA_ERROR : Z_OK;
-}
-
- /* ===========================================================================
- * Cleanup then free the given gz_stream. Return a zlib error code.
-   Try freeing in the reverse order of allocations.
- */
-local int destroy (s)
-    gz_stream *s;
-{
-    int err = Z_OK;
-
-    if (!s) return Z_STREAM_ERROR;
-
-    TRYFREE(s->msg);
-
-    if (s->stream.state != NULL) {
-        if (s->mode == 'w') {
-#ifdef NO_GZCOMPRESS
-            err = Z_STREAM_ERROR;
-#else
-            err = deflateEnd(&(s->stream));
-#endif
-        } else if (s->mode == 'r') {
-            err = inflateEnd(&(s->stream));
-        }
-    }
-    if (s->file != NULL && fclose(s->file)) {
-#ifdef ESPIPE
-        if (errno != ESPIPE) /* fclose is broken for pipes in HP/UX */
-#endif
-            err = Z_ERRNO;
-    }
-    if (s->z_err < 0) err = s->z_err;
-
-    TRYFREE(s->inbuf);
-    TRYFREE(s->outbuf);
-    TRYFREE(s->path);
-    TRYFREE(s);
-    return err;
-}
-
-/* ===========================================================================
-     Reads the given number of uncompressed bytes from the compressed file.
-   gzread returns the number of bytes actually read (0 for end of file).
-*/
-int ZEXPORT gzread (file, buf, len)
-    gzFile file;
-    voidp buf;
-    unsigned len;
-{
-    gz_stream *s = (gz_stream*)file;
-    Bytef *start = (Bytef*)buf; /* starting point for crc computation */
-    Byte  *next_out; /* == stream.next_out but not forced far (for MSDOS) */
-
-    if (s == NULL || s->mode != 'r') return Z_STREAM_ERROR;
-
-    if (s->z_err == Z_DATA_ERROR || s->z_err == Z_ERRNO) return -1;
-    if (s->z_err == Z_STREAM_END) return 0;  /* EOF */
-
-    next_out = (Byte*)buf;
-    s->stream.next_out = (Bytef*)buf;
-    s->stream.avail_out = len;
-
-    if (s->stream.avail_out && s->back != EOF) {
-        *next_out++ = s->back;
-        s->stream.next_out++;
-        s->stream.avail_out--;
-        s->back = EOF;
-        s->out++;
-        start++;
-        if (s->last) {
-            s->z_err = Z_STREAM_END;
-            return 1;
-        }
-    }
-
-    while (s->stream.avail_out != 0) {
-
-        if (s->transparent) {
-            /* Copy first the lookahead bytes: */
-            uInt n = s->stream.avail_in;
-            if (n > s->stream.avail_out) n = s->stream.avail_out;
-            if (n > 0) {
-                zmemcpy(s->stream.next_out, s->stream.next_in, n);
-                next_out += n;
-                s->stream.next_out = next_out;
-                s->stream.next_in   += n;
-                s->stream.avail_out -= n;
-                s->stream.avail_in  -= n;
-            }
-            if (s->stream.avail_out > 0) {
-                s->stream.avail_out -=
-                    (uInt)fread(next_out, 1, s->stream.avail_out, s->file);
-            }
-            len -= s->stream.avail_out;
-            s->in  += len;
-            s->out += len;
-            if (len == 0) s->z_eof = 1;
-            return (int)len;
-        }
-        if (s->stream.avail_in == 0 && !s->z_eof) {
-
-            errno = 0;
-            s->stream.avail_in = (uInt)fread(s->inbuf, 1, Z_BUFSIZE, s->file);
-            if (s->stream.avail_in == 0) {
-                s->z_eof = 1;
-                if (ferror(s->file)) {
-                    s->z_err = Z_ERRNO;
-                    break;
-                }
-            }
-            s->stream.next_in = s->inbuf;
-        }
-        s->in += s->stream.avail_in;
-        s->out += s->stream.avail_out;
-        s->z_err = inflate(&(s->stream), Z_NO_FLUSH);
-        s->in -= s->stream.avail_in;
-        s->out -= s->stream.avail_out;
-
-        if (s->z_err == Z_STREAM_END) {
-            /* Check CRC and original size */
-            s->crc = crc32(s->crc, start, (uInt)(s->stream.next_out - start));
-            start = s->stream.next_out;
-
-            if (getLong(s) != s->crc) {
-                s->z_err = Z_DATA_ERROR;
-            } else {
-                (void)getLong(s);
-                /* The uncompressed length returned by above getlong() may be
-                 * different from s->out in case of concatenated .gz files.
-                 * Check for such files:
-                 */
-                check_header(s);
-                if (s->z_err == Z_OK) {
-                    inflateReset(&(s->stream));
-                    s->crc = crc32(0L, Z_NULL, 0);
-                }
-            }
-        }
-        if (s->z_err != Z_OK || s->z_eof) break;
-    }
-    s->crc = crc32(s->crc, start, (uInt)(s->stream.next_out - start));
-
-    if (len == s->stream.avail_out &&
-        (s->z_err == Z_DATA_ERROR || s->z_err == Z_ERRNO))
-        return -1;
-    return (int)(len - s->stream.avail_out);
-}
-
-
-/* ===========================================================================
-      Reads one byte from the compressed file. gzgetc returns this byte
-   or -1 in case of end of file or error.
-*/
-int ZEXPORT gzgetc(file)
-    gzFile file;
-{
-    unsigned char c;
-
-    return gzread(file, &c, 1) == 1 ? c : -1;
-}
-
-
-/* ===========================================================================
-      Push one byte back onto the stream.
-*/
-int ZEXPORT gzungetc(c, file)
-    int c;
-    gzFile file;
-{
-    gz_stream *s = (gz_stream*)file;
-
-    if (s == NULL || s->mode != 'r' || c == EOF || s->back != EOF) return EOF;
-    s->back = c;
-    s->out--;
-    s->last = (s->z_err == Z_STREAM_END);
-    if (s->last) s->z_err = Z_OK;
-    s->z_eof = 0;
-    return c;
-}
-
-
-/* ===========================================================================
-      Reads bytes from the compressed file until len-1 characters are
-   read, or a newline character is read and transferred to buf, or an
-   end-of-file condition is encountered.  The string is then terminated
-   with a null character.
-      gzgets returns buf, or Z_NULL in case of error.
-
-      The current implementation is not optimized at all.
-*/
-char * ZEXPORT gzgets(file, buf, len)
-    gzFile file;
-    char *buf;
-    int len;
-{
-    char *b = buf;
-    if (buf == Z_NULL || len <= 0) return Z_NULL;
-
-    while (--len > 0 && gzread(file, buf, 1) == 1 && *buf++ != '\n') ;
-    *buf = '\0';
-    return b == buf && len > 0 ? Z_NULL : b;
-}
-
-
-#ifndef NO_GZCOMPRESS
-/* ===========================================================================
-     Writes the given number of uncompressed bytes into the compressed file.
-   gzwrite returns the number of bytes actually written (0 in case of error).
-*/
-int ZEXPORT gzwrite (file, buf, len)
-    gzFile file;
-    voidpc buf;
-    unsigned len;
-{
-    gz_stream *s = (gz_stream*)file;
-
-    if (s == NULL || s->mode != 'w') return Z_STREAM_ERROR;
-
-    s->stream.next_in = (Bytef*)buf;
-    s->stream.avail_in = len;
-
-    while (s->stream.avail_in != 0) {
-
-        if (s->stream.avail_out == 0) {
-
-            s->stream.next_out = s->outbuf;
-            if (fwrite(s->outbuf, 1, Z_BUFSIZE, s->file) != Z_BUFSIZE) {
-                s->z_err = Z_ERRNO;
-                break;
-            }
-            s->stream.avail_out = Z_BUFSIZE;
-        }
-        s->in += s->stream.avail_in;
-        s->out += s->stream.avail_out;
-        s->z_err = deflate(&(s->stream), Z_NO_FLUSH);
-        s->in -= s->stream.avail_in;
-        s->out -= s->stream.avail_out;
-        if (s->z_err != Z_OK) break;
-    }
-    s->crc = crc32(s->crc, (const Bytef *)buf, len);
-
-    return (int)(len - s->stream.avail_in);
-}
-
-
-/* ===========================================================================
-     Converts, formats, and writes the args to the compressed file under
-   control of the format string, as in fprintf. gzprintf returns the number of
-   uncompressed bytes actually written (0 in case of error).
-*/
-#ifdef STDC
-#include <stdarg.h>
-
-int ZEXPORTVA gzprintf (gzFile file, const char *format, /* args */ ...)
-{
-    char buf[Z_PRINTF_BUFSIZE];
-    va_list va;
-    int len;
-
-    buf[sizeof(buf) - 1] = 0;
-    va_start(va, format);
-#ifdef NO_vsnprintf
-#  ifdef HAS_vsprintf_void
-    (void)vsprintf(buf, format, va);
-    va_end(va);
-    for (len = 0; len < sizeof(buf); len++)
-        if (buf[len] == 0) break;
-#  else
-    len = vsprintf(buf, format, va);
-    va_end(va);
-#  endif
-#else
-#  ifdef HAS_vsnprintf_void
-    (void)vsnprintf(buf, sizeof(buf), format, va);
-    va_end(va);
-    len = strlen(buf);
-#  else
-    len = vsnprintf(buf, sizeof(buf), format, va);
-    va_end(va);
-#  endif
-#endif
-    if (len <= 0 || len >= (int)sizeof(buf) || buf[sizeof(buf) - 1] != 0)
-        return 0;
-    return gzwrite(file, buf, (unsigned)len);
-}
-#else /* not ANSI C */
-
-int ZEXPORTVA gzprintf (file, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10,
-                       a11, a12, a13, a14, a15, a16, a17, a18, a19, a20)
-    gzFile file;
-    const char *format;
-    int a1, a2, a3, a4, a5, a6, a7, a8, a9, a10,
-        a11, a12, a13, a14, a15, a16, a17, a18, a19, a20;
-{
-    char buf[Z_PRINTF_BUFSIZE];
-    int len;
-
-    buf[sizeof(buf) - 1] = 0;
-#ifdef NO_snprintf
-#  ifdef HAS_sprintf_void
-    sprintf(buf, format, a1, a2, a3, a4, a5, a6, a7, a8,
-            a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20);
-    for (len = 0; len < sizeof(buf); len++)
-        if (buf[len] == 0) break;
-#  else
-    len = sprintf(buf, format, a1, a2, a3, a4, a5, a6, a7, a8,
-                a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20);
-#  endif
-#else
-#  ifdef HAS_snprintf_void
-    snprintf(buf, sizeof(buf), format, a1, a2, a3, a4, a5, a6, a7, a8,
-             a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20);
-    len = strlen(buf);
-#  else
-    len = snprintf(buf, sizeof(buf), format, a1, a2, a3, a4, a5, a6, a7, a8,
-                 a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20);
-#  endif
-#endif
-    if (len <= 0 || len >= sizeof(buf) || buf[sizeof(buf) - 1] != 0)
-        return 0;
-    return gzwrite(file, buf, len);
-}
-#endif
-
-/* ===========================================================================
-      Writes c, converted to an unsigned char, into the compressed file.
-   gzputc returns the value that was written, or -1 in case of error.
-*/
-int ZEXPORT gzputc(file, c)
-    gzFile file;
-    int c;
-{
-    unsigned char cc = (unsigned char) c; /* required for big endian systems */
-
-    return gzwrite(file, &cc, 1) == 1 ? (int)cc : -1;
-}
-
-
-/* ===========================================================================
-      Writes the given null-terminated string to the compressed file, excluding
-   the terminating null character.
-      gzputs returns the number of characters written, or -1 in case of error.
-*/
-int ZEXPORT gzputs(file, s)
-    gzFile file;
-    const char *s;
-{
-    return gzwrite(file, (char*)s, (unsigned)strlen(s));
-}
-
-
-/* ===========================================================================
-     Flushes all pending output into the compressed file. The parameter
-   flush is as in the deflate() function.
-*/
-local int do_flush (file, flush)
-    gzFile file;
-    int flush;
-{
-    uInt len;
-    int done = 0;
-    gz_stream *s = (gz_stream*)file;
-
-    if (s == NULL || s->mode != 'w') return Z_STREAM_ERROR;
-
-    s->stream.avail_in = 0; /* should be zero already anyway */
-
-    for (;;) {
-        len = Z_BUFSIZE - s->stream.avail_out;
-
-        if (len != 0) {
-            if ((uInt)fwrite(s->outbuf, 1, len, s->file) != len) {
-                s->z_err = Z_ERRNO;
-                return Z_ERRNO;
-            }
-            s->stream.next_out = s->outbuf;
-            s->stream.avail_out = Z_BUFSIZE;
-        }
-        if (done) break;
-        s->out += s->stream.avail_out;
-        s->z_err = deflate(&(s->stream), flush);
-        s->out -= s->stream.avail_out;
-
-        /* Ignore the second of two consecutive flushes: */
-        if (len == 0 && s->z_err == Z_BUF_ERROR) s->z_err = Z_OK;
-
-        /* deflate has finished flushing only when it hasn't used up
-         * all the available space in the output buffer:
-         */
-        done = (s->stream.avail_out != 0 || s->z_err == Z_STREAM_END);
-
-        if (s->z_err != Z_OK && s->z_err != Z_STREAM_END) break;
-    }
-    return  s->z_err == Z_STREAM_END ? Z_OK : s->z_err;
-}
-
-int ZEXPORT gzflush (file, flush)
-     gzFile file;
-     int flush;
-{
-    gz_stream *s = (gz_stream*)file;
-    int err = do_flush (file, flush);
-
-    if (err) return err;
-    fflush(s->file);
-    return  s->z_err == Z_STREAM_END ? Z_OK : s->z_err;
-}
-#endif /* NO_GZCOMPRESS */
-
-/* ===========================================================================
-      Sets the starting position for the next gzread or gzwrite on the given
-   compressed file. The offset represents a number of bytes in the
-      gzseek returns the resulting offset location as measured in bytes from
-   the beginning of the uncompressed stream, or -1 in case of error.
-      SEEK_END is not implemented, returns error.
-      In this version of the library, gzseek can be extremely slow.
-*/
-z_off_t ZEXPORT gzseek (file, offset, whence)
-    gzFile file;
-    z_off_t offset;
-    int whence;
-{
-    gz_stream *s = (gz_stream*)file;
-
-    if (s == NULL || whence == SEEK_END ||
-        s->z_err == Z_ERRNO || s->z_err == Z_DATA_ERROR) {
-        return -1L;
-    }
-
-    if (s->mode == 'w') {
-#ifdef NO_GZCOMPRESS
-        return -1L;
-#else
-        if (whence == SEEK_SET) {
-            offset -= s->in;
-        }
-        if (offset < 0) return -1L;
-
-        /* At this point, offset is the number of zero bytes to write. */
-        if (s->inbuf == Z_NULL) {
-            s->inbuf = (Byte*)ALLOC(Z_BUFSIZE); /* for seeking */
-            if (s->inbuf == Z_NULL) return -1L;
-            zmemzero(s->inbuf, Z_BUFSIZE);
-        }
-        while (offset > 0)  {
-            uInt size = Z_BUFSIZE;
-            if (offset < Z_BUFSIZE) size = (uInt)offset;
-
-            size = gzwrite(file, s->inbuf, size);
-            if (size == 0) return -1L;
-
-            offset -= size;
-        }
-        return s->in;
-#endif
-    }
-    /* Rest of function is for reading only */
-
-    /* compute absolute position */
-    if (whence == SEEK_CUR) {
-        offset += s->out;
-    }
-    if (offset < 0) return -1L;
-
-    if (s->transparent) {
-        /* map to fseek */
-        s->back = EOF;
-        s->stream.avail_in = 0;
-        s->stream.next_in = s->inbuf;
-        if (fseek(s->file, offset, SEEK_SET) < 0) return -1L;
-
-        s->in = s->out = offset;
-        return offset;
-    }
-
-    /* For a negative seek, rewind and use positive seek */
-    if (offset >= s->out) {
-        offset -= s->out;
-    } else if (gzrewind(file) < 0) {
-        return -1L;
-    }
-    /* offset is now the number of bytes to skip. */
-
-    if (offset != 0 && s->outbuf == Z_NULL) {
-        s->outbuf = (Byte*)ALLOC(Z_BUFSIZE);
-        if (s->outbuf == Z_NULL) return -1L;
-    }
-    if (offset && s->back != EOF) {
-        s->back = EOF;
-        s->out++;
-        offset--;
-        if (s->last) s->z_err = Z_STREAM_END;
-    }
-    while (offset > 0)  {
-        int size = Z_BUFSIZE;
-        if (offset < Z_BUFSIZE) size = (int)offset;
-
-        size = gzread(file, s->outbuf, (uInt)size);
-        if (size <= 0) return -1L;
-        offset -= size;
-    }
-    return s->out;
-}
-
-/* ===========================================================================
-     Rewinds input file.
-*/
-int ZEXPORT gzrewind (file)
-    gzFile file;
-{
-    gz_stream *s = (gz_stream*)file;
-
-    if (s == NULL || s->mode != 'r') return -1;
-
-    s->z_err = Z_OK;
-    s->z_eof = 0;
-    s->back = EOF;
-    s->stream.avail_in = 0;
-    s->stream.next_in = s->inbuf;
-    s->crc = crc32(0L, Z_NULL, 0);
-    if (!s->transparent) (void)inflateReset(&s->stream);
-    s->in = 0;
-    s->out = 0;
-    return fseek(s->file, s->start, SEEK_SET);
-}
-
-/* ===========================================================================
-     Returns the starting position for the next gzread or gzwrite on the
-   given compressed file. This position represents a number of bytes in the
-   uncompressed data stream.
-*/
-z_off_t ZEXPORT gztell (file)
-    gzFile file;
-{
-    return gzseek(file, 0L, SEEK_CUR);
-}
-
-/* ===========================================================================
-     Returns 1 when EOF has previously been detected reading the given
-   input stream, otherwise zero.
-*/
-int ZEXPORT gzeof (file)
-    gzFile file;
-{
-    gz_stream *s = (gz_stream*)file;
-
-    /* With concatenated compressed files that can have embedded
-     * crc trailers, z_eof is no longer the only/best indicator of EOF
-     * on a gz_stream. Handle end-of-stream error explicitly here.
-     */
-    if (s == NULL || s->mode != 'r') return 0;
-    if (s->z_eof) return 1;
-    return s->z_err == Z_STREAM_END;
-}
-
-/* ===========================================================================
-     Returns 1 if reading and doing so transparently, otherwise zero.
-*/
-int ZEXPORT gzdirect (file)
-    gzFile file;
-{
-    gz_stream *s = (gz_stream*)file;
-
-    if (s == NULL || s->mode != 'r') return 0;
-    return s->transparent;
-}
-
-/* ===========================================================================
-   Outputs a long in LSB order to the given file
-*/
-local void putLong (file, x)
-    FILE *file;
-    uLong x;
-{
-    int n;
-    for (n = 0; n < 4; n++) {
-        fputc((int)(x & 0xff), file);
-        x >>= 8;
-    }
-}
-
-/* ===========================================================================
-   Reads a long in LSB order from the given gz_stream. Sets z_err in case
-   of error.
-*/
-local uLong getLong (s)
-    gz_stream *s;
-{
-    uLong x = (uLong)get_byte(s);
-    int c;
-
-    x += ((uLong)get_byte(s))<<8;
-    x += ((uLong)get_byte(s))<<16;
-    c = get_byte(s);
-    if (c == EOF) s->z_err = Z_DATA_ERROR;
-    x += ((uLong)c)<<24;
-    return x;
-}
-
-/* ===========================================================================
-     Flushes all pending output if necessary, closes the compressed file
-   and deallocates all the (de)compression state.
-*/
-int ZEXPORT gzclose (file)
-    gzFile file;
-{
-    gz_stream *s = (gz_stream*)file;
-
-    if (s == NULL) return Z_STREAM_ERROR;
-
-    if (s->mode == 'w') {
-#ifdef NO_GZCOMPRESS
-        return Z_STREAM_ERROR;
-#else
-        if (do_flush (file, Z_FINISH) != Z_OK)
-            return destroy((gz_stream*)file);
-
-        putLong (s->file, s->crc);
-        putLong (s->file, (uLong)(s->in & 0xffffffff));
-#endif
-    }
-    return destroy((gz_stream*)file);
-}
-
-#ifdef STDC
-#  define zstrerror(errnum) strerror(errnum)
-#else
-#  define zstrerror(errnum) ""
-#endif
-
-/* ===========================================================================
-     Returns the error message for the last error which occurred on the
-   given compressed file. errnum is set to zlib error number. If an
-   error occurred in the file system and not in the compression library,
-   errnum is set to Z_ERRNO and the application may consult errno
-   to get the exact error code.
-*/
-const char * ZEXPORT gzerror (file, errnum)
-    gzFile file;
-    int *errnum;
-{
-    char *m;
-    gz_stream *s = (gz_stream*)file;
-
-    if (s == NULL) {
-        *errnum = Z_STREAM_ERROR;
-        return (const char*)ERR_MSG(Z_STREAM_ERROR);
-    }
-    *errnum = s->z_err;
-    if (*errnum == Z_OK) return (const char*)"";
-
-    m = (char*)(*errnum == Z_ERRNO ? zstrerror(errno) : s->stream.msg);
-
-    if (m == NULL || *m == '\0') m = (char*)ERR_MSG(s->z_err);
-
-    TRYFREE(s->msg);
-    s->msg = (char*)ALLOC(strlen(s->path) + strlen(m) + 3);
-    if (s->msg == Z_NULL) return (const char*)ERR_MSG(Z_MEM_ERROR);
-    strcpy(s->msg, s->path);
-    strcat(s->msg, ": ");
-    strcat(s->msg, m);
-    return (const char*)s->msg;
-}
-
-/* ===========================================================================
-     Clear the error and end-of-file flags, and do the same for the real file.
-*/
-void ZEXPORT gzclearerr (file)
-    gzFile file;
-{
-    gz_stream *s = (gz_stream*)file;
-
-    if (s == NULL) return;
-    if (s->z_err != Z_STREAM_END) s->z_err = Z_OK;
-    s->z_eof = 0;
-    clearerr(s->file);
-}
new file mode 100644
--- /dev/null
+++ b/modules/zlib/src/gzlib.c
@@ -0,0 +1,537 @@
+/* gzlib.c -- zlib functions common to reading and writing gzip files
+ * Copyright (C) 2004, 2010 Mark Adler
+ * For conditions of distribution and use, see copyright notice in zlib.h
+ */
+
+#include "gzguts.h"
+
+#if defined(_LARGEFILE64_SOURCE) && _LFS64_LARGEFILE-0
+#  define LSEEK lseek64
+#else
+#  define LSEEK lseek
+#endif
+
+/* Local functions */
+local void gz_reset OF((gz_statep));
+local gzFile gz_open OF((const char *, int, const char *));
+
+#if defined UNDER_CE
+
+/* Map the Windows error number in ERROR to a locale-dependent error message
+   string and return a pointer to it.  Typically, the values for ERROR come
+   from GetLastError.
+
+   The string pointed to shall not be modified by the application, but may be
+   overwritten by a subsequent call to gz_strwinerror
+
+   The gz_strwinerror function does not change the current setting of
+   GetLastError. */
+char ZLIB_INTERNAL *gz_strwinerror (error)
+     DWORD error;
+{
+    static char buf[1024];
+
+    wchar_t *msgbuf;
+    DWORD lasterr = GetLastError();
+    DWORD chars = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM
+        | FORMAT_MESSAGE_ALLOCATE_BUFFER,
+        NULL,
+        error,
+        0, /* Default language */
+        (LPVOID)&msgbuf,
+        0,
+        NULL);
+    if (chars != 0) {
+        /* If there is an \r\n appended, zap it.  */
+        if (chars >= 2
+            && msgbuf[chars - 2] == '\r' && msgbuf[chars - 1] == '\n') {
+            chars -= 2;
+            msgbuf[chars] = 0;
+        }
+
+        if (chars > sizeof (buf) - 1) {
+            chars = sizeof (buf) - 1;
+            msgbuf[chars] = 0;
+        }
+
+        wcstombs(buf, msgbuf, chars + 1);
+        LocalFree(msgbuf);
+    }
+    else {
+        sprintf(buf, "unknown win32 error (%ld)", error);
+    }
+
+    SetLastError(lasterr);
+    return buf;
+}
+
+#endif /* UNDER_CE */
+
+/* Reset gzip file state */
+local void gz_reset(state)
+    gz_statep state;
+{
+    if (state->mode == GZ_READ) {   /* for reading ... */
+        state->have = 0;            /* no output data available */
+        state->eof = 0;             /* not at end of file */
+        state->how = LOOK;          /* look for gzip header */
+        state->direct = 1;          /* default for empty file */
+    }
+    state->seek = 0;                /* no seek request pending */
+    gz_error(state, Z_OK, NULL);    /* clear error */
+    state->pos = 0;                 /* no uncompressed data yet */
+    state->strm.avail_in = 0;       /* no input data yet */
+}
+
+/* Open a gzip file either by name or file descriptor. */
+local gzFile gz_open(path, fd, mode)
+    const char *path;
+    int fd;
+    const char *mode;
+{
+    gz_statep state;
+
+    /* allocate gzFile structure to return */
+    state = malloc(sizeof(gz_state));
+    if (state == NULL)
+        return NULL;
+    state->size = 0;            /* no buffers allocated yet */
+    state->want = GZBUFSIZE;    /* requested buffer size */
+    state->msg = NULL;          /* no error message yet */
+
+    /* interpret mode */
+    state->mode = GZ_NONE;
+    state->level = Z_DEFAULT_COMPRESSION;
+    state->strategy = Z_DEFAULT_STRATEGY;
+    while (*mode) {
+        if (*mode >= '0' && *mode <= '9')
+            state->level = *mode - '0';
+        else
+            switch (*mode) {
+            case 'r':
+                state->mode = GZ_READ;
+                break;
+#ifndef NO_GZCOMPRESS
+            case 'w':
+                state->mode = GZ_WRITE;
+                break;
+            case 'a':
+                state->mode = GZ_APPEND;
+                break;
+#endif
+            case '+':       /* can't read and write at the same time */
+                free(state);
+                return NULL;
+            case 'b':       /* ignore -- will request binary anyway */
+                break;
+            case 'f':
+                state->strategy = Z_FILTERED;
+                break;
+            case 'h':
+                state->strategy = Z_HUFFMAN_ONLY;
+                break;
+            case 'R':
+                state->strategy = Z_RLE;
+                break;
+            case 'F':
+                state->strategy = Z_FIXED;
+            default:        /* could consider as an error, but just ignore */
+                ;
+            }
+        mode++;
+    }
+
+    /* must provide an "r", "w", or "a" */
+    if (state->mode == GZ_NONE) {
+        free(state);
+        return NULL;
+    }
+
+    /* save the path name for error messages */
+    state->path = malloc(strlen(path) + 1);
+    if (state->path == NULL) {
+        free(state);
+        return NULL;
+    }
+    strcpy(state->path, path);
+
+    /* open the file with the appropriate mode (or just use fd) */
+    state->fd = fd != -1 ? fd :
+        open(path,
+#ifdef O_LARGEFILE
+            O_LARGEFILE |
+#endif
+#ifdef O_BINARY
+            O_BINARY |
+#endif
+            (state->mode == GZ_READ ?
+                O_RDONLY :
+                (O_WRONLY | O_CREAT | (
+                    state->mode == GZ_WRITE ?
+                        O_TRUNC :
+                        O_APPEND))),
+            0666);
+    if (state->fd == -1) {
+        free(state->path);
+        free(state);
+        return NULL;
+    }
+    if (state->mode == GZ_APPEND)
+        state->mode = GZ_WRITE;         /* simplify later checks */
+
+    /* save the current position for rewinding (only if reading) */
+    if (state->mode == GZ_READ) {
+        state->start = LSEEK(state->fd, 0, SEEK_CUR);
+        if (state->start == -1) state->start = 0;
+    }
+
+    /* initialize stream */
+    gz_reset(state);
+
+    /* return stream */
+    return (gzFile)state;
+}
+
+/* -- see zlib.h -- */
+gzFile ZEXPORT gzopen(path, mode)
+    const char *path;
+    const char *mode;
+{
+    return gz_open(path, -1, mode);
+}
+
+/* -- see zlib.h -- */
+gzFile ZEXPORT gzopen64(path, mode)
+    const char *path;
+    const char *mode;
+{
+    return gz_open(path, -1, mode);
+}
+
+/* -- see zlib.h -- */
+gzFile ZEXPORT gzdopen(fd, mode)
+    int fd;
+    const char *mode;
+{
+    char *path;         /* identifier for error messages */
+    gzFile gz;
+
+    if (fd == -1 || (path = malloc(7 + 3 * sizeof(int))) == NULL)
+        return NULL;
+    sprintf(path, "<fd:%d>", fd);   /* for debugging */
+    gz = gz_open(path, fd, mode);
+    free(path);
+    return gz;
+}
+
+/* -- see zlib.h -- */
+int ZEXPORT gzbuffer(file, size)
+    gzFile file;
+    unsigned size;
+{
+    gz_statep state;
+
+    /* get internal structure and check integrity */
+    if (file == NULL)
+        return -1;
+    state = (gz_statep)file;
+    if (state->mode != GZ_READ && state->mode != GZ_WRITE)
+        return -1;
+
+    /* make sure we haven't already allocated memory */
+    if (state->size != 0)
+        return -1;
+
+    /* check and set requested size */
+    if (size == 0)
+        return -1;
+    state->want = size;
+    return 0;
+}
+
+/* -- see zlib.h -- */
+int ZEXPORT gzrewind(file)
+    gzFile file;
+{
+    gz_statep state;
+
+    /* get internal structure */
+    if (file == NULL)
+        return -1;
+    state = (gz_statep)file;
+
+    /* check that we're reading and that there's no error */
+    if (state->mode != GZ_READ || state->err != Z_OK)
+        return -1;
+
+    /* back up and start over */
+    if (LSEEK(state->fd, state->start, SEEK_SET) == -1)
+        return -1;
+    gz_reset(state);
+    return 0;
+}
+
+/* -- see zlib.h -- */
+z_off64_t ZEXPORT gzseek64(file, offset, whence)
+    gzFile file;
+    z_off64_t offset;
+    int whence;
+{
+    unsigned n;
+    z_off64_t ret;
+    gz_statep state;
+
+    /* get internal structure and check integrity */
+    if (file == NULL)
+        return -1;
+    state = (gz_statep)file;
+    if (state->mode != GZ_READ && state->mode != GZ_WRITE)
+        return -1;
+
+    /* check that there's no error */
+    if (state->err != Z_OK)
+        return -1;
+
+    /* can only seek from start or relative to current position */
+    if (whence != SEEK_SET && whence != SEEK_CUR)
+        return -1;
+
+    /* normalize offset to a SEEK_CUR specification */
+    if (whence == SEEK_SET)
+        offset -= state->pos;
+    else if (state->seek)
+        offset += state->skip;
+    state->seek = 0;
+
+    /* if within raw area while reading, just go there */
+    if (state->mode == GZ_READ && state->how == COPY &&
+        state->pos + offset >= state->raw) {
+        ret = LSEEK(state->fd, offset - state->have, SEEK_CUR);
+        if (ret == -1)
+            return -1;
+        state->have = 0;
+        state->eof = 0;
+        state->seek = 0;
+        gz_error(state, Z_OK, NULL);
+        state->strm.avail_in = 0;
+        state->pos += offset;
+        return state->pos;
+    }
+
+    /* calculate skip amount, rewinding if needed for back seek when reading */
+    if (offset < 0) {
+        if (state->mode != GZ_READ)         /* writing -- can't go backwards */
+            return -1;
+        offset += state->pos;
+        if (offset < 0)                     /* before start of file! */
+            return -1;
+        if (gzrewind(file) == -1)           /* rewind, then skip to offset */
+            return -1;
+    }
+
+    /* if reading, skip what's in output buffer (one less gzgetc() check) */
+    if (state->mode == GZ_READ) {
+        n = GT_OFF(state->have) || (z_off64_t)state->have > offset ?
+            (unsigned)offset : state->have;
+        state->have -= n;
+        state->next += n;
+        state->pos += n;
+        offset -= n;
+    }
+
+    /* request skip (if not zero) */
+    if (offset) {
+        state->seek = 1;
+        state->skip = offset;
+    }
+    return state->pos + offset;
+}
+
+/* -- see zlib.h -- */
+z_off_t ZEXPORT gzseek(file, offset, whence)
+    gzFile file;
+    z_off_t offset;
+    int whence;
+{
+    z_off64_t ret;
+
+    ret = gzseek64(file, (z_off64_t)offset, whence);
+    return ret == (z_off_t)ret ? (z_off_t)ret : -1;
+}
+
+/* -- see zlib.h -- */
+z_off64_t ZEXPORT gztell64(file)
+    gzFile file;
+{
+    gz_statep state;
+
+    /* get internal structure and check integrity */
+    if (file == NULL)
+        return -1;
+    state = (gz_statep)file;
+    if (state->mode != GZ_READ && state->mode != GZ_WRITE)
+        return -1;
+
+    /* return position */
+    return state->pos + (state->seek ? state->skip : 0);
+}
+
+/* -- see zlib.h -- */
+z_off_t ZEXPORT gztell(file)
+    gzFile file;
+{
+    z_off64_t ret;
+
+    ret = gztell64(file);
+    return ret == (z_off_t)ret ? (z_off_t)ret : -1;
+}
+
+/* -- see zlib.h -- */
+z_off64_t ZEXPORT gzoffset64(file)
+    gzFile file;
+{
+    z_off64_t offset;
+    gz_statep state;
+
+    /* get internal structure and check integrity */
+    if (file == NULL)
+        return -1;
+    state = (gz_statep)file;
+    if (state->mode != GZ_READ && state->mode != GZ_WRITE)
+        return -1;
+
+    /* compute and return effective offset in file */
+    offset = LSEEK(state->fd, 0, SEEK_CUR);
+    if (offset == -1)
+        return -1;
+    if (state->mode == GZ_READ)             /* reading */
+        offset -= state->strm.avail_in;     /* don't count buffered input */
+    return offset;
+}
+
+/* -- see zlib.h -- */
+z_off_t ZEXPORT gzoffset(file)
+    gzFile file;
+{
+    z_off64_t ret;
+
+    ret = gzoffset64(file);
+    return ret == (z_off_t)ret ? (z_off_t)ret : -1;
+}
+
+/* -- see zlib.h -- */
+int ZEXPORT gzeof(file)
+    gzFile file;
+{
+    gz_statep state;
+
+    /* get internal structure and check integrity */
+    if (file == NULL)
+        return 0;
+    state = (gz_statep)file;
+    if (state->mode != GZ_READ && state->mode != GZ_WRITE)
+        return 0;
+
+    /* return end-of-file state */
+    return state->mode == GZ_READ ?
+        (state->eof && state->strm.avail_in == 0 && state->have == 0) : 0;
+}
+
+/* -- see zlib.h -- */
+const char * ZEXPORT gzerror(file, errnum)
+    gzFile file;
+    int *errnum;
+{
+    gz_statep state;
+
+    /* get internal structure and check integrity */
+    if (file == NULL)
+        return NULL;
+    state = (gz_statep)file;
+    if (state->mode != GZ_READ && state->mode != GZ_WRITE)
+        return NULL;
+
+    /* return error information */
+    if (errnum != NULL)
+        *errnum = state->err;
+    return state->msg == NULL ? "" : state->msg;
+}
+
+/* -- see zlib.h -- */
+void ZEXPORT gzclearerr(file)
+    gzFile file;
+{
+    gz_statep state;
+
+    /* get internal structure and check integrity */
+    if (file == NULL)
+        return;
+    state = (gz_statep)file;
+    if (state->mode != GZ_READ && state->mode != GZ_WRITE)
+        return;
+
+    /* clear error and end-of-file */
+    if (state->mode == GZ_READ)
+        state->eof = 0;
+    gz_error(state, Z_OK, NULL);
+}
+
+/* Create an error message in allocated memory and set state->err and
+   state->msg accordingly.  Free any previous error message already there.  Do
+   not try to free or allocate space if the error is Z_MEM_ERROR (out of
+   memory).  Simply save the error message as a static string.  If there is an
+   allocation failure constructing the error message, then convert the error to
+   out of memory. */
+void ZLIB_INTERNAL gz_error(state, err, msg)
+    gz_statep state;
+    int err;
+    const char *msg;
+{
+    /* free previously allocated message and clear */
+    if (state->msg != NULL) {
+        if (state->err != Z_MEM_ERROR)
+            free(state->msg);
+        state->msg = NULL;
+    }
+
+    /* set error code, and if no message, then done */
+    state->err = err;
+    if (msg == NULL)
+        return;
+
+    /* for an out of memory error, save as static string */
+    if (err == Z_MEM_ERROR) {
+        state->msg = (char *)msg;
+        return;
+    }
+
+    /* construct error message with path */
+    if ((state->msg = malloc(strlen(state->path) + strlen(msg) + 3)) == NULL) {
+        state->err = Z_MEM_ERROR;
+        state->msg = (char *)"out of memory";
+        return;
+    }
+    strcpy(state->msg, state->path);
+    strcat(state->msg, ": ");
+    strcat(state->msg, msg);
+    return;
+}
+
+#ifndef INT_MAX
+/* portably return maximum value for an int (when limits.h presumed not
+   available) -- we need to do this to cover cases where 2's complement not
+   used, since C standard permits 1's complement and sign-bit representations,
+   otherwise we could just use ((unsigned)-1) >> 1 */
+unsigned ZLIB_INTERNAL gz_intmax()
+{
+    unsigned p, q;
+
+    p = 1;
+    do {
+        q = p;
+        p <<= 1;
+        p++;
+    } while (p > q);
+    return q >> 1;
+}
+#endif
new file mode 100644
--- /dev/null
+++ b/modules/zlib/src/gzread.c
@@ -0,0 +1,653 @@
+/* gzread.c -- zlib functions for reading gzip files
+ * Copyright (C) 2004, 2005, 2010 Mark Adler
+ * For conditions of distribution and use, see copyright notice in zlib.h
+ */
+
+#include "gzguts.h"
+
+/* Local functions */
+local int gz_load OF((gz_statep, unsigned char *, unsigned, unsigned *));
+local int gz_avail OF((gz_statep));
+local int gz_next4 OF((gz_statep, unsigned long *));
+local int gz_head OF((gz_statep));
+local int gz_decomp OF((gz_statep));
+local int gz_make OF((gz_statep));
+local int gz_skip OF((gz_statep, z_off64_t));
+
+/* Use read() to load a buffer -- return -1 on error, otherwise 0.  Read from
+   state->fd, and update state->eof, state->err, and state->msg as appropriate.
+   This function needs to loop on read(), since read() is not guaranteed to
+   read the number of bytes requested, depending on the type of descriptor. */
+local int gz_load(state, buf, len, have)
+    gz_statep state;
+    unsigned char *buf;
+    unsigned len;
+    unsigned *have;
+{
+    int ret;
+
+    *have = 0;
+    do {
+        ret = read(state->fd, buf + *have, len - *have);
+        if (ret <= 0)
+            break;
+        *have += ret;
+    } while (*have < len);
+    if (ret < 0) {
+        gz_error(state, Z_ERRNO, zstrerror());
+        return -1;
+    }
+    if (ret == 0)
+        state->eof = 1;
+    return 0;
+}
+
+/* Load up input buffer and set eof flag if last data loaded -- return -1 on
+   error, 0 otherwise.  Note that the eof flag is set when the end of the input
+   file is reached, even though there may be unused data in the buffer.  Once
+   that data has been used, no more attempts will be made to read the file.
+   gz_avail() assumes that strm->avail_in == 0. */
+local int gz_avail(state)
+    gz_statep state;
+{
+    z_streamp strm = &(state->strm);
+
+    if (state->err != Z_OK)
+        return -1;
+    if (state->eof == 0) {
+        if (gz_load(state, state->in, state->size,
+                (unsigned *)&(strm->avail_in)) == -1)
+            return -1;
+        strm->next_in = state->in;
+    }
+    return 0;
+}
+
+/* Get next byte from input, or -1 if end or error. */
+#define NEXT() ((strm->avail_in == 0 && gz_avail(state) == -1) ? -1 : \
+                (strm->avail_in == 0 ? -1 : \
+                 (strm->avail_in--, *(strm->next_in)++)))
+
+/* Get a four-byte little-endian integer and return 0 on success and the value
+   in *ret.  Otherwise -1 is returned and *ret is not modified. */
+local int gz_next4(state, ret)
+    gz_statep state;
+    unsigned long *ret;
+{
+    int ch;
+    unsigned long val;
+    z_streamp strm = &(state->strm);
+
+    val = NEXT();
+    val += (unsigned)NEXT() << 8;
+    val += (unsigned long)NEXT() << 16;
+    ch = NEXT();
+    if (ch == -1)
+        return -1;
+    val += (unsigned long)ch << 24;
+    *ret = val;
+    return 0;
+}
+
+/* Look for gzip header, set up for inflate or copy.  state->have must be zero.
+   If this is the first time in, allocate required memory.  state->how will be
+   left unchanged if there is no more input data available, will be set to COPY
+   if there is no gzip header and direct copying will be performed, or it will
+   be set to GZIP for decompression, and the gzip header will be skipped so
+   that the next available input data is the raw deflate stream.  If direct
+   copying, then leftover input data from the input buffer will be copied to
+   the output buffer.  In that case, all further file reads will be directly to
+   either the output buffer or a user buffer.  If decompressing, the inflate
+   state and the check value will be initialized.  gz_head() will return 0 on
+   success or -1 on failure.  Failures may include read errors or gzip header
+   errors.  */
+local int gz_head(state)
+    gz_statep state;
+{
+    z_streamp strm = &(state->strm);
+    int flags;
+    unsigned len;
+
+    /* allocate read buffers and inflate memory */
+    if (state->size == 0) {
+        /* allocate buffers */
+        state->in = malloc(state->want);
+        state->out = malloc(state->want << 1);
+        if (state->in == NULL || state->out == NULL) {
+            if (state->out != NULL)
+                free(state->out);
+            if (state->in != NULL)
+                free(state->in);
+            gz_error(state, Z_MEM_ERROR, "out of memory");
+            return -1;
+        }
+        state->size = state->want;
+
+        /* allocate inflate memory */
+        state->strm.zalloc = Z_NULL;
+        state->strm.zfree = Z_NULL;
+        state->strm.opaque = Z_NULL;
+        state->strm.avail_in = 0;
+        state->strm.next_in = Z_NULL;
+        if (inflateInit2(&(state->strm), -15) != Z_OK) {    /* raw inflate */
+            free(state->out);
+            free(state->in);
+            state->size = 0;
+            gz_error(state, Z_MEM_ERROR, "out of memory");
+            return -1;
+        }
+    }
+
+    /* get some data in the input buffer */
+    if (strm->avail_in == 0) {
+        if (gz_avail(state) == -1)
+            return -1;
+        if (strm->avail_in == 0)
+            return 0;
+    }
+
+    /* look for the gzip magic header bytes 31 and 139 */
+    if (strm->next_in[0] == 31) {
+        strm->avail_in--;
+        strm->next_in++;
+        if (strm->avail_in == 0 && gz_avail(state) == -1)
+            return -1;
+        if (strm->avail_in && strm->next_in[0] == 139) {
+            /* we have a gzip header, woo hoo! */
+            strm->avail_in--;
+            strm->next_in++;
+
+            /* skip rest of header */
+            if (NEXT() != 8) {      /* compression method */
+                gz_error(state, Z_DATA_ERROR, "unknown compression method");
+                return -1;
+            }
+            flags = NEXT();
+            if (flags & 0xe0) {     /* reserved flag bits */
+                gz_error(state, Z_DATA_ERROR, "unknown header flags set");
+                return -1;
+            }
+            NEXT();                 /* modification time */
+            NEXT();
+            NEXT();
+            NEXT();
+            NEXT();                 /* extra flags */
+            NEXT();                 /* operating system */
+            if (flags & 4) {        /* extra field */
+                len = (unsigned)NEXT();
+                len += (unsigned)NEXT() << 8;
+                while (len--)
+                    if (NEXT() < 0)
+                        break;
+            }
+            if (flags & 8)          /* file name */
+                while (NEXT() > 0)
+                    ;
+            if (flags & 16)         /* comment */
+                while (NEXT() > 0)
+                    ;
+            if (flags & 2) {        /* header crc */
+                NEXT();
+                NEXT();
+            }
+            /* an unexpected end of file is not checked for here -- it will be
+               noticed on the first request for uncompressed data */
+
+            /* set up for decompression */
+            inflateReset(strm);
+            strm->adler = crc32(0L, Z_NULL, 0);
+            state->how = GZIP;
+            state->direct = 0;
+            return 0;
+        }
+        else {
+            /* not a gzip file -- save first byte (31) and fall to raw i/o */
+            state->out[0] = 31;
+            state->have = 1;
+        }
+    }
+
+    /* doing raw i/o, save start of raw data for seeking, copy any leftover
+       input to output -- this assumes that the output buffer is larger than
+       the input buffer, which also assures space for gzungetc() */
+    state->raw = state->pos;
+    state->next = state->out;
+    if (strm->avail_in) {
+        memcpy(state->next + state->have, strm->next_in, strm->avail_in);
+        state->have += strm->avail_in;
+        strm->avail_in = 0;
+    }
+    state->how = COPY;
+    state->direct = 1;
+    return 0;
+}
+
+/* Decompress from input to the provided next_out and avail_out in the state.
+   If the end of the compressed data is reached, then verify the gzip trailer
+   check value and length (modulo 2^32).  state->have and state->next are set
+   to point to the just decompressed data, and the crc is updated.  If the
+   trailer is verified, state->how is reset to LOOK to look for the next gzip
+   stream or raw data, once state->have is depleted.  Returns 0 on success, -1
+   on failure.  Failures may include invalid compressed data or a failed gzip
+   trailer verification. */
+local int gz_decomp(state)
+    gz_statep state;
+{
+    int ret;
+    unsigned had;
+    unsigned long crc, len;
+    z_streamp strm = &(state->strm);
+
+    /* fill output buffer up to end of deflate stream */
+    had = strm->avail_out;
+    do {
+        /* get more input for inflate() */
+        if (strm->avail_in == 0 && gz_avail(state) == -1)
+            return -1;
+        if (strm->avail_in == 0) {
+            gz_error(state, Z_DATA_ERROR, "unexpected end of file");
+            return -1;
+        }
+
+        /* decompress and handle errors */
+        ret = inflate(strm, Z_NO_FLUSH);
+        if (ret == Z_STREAM_ERROR || ret == Z_NEED_DICT) {
+            gz_error(state, Z_STREAM_ERROR,
+                      "internal error: inflate stream corrupt");
+            return -1;
+        }
+        if (ret == Z_MEM_ERROR) {
+            gz_error(state, Z_MEM_ERROR, "out of memory");
+            return -1;
+        }
+        if (ret == Z_DATA_ERROR) {              /* deflate stream invalid */
+            gz_error(state, Z_DATA_ERROR,
+                      strm->msg == NULL ? "compressed data error" : strm->msg);
+            return -1;
+        }
+    } while (strm->avail_out && ret != Z_STREAM_END);
+
+    /* update available output and crc check value */
+    state->have = had - strm->avail_out;
+    state->next = strm->next_out - state->have;
+    strm->adler = crc32(strm->adler, state->next, state->have);
+
+    /* check gzip trailer if at end of deflate stream */
+    if (ret == Z_STREAM_END) {
+        if (gz_next4(state, &crc) == -1 || gz_next4(state, &len) == -1) {
+            gz_error(state, Z_DATA_ERROR, "unexpected end of file");
+            return -1;
+        }
+        if (crc != strm->adler) {
+            gz_error(state, Z_DATA_ERROR, "incorrect data check");
+            return -1;
+        }
+        if (len != (strm->total_out & 0xffffffffL)) {
+            gz_error(state, Z_DATA_ERROR, "incorrect length check");
+            return -1;
+        }
+        state->how = LOOK;      /* ready for next stream, once have is 0 (leave
+                                   state->direct unchanged to remember how) */
+    }
+
+    /* good decompression */
+    return 0;
+}
+
+/* Make data and put in the output buffer.  Assumes that state->have == 0.
+   Data is either copied from the input file or decompressed from the input
+   file depending on state->how.  If state->how is LOOK, then a gzip header is
+   looked for (and skipped if found) to determine wither to copy or decompress.
+   Returns -1 on error, otherwise 0.  gz_make() will leave state->have as COPY
+   or GZIP unless the end of the input file has been reached and all data has
+   been processed.  */
+local int gz_make(state)
+    gz_statep state;
+{
+    z_streamp strm = &(state->strm);
+
+    if (state->how == LOOK) {           /* look for gzip header */
+        if (gz_head(state) == -1)
+            return -1;
+        if (state->have)                /* got some data from gz_head() */
+            return 0;
+    }
+    if (state->how == COPY) {           /* straight copy */
+        if (gz_load(state, state->out, state->size << 1, &(state->have)) == -1)
+            return -1;
+        state->next = state->out;
+    }
+    else if (state->how == GZIP) {      /* decompress */
+        strm->avail_out = state->size << 1;
+        strm->next_out = state->out;
+        if (gz_decomp(state) == -1)
+            return -1;
+    }
+    return 0;
+}
+
+/* Skip len uncompressed bytes of output.  Return -1 on error, 0 on success. */
+local int gz_skip(state, len)
+    gz_statep state;
+    z_off64_t len;
+{
+    unsigned n;
+
+    /* skip over len bytes or reach end-of-file, whichever comes first */
+    while (len)
+        /* skip over whatever is in output buffer */
+        if (state->have) {
+            n = GT_OFF(state->have) || (z_off64_t)state->have > len ?
+                (unsigned)len : state->have;
+            state->have -= n;
+            state->next += n;
+            state->pos += n;
+            len -= n;
+        }
+
+        /* output buffer empty -- return if we're at the end of the input */
+        else if (state->eof && state->strm.avail_in == 0)
+            break;
+
+        /* need more data to skip -- load up output buffer */
+        else {
+            /* get more output, looking for header if required */
+            if (gz_make(state) == -1)
+                return -1;
+        }
+    return 0;
+}
+
+/* -- see zlib.h -- */
+int ZEXPORT gzread(file, buf, len)
+    gzFile file;
+    voidp buf;
+    unsigned len;
+{
+    unsigned got, n;
+    gz_statep state;
+    z_streamp strm;
+
+    /* get internal structure */
+    if (file == NULL)
+        return -1;
+    state = (gz_statep)file;
+    strm = &(state->strm);
+
+    /* check that we're reading and that there's no error */
+    if (state->mode != GZ_READ || state->err != Z_OK)
+        return -1;
+
+    /* since an int is returned, make sure len fits in one, otherwise return
+       with an error (this avoids the flaw in the interface) */
+    if ((int)len < 0) {
+        gz_error(state, Z_BUF_ERROR, "requested length does not fit in int");
+        return -1;
+    }
+
+    /* if len is zero, avoid unnecessary operations */
+    if (len == 0)
+        return 0;
+
+    /* process a skip request */
+    if (state->seek) {
+        state->seek = 0;
+        if (gz_skip(state, state->skip) == -1)
+            return -1;
+    }
+
+    /* get len bytes to buf, or less than len if at the end */
+    got = 0;
+    do {
+        /* first just try copying data from the output buffer */
+        if (state->have) {
+            n = state->have > len ? len : state->have;
+            memcpy(buf, state->next, n);
+            state->next += n;
+            state->have -= n;
+        }
+
+        /* output buffer empty -- return if we're at the end of the input */
+        else if (state->eof && strm->avail_in == 0)
+            break;
+
+        /* need output data -- for small len or new stream load up our output
+           buffer */
+        else if (state->how == LOOK || len < (state->size << 1)) {
+            /* get more output, looking for header if required */
+            if (gz_make(state) == -1)
+                return -1;
+            continue;       /* no progress yet -- go back to memcpy() above */
+            /* the copy above assures that we will leave with space in the
+               output buffer, allowing at least one gzungetc() to succeed */
+        }
+
+        /* large len -- read directly into user buffer */
+        else if (state->how == COPY) {      /* read directly */
+            if (gz_load(state, buf, len, &n) == -1)
+                return -1;
+        }
+
+        /* large len -- decompress directly into user buffer */
+        else {  /* state->how == GZIP */
+            strm->avail_out = len;
+            strm->next_out = buf;
+            if (gz_decomp(state) == -1)
+                return -1;
+            n = state->have;
+            state->have = 0;
+        }
+
+        /* update progress */
+        len -= n;
+        buf = (char *)buf + n;
+        got += n;
+        state->pos += n;
+    } while (len);
+
+    /* return number of bytes read into user buffer (will fit in int) */
+    return (int)got;
+}
+
+/* -- see zlib.h -- */
+int ZEXPORT gzgetc(file)
+    gzFile file;
+{
+    int ret;
+    unsigned char buf[1];
+    gz_statep state;
+
+    /* get internal structure */
+    if (file == NULL)
+        return -1;
+    state = (gz_statep)file;
+
+    /* check that we're reading and that there's no error */
+    if (state->mode != GZ_READ || state->err != Z_OK)
+        return -1;
+
+    /* try output buffer (no need to check for skip request) */
+    if (state->have) {
+        state->have--;
+        state->pos++;
+        return *(state->next)++;
+    }
+
+    /* nothing there -- try gzread() */
+    ret = gzread(file, buf, 1);
+    return ret < 1 ? -1 : buf[0];
+}
+
+/* -- see zlib.h -- */
+int ZEXPORT gzungetc(c, file)
+    int c;
+    gzFile file;
+{
+    gz_statep state;
+
+    /* get internal structure */
+    if (file == NULL)
+        return -1;
+    state = (gz_statep)file;
+
+    /* check that we're reading and that there's no error */
+    if (state->mode != GZ_READ || state->err != Z_OK)
+        return -1;
+
+    /* process a skip request */
+    if (state->seek) {
+        state->seek = 0;
+        if (gz_skip(state, state->skip) == -1)
+            return -1;
+    }
+
+    /* can't push EOF */
+    if (c < 0)
+        return -1;
+
+    /* if output buffer empty, put byte at end (allows more pushing) */
+    if (state->have == 0) {
+        state->have = 1;
+        state->next = state->out + (state->size << 1) - 1;
+        state->next[0] = c;
+        state->pos--;
+        return c;
+    }
+
+    /* if no room, give up (must have already done a gzungetc()) */
+    if (state->have == (state->size << 1)) {
+        gz_error(state, Z_BUF_ERROR, "out of room to push characters");
+        return -1;
+    }
+
+    /* slide output data if needed and insert byte before existing data */
+    if (state->next == state->out) {
+        unsigned char *src = state->out + state->have;
+        unsigned char *dest = state->out + (state->size << 1);
+        while (src > state->out)
+            *--dest = *--src;
+        state->next = dest;
+    }
+    state->have++;
+    state->next--;
+    state->next[0] = c;
+    state->pos--;
+    return c;
+}
+
+/* -- see zlib.h -- */
+char * ZEXPORT gzgets(file, buf, len)
+    gzFile file;
+    char *buf;
+    int len;
+{
+    unsigned left, n;
+    char *str;
+    unsigned char *eol;
+    gz_statep state;
+
+    /* check parameters and get internal structure */
+    if (file == NULL || buf == NULL || len < 1)
+        return NULL;
+    state = (gz_statep)file;
+
+    /* check that we're reading and that there's no error */
+    if (state->mode != GZ_READ || state->err != Z_OK)
+        return NULL;
+
+    /* process a skip request */
+    if (state->seek) {
+        state->seek = 0;
+        if (gz_skip(state, state->skip) == -1)
+            return NULL;
+    }
+
+    /* copy output bytes up to new line or len - 1, whichever comes first --
+       append a terminating zero to the string (we don't check for a zero in
+       the contents, let the user worry about that) */
+    str = buf;
+    left = (unsigned)len - 1;
+    if (left) do {
+        /* assure that something is in the output buffer */
+        if (state->have == 0) {
+            if (gz_make(state) == -1)
+                return NULL;            /* error */
+            if (state->have == 0) {     /* end of file */
+                if (buf == str)         /* got bupkus */
+                    return NULL;
+                break;                  /* got something -- return it */
+            }
+        }
+
+        /* look for end-of-line in current output buffer */
+        n = state->have > left ? left : state->have;
+        eol = memchr(state->next, '\n', n);
+        if (eol != NULL)
+            n = (unsigned)(eol - state->next) + 1;
+
+        /* copy through end-of-line, or remainder if not found */
+        memcpy(buf, state->next, n);
+        state->have -= n;
+        state->next += n;
+        state->pos += n;
+        left -= n;
+        buf += n;
+    } while (left && eol == NULL);
+
+    /* found end-of-line or out of space -- terminate string and return it */
+    buf[0] = 0;
+    return str;
+}
+
+/* -- see zlib.h -- */
+int ZEXPORT gzdirect(file)
+    gzFile file;
+{
+    gz_statep state;
+
+    /* get internal structure */
+    if (file == NULL)
+        return 0;
+    state = (gz_statep)file;
+
+    /* check that we're reading */
+    if (state->mode != GZ_READ)
+        return 0;
+
+    /* if the state is not known, but we can find out, then do so (this is
+       mainly for right after a gzopen() or gzdopen()) */
+    if (state->how == LOOK && state->have == 0)
+        (void)gz_head(state);
+
+    /* return 1 if reading direct, 0 if decompressing a gzip stream */
+    return state->direct;
+}
+
+/* -- see zlib.h -- */
+int ZEXPORT gzclose_r(file)
+    gzFile file;
+{
+    int ret;
+    gz_statep state;
+
+    /* get internal structure */
+    if (file == NULL)
+        return Z_STREAM_ERROR;
+    state = (gz_statep)file;
+
+    /* check that we're reading */
+    if (state->mode != GZ_READ)
+        return Z_STREAM_ERROR;
+
+    /* free memory and close file */
+    if (state->size) {
+        inflateEnd(&(state->strm));
+        free(state->out);
+        free(state->in);
+    }
+    gz_error(state, Z_OK, NULL);
+    free(state->path);
+    ret = close(state->fd);
+    free(state);
+    return ret ? Z_ERRNO : Z_OK;
+}
new file mode 100644
--- /dev/null
+++ b/modules/zlib/src/gzwrite.c
@@ -0,0 +1,531 @@
+/* gzwrite.c -- zlib functions for writing gzip files
+ * Copyright (C) 2004, 2005, 2010 Mark Adler
+ * For conditions of distribution and use, see copyright notice in zlib.h
+ */
+
+#include "gzguts.h"
+
+/* Local functions */
+local int gz_init OF((gz_statep));
+local int gz_comp OF((gz_statep, int));
+local int gz_zero OF((gz_statep, z_off64_t));
+
+/* Initialize state for writing a gzip file.  Mark initialization by setting
+   state->size to non-zero.  Return -1 on failure or 0 on success. */
+local int gz_init(state)
+    gz_statep state;
+{
+    int ret;
+    z_streamp strm = &(state->strm);
+
+    /* allocate input and output buffers */
+    state->in = malloc(state->want);
+    state->out = malloc(state->want);
+    if (state->in == NULL || state->out == NULL) {
+        if (state->out != NULL)
+            free(state->out);
+        if (state->in != NULL)
+            free(state->in);
+        gz_error(state, Z_MEM_ERROR, "out of memory");
+        return -1;
+    }
+
+    /* allocate deflate memory, set up for gzip compression */
+    strm->zalloc = Z_NULL;
+    strm->zfree = Z_NULL;
+    strm->opaque = Z_NULL;
+    ret = deflateInit2(strm, state->level, Z_DEFLATED,
+                       15 + 16, 8, state->strategy);
+    if (ret != Z_OK) {
+        free(state->in);
+        gz_error(state, Z_MEM_ERROR, "out of memory");
+        return -1;
+    }
+
+    /* mark state as initialized */
+    state->size = state->want;
+
+    /* initialize write buffer */
+    strm->avail_out = state->size;
+    strm->next_out = state->out;
+    state->next = strm->next_out;
+    return 0;
+}
+
+/* Compress whatever is at avail_in and next_in and write to the output file.
+   Return -1 if there is an error writing to the output file, otherwise 0.
+   flush is assumed to be a valid deflate() flush value.  If flush is Z_FINISH,
+   then the deflate() state is reset to start a new gzip stream. */
+local int gz_comp(state, flush)
+    gz_statep state;
+    int flush;
+{
+    int ret, got;
+    unsigned have;
+    z_streamp strm = &(state->strm);
+
+    /* allocate memory if this is the first time through */
+    if (state->size == 0 && gz_init(state) == -1)
+        return -1;
+
+    /* run deflate() on provided input until it produces no more output */
+    ret = Z_OK;
+    do {
+        /* write out current buffer contents if full, or if flushing, but if
+           doing Z_FINISH then don't write until we get to Z_STREAM_END */
+        if (strm->avail_out == 0 || (flush != Z_NO_FLUSH &&
+            (flush != Z_FINISH || ret == Z_STREAM_END))) {
+            have = (unsigned)(strm->next_out - state->next);
+            if (have && ((got = write(state->fd, state->next, have)) < 0 ||
+                         (unsigned)got != have)) {
+                gz_error(state, Z_ERRNO, zstrerror());
+                return -1;
+            }
+            if (strm->avail_out == 0) {
+                strm->avail_out = state->size;
+                strm->next_out = state->out;
+            }
+            state->next = strm->next_out;
+        }
+
+        /* compress */
+        have = strm->avail_out;
+        ret = deflate(strm, flush);
+        if (ret == Z_STREAM_ERROR) {
+            gz_error(state, Z_STREAM_ERROR,
+                      "internal error: deflate stream corrupt");
+            return -1;
+        }
+        have -= strm->avail_out;
+    } while (have);
+
+    /* if that completed a deflate stream, allow another to start */
+    if (flush == Z_FINISH)
+        deflateReset(strm);
+
+    /* all done, no errors */
+    return 0;
+}
+
+/* Compress len zeros to output.  Return -1 on error, 0 on success. */
+local int gz_zero(state, len)
+    gz_statep state;
+    z_off64_t len;
+{
+    int first;
+    unsigned n;
+    z_streamp strm = &(state->strm);
+
+    /* consume whatever's left in the input buffer */
+    if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1)
+        return -1;
+
+    /* compress len zeros (len guaranteed > 0) */
+    first = 1;
+    while (len) {
+        n = GT_OFF(state->size) || (z_off64_t)state->size > len ?
+            (unsigned)len : state->size;
+        if (first) {
+            memset(state->in, 0, n);
+            first = 0;
+        }
+        strm->avail_in = n;
+        strm->next_in = state->in;
+        state->pos += n;
+        if (gz_comp(state, Z_NO_FLUSH) == -1)
+            return -1;
+        len -= n;
+    }
+    return 0;
+}
+
+/* -- see zlib.h -- */
+int ZEXPORT gzwrite(file, buf, len)
+    gzFile file;
+    voidpc buf;
+    unsigned len;
+{
+    unsigned put = len;
+    unsigned n;
+    gz_statep state;
+    z_streamp strm;
+
+    /* get internal structure */
+    if (file == NULL)
+        return 0;
+    state = (gz_statep)file;
+    strm = &(state->strm);
+
+    /* check that we're writing and that there's no error */
+    if (state->mode != GZ_WRITE || state->err != Z_OK)
+        return 0;
+
+    /* since an int is returned, make sure len fits in one, otherwise return
+       with an error (this avoids the flaw in the interface) */
+    if ((int)len < 0) {
+        gz_error(state, Z_BUF_ERROR, "requested length does not fit in int");
+        return 0;
+    }
+
+    /* if len is zero, avoid unnecessary operations */
+    if (len == 0)
+        return 0;
+
+    /* allocate memory if this is the first time through */
+    if (state->size == 0 && gz_init(state) == -1)
+        return 0;
+
+    /* check for seek request */
+    if (state->seek) {
+        state->seek = 0;
+        if (gz_zero(state, state->skip) == -1)
+            return 0;
+    }
+
+    /* for small len, copy to input buffer, otherwise compress directly */
+    if (len < state->size) {
+        /* copy to input buffer, compress when full */
+        do {
+            if (strm->avail_in == 0)
+                strm->next_in = state->in;
+            n = state->size - strm->avail_in;
+            if (n > len)
+                n = len;
+            memcpy(strm->next_in + strm->avail_in, buf, n);
+            strm->avail_in += n;
+            state->pos += n;
+            buf = (char *)buf + n;
+            len -= n;
+            if (len && gz_comp(state, Z_NO_FLUSH) == -1)
+                return 0;
+        } while (len);
+    }
+    else {
+        /* consume whatever's left in the input buffer */
+        if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1)
+            return 0;
+
+        /* directly compress user buffer to file */
+        strm->avail_in = len;
+        strm->next_in = (voidp)buf;
+        state->pos += len;
+        if (gz_comp(state, Z_NO_FLUSH) == -1)
+            return 0;
+    }
+
+    /* input was all buffered or compressed (put will fit in int) */
+    return (int)put;
+}
+
+/* -- see zlib.h -- */
+int ZEXPORT gzputc(file, c)
+    gzFile file;
+    int c;
+{
+    unsigned char buf[1];
+    gz_statep state;
+    z_streamp strm;
+
+    /* get internal structure */
+    if (file == NULL)
+        return -1;
+    state = (gz_statep)file;
+    strm = &(state->strm);
+
+    /* check that we're writing and that there's no error */
+    if (state->mode != GZ_WRITE || state->err != Z_OK)
+        return -1;
+
+    /* check for seek request */
+    if (state->seek) {
+        state->seek = 0;
+        if (gz_zero(state, state->skip) == -1)
+            return -1;
+    }
+
+    /* try writing to input buffer for speed (state->size == 0 if buffer not
+       initialized) */
+    if (strm->avail_in < state->size) {
+        if (strm->avail_in == 0)
+            strm->next_in = state->in;
+        strm->next_in[strm->avail_in++] = c;
+        state->pos++;
+        return c;
+    }
+
+    /* no room in buffer or not initialized, use gz_write() */
+    buf[0] = c;
+    if (gzwrite(file, buf, 1) != 1)
+        return -1;
+    return c;
+}
+
+/* -- see zlib.h -- */
+int ZEXPORT gzputs(file, str)
+    gzFile file;
+    const char *str;
+{
+    int ret;
+    unsigned len;
+
+    /* write string */
+    len = (unsigned)strlen(str);
+    ret = gzwrite(file, str, len);
+    return ret == 0 && len != 0 ? -1 : ret;
+}
+
+#ifdef STDC
+#include <stdarg.h>
+
+/* -- see zlib.h -- */
+int ZEXPORTVA gzprintf (gzFile file, const char *format, ...)
+{
+    int size, len;
+    gz_statep state;
+    z_streamp strm;
+    va_list va;
+
+    /* get internal structure */
+    if (file == NULL)
+        return -1;
+    state = (gz_statep)file;
+    strm = &(state->strm);
+
+    /* check that we're writing and that there's no error */
+    if (state->mode != GZ_WRITE || state->err != Z_OK)
+        return 0;
+
+    /* make sure we have some buffer space */
+    if (state->size == 0 && gz_init(state) == -1)
+        return 0;
+
+    /* check for seek request */
+    if (state->seek) {
+        state->seek = 0;
+        if (gz_zero(state, state->skip) == -1)
+            return 0;
+    }
+
+    /* consume whatever's left in the input buffer */
+    if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1)
+        return 0;
+
+    /* do the printf() into the input buffer, put length in len */
+    size = (int)(state->size);
+    state->in[size - 1] = 0;
+    va_start(va, format);
+#ifdef NO_vsnprintf
+#  ifdef HAS_vsprintf_void
+    (void)vsprintf(state->in, format, va);
+    va_end(va);
+    for (len = 0; len < size; len++)
+        if (state->in[len] == 0) break;
+#  else
+    len = vsprintf(state->in, format, va);
+    va_end(va);
+#  endif
+#else
+#  ifdef HAS_vsnprintf_void
+    (void)vsnprintf(state->in, size, format, va);
+    va_end(va);
+    len = strlen(state->in);
+#  else
+    len = vsnprintf((char *)(state->in), size, format, va);
+    va_end(va);
+#  endif
+#endif
+
+    /* check that printf() results fit in buffer */
+    if (len <= 0 || len >= (int)size || state->in[size - 1] != 0)
+        return 0;
+
+    /* update buffer and position, defer compression until needed */
+    strm->avail_in = (unsigned)len;
+    strm->next_in = state->in;
+    state->pos += len;
+    return len;
+}
+
+#else /* !STDC */
+
+/* -- see zlib.h -- */
+int ZEXPORTVA gzprintf (file, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10,
+                       a11, a12, a13, a14, a15, a16, a17, a18, a19, a20)
+    gzFile file;
+    const char *format;
+    int a1, a2, a3, a4, a5, a6, a7, a8, a9, a10,
+        a11, a12, a13, a14, a15, a16, a17, a18, a19, a20;
+{
+    int size, len;
+    gz_statep state;
+    z_streamp strm;
+
+    /* get internal structure */
+    if (file == NULL)
+        return -1;
+    state = (gz_statep)file;
+    strm = &(state->strm);
+
+    /* check that we're writing and that there's no error */
+    if (state->mode != GZ_WRITE || state->err != Z_OK)
+        return 0;
+
+    /* make sure we have some buffer space */
+    if (state->size == 0 && gz_init(state) == -1)
+        return 0;
+
+    /* check for seek request */
+    if (state->seek) {
+        state->seek = 0;
+        if (gz_zero(state, state->skip) == -1)
+            return 0;
+    }
+
+    /* consume whatever's left in the input buffer */
+    if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1)
+        return 0;
+
+    /* do the printf() into the input buffer, put length in len */
+    size = (int)(state->size);
+    state->in[size - 1] = 0;
+#ifdef NO_snprintf
+#  ifdef HAS_sprintf_void
+    sprintf(state->in, format, a1, a2, a3, a4, a5, a6, a7, a8,
+            a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20);
+    for (len = 0; len < size; len++)
+        if (state->in[len] == 0) break;
+#  else
+    len = sprintf(state->in, format, a1, a2, a3, a4, a5, a6, a7, a8,
+                a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20);
+#  endif
+#else
+#  ifdef HAS_snprintf_void
+    snprintf(state->in, size, format, a1, a2, a3, a4, a5, a6, a7, a8,
+             a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20);
+    len = strlen(state->in);
+#  else
+    len = snprintf(state->in, size, format, a1, a2, a3, a4, a5, a6, a7, a8,
+                 a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20);
+#  endif
+#endif
+
+    /* check that printf() results fit in buffer */
+    if (len <= 0 || len >= (int)size || state->in[size - 1] != 0)
+        return 0;
+
+    /* update buffer and position, defer compression until needed */
+    strm->avail_in = (unsigned)len;
+    strm->next_in = state->in;
+    state->pos += len;
+    return len;
+}
+
+#endif
+
+/* -- see zlib.h -- */
+int ZEXPORT gzflush(file, flush)
+    gzFile file;
+    int flush;
+{
+    gz_statep state;
+
+    /* get internal structure */
+    if (file == NULL)
+        return -1;
+    state = (gz_statep)file;
+
+    /* check that we're writing and that there's no error */
+    if (state->mode != GZ_WRITE || state->err != Z_OK)
+        return Z_STREAM_ERROR;
+
+    /* check flush parameter */
+    if (flush < 0 || flush > Z_FINISH)
+        return Z_STREAM_ERROR;
+
+    /* check for seek request */
+    if (state->seek) {
+        state->seek = 0;
+        if (gz_zero(state, state->skip) == -1)
+            return -1;
+    }
+
+    /* compress remaining data with requested flush */
+    gz_comp(state, flush);
+    return state->err;
+}
+
+/* -- see zlib.h -- */
+int ZEXPORT gzsetparams(file, level, strategy)
+    gzFile file;
+    int level;
+    int strategy;
+{
+    gz_statep state;
+    z_streamp strm;
+
+    /* get internal structure */
+    if (file == NULL)
+        return Z_STREAM_ERROR;
+    state = (gz_statep)file;
+    strm = &(state->strm);
+
+    /* check that we're writing and that there's no error */
+    if (state->mode != GZ_WRITE || state->err != Z_OK)
+        return Z_STREAM_ERROR;
+
+    /* if no change is requested, then do nothing */
+    if (level == state->level && strategy == state->strategy)
+        return Z_OK;
+
+    /* check for seek request */
+    if (state->seek) {
+        state->seek = 0;
+        if (gz_zero(state, state->skip) == -1)
+            return -1;
+    }
+
+    /* change compression parameters for subsequent input */
+    if (state->size) {
+        /* flush previous input with previous parameters before changing */
+        if (strm->avail_in && gz_comp(state, Z_PARTIAL_FLUSH) == -1)
+            return state->err;
+        deflateParams(strm, level, strategy);
+    }
+    state->level = level;
+    state->strategy = strategy;
+    return Z_OK;
+}
+
+/* -- see zlib.h -- */
+int ZEXPORT gzclose_w(file)
+    gzFile file;
+{
+    int ret = 0;
+    gz_statep state;
+
+    /* get internal structure */
+    if (file == NULL)
+        return Z_STREAM_ERROR;
+    state = (gz_statep)file;
+
+    /* check that we're writing */
+    if (state->mode != GZ_WRITE)
+        return Z_STREAM_ERROR;
+
+    /* check for seek request */
+    if (state->seek) {
+        state->seek = 0;
+        ret += gz_zero(state, state->skip);
+    }
+
+    /* flush, free memory, and close file */
+    ret += gz_comp(state, Z_FINISH);
+    (void)deflateEnd(&(state->strm));
+    free(state->out);
+    free(state->in);
+    gz_error(state, Z_OK, NULL);
+    free(state->path);
+    ret += close(state->fd);
+    free(state);
+    return ret ? Z_ERRNO : Z_OK;
+}
--- a/modules/zlib/src/infback.c
+++ b/modules/zlib/src/infback.c
@@ -1,10 +1,10 @@
 /* infback.c -- inflate using a call-back interface
- * Copyright (C) 1995-2005 Mark Adler
+ * Copyright (C) 1995-2009 Mark Adler
  * For conditions of distribution and use, see copyright notice in zlib.h
  */
 
 /*
    This code is largely copied from inflate.c.  Normally either infback.o or
    inflate.o would be linked into an application--not both.  The interface
    with inffast.c is retained so that optimized assembler-coded versions of
    inflate_fast() can be used with either inflate.c or infback.c.
@@ -50,17 +50,17 @@ int stream_size;
                                                sizeof(struct inflate_state));
     if (state == Z_NULL) return Z_MEM_ERROR;
     Tracev((stderr, "inflate: allocated\n"));
     strm->state = (struct internal_state FAR *)state;
     state->dmax = 32768U;
     state->wbits = windowBits;
     state->wsize = 1U << windowBits;
     state->window = window;
-    state->write = 0;
+    state->wnext = 0;
     state->whave = 0;
     return Z_OK;
 }
 
 /*
    Return state with length and distance decoding tables and index sizes set to
    fixed code decoding.  Normally this returns fixed tables from inffixed.h.
    If BUILDFIXED is defined, then instead this routine builds the tables the
@@ -248,17 +248,17 @@ void FAR *out_desc;
     struct inflate_state FAR *state;
     unsigned char FAR *next;    /* next input */
     unsigned char FAR *put;     /* next output */
     unsigned have, left;        /* available input and output */
     unsigned long hold;         /* bit buffer */
     unsigned bits;              /* bits in bit buffer */
     unsigned copy;              /* number of stored or match bytes to copy */
     unsigned char FAR *from;    /* where to copy match bytes from */
-    code this;                  /* current decoding table entry */
+    code here;                  /* current decoding table entry */
     code last;                  /* parent table entry */
     unsigned len;               /* length to copy for repeats, bits to drop */
     int ret;                    /* return code */
     static const unsigned short order[19] = /* permutation of code lengths */
         {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
 
     /* Check that the strm exists and that the state was initialized */
     if (strm == Z_NULL || strm->state == Z_NULL)
@@ -384,48 +384,48 @@ void FAR *out_desc;
                 break;
             }
             Tracev((stderr, "inflate:       code lengths ok\n"));
 
             /* get length and distance code code lengths */
             state->have = 0;
             while (state->have < state->nlen + state->ndist) {
                 for (;;) {
-                    this = state->lencode[BITS(state->lenbits)];
-                    if ((unsigned)(this.bits) <= bits) break;
+                    here = state->lencode[BITS(state->lenbits)];
+                    if ((unsigned)(here.bits) <= bits) break;
                     PULLBYTE();
                 }
-                if (this.val < 16) {
-                    NEEDBITS(this.bits);
-                    DROPBITS(this.bits);
-                    state->lens[state->have++] = this.val;
+                if (here.val < 16) {
+                    NEEDBITS(here.bits);
+                    DROPBITS(here.bits);
+                    state->lens[state->have++] = here.val;
                 }
                 else {
-                    if (this.val == 16) {
-                        NEEDBITS(this.bits + 2);
-                        DROPBITS(this.bits);
+                    if (here.val == 16) {
+                        NEEDBITS(here.bits + 2);
+                        DROPBITS(here.bits);
                         if (state->have == 0) {
                             strm->msg = (char *)"invalid bit length repeat";
                             state->mode = BAD;
                             break;
                         }
                         len = (unsigned)(state->lens[state->have - 1]);
                         copy = 3 + BITS(2);
                         DROPBITS(2);
                     }
-                    else if (this.val == 17) {
-                        NEEDBITS(this.bits + 3);
-                        DROPBITS(this.bits);
+                    else if (here.val == 17) {
+                        NEEDBITS(here.bits + 3);
+                        DROPBITS(here.bits);
                         len = 0;
                         copy = 3 + BITS(3);
                         DROPBITS(3);
                     }
                     else {
-                        NEEDBITS(this.bits + 7);
-                        DROPBITS(this.bits);
+                        NEEDBITS(here.bits + 7);
+                        DROPBITS(here.bits);
                         len = 0;
                         copy = 11 + BITS(7);
                         DROPBITS(7);
                     }
                     if (state->have + copy > state->nlen + state->ndist) {
                         strm->msg = (char *)"invalid bit length repeat";
                         state->mode = BAD;
                         break;
@@ -433,17 +433,26 @@ void FAR *out_desc;
                     while (copy--)
                         state->lens[state->have++] = (unsigned short)len;
                 }
             }
 
             /* handle error breaks in while */
             if (state->mode == BAD) break;
 
-            /* build code tables */
+            /* check for end-of-block code (better have one) */
+            if (state->lens[256] == 0) {
+                strm->msg = (char *)"invalid code -- missing end-of-block";
+                state->mode = BAD;
+                break;
+            }
+
+            /* build code tables -- note: do not change the lenbits or distbits
+               values here (9 and 6) without reading the comments in inftrees.h
+               concerning the ENOUGH constants, which depend on those values */
             state->next = state->codes;
             state->lencode = (code const FAR *)(state->next);
             state->lenbits = 9;
             ret = inflate_table(LENS, state->lens, state->nlen, &(state->next),
                                 &(state->lenbits), state->work);
             if (ret) {
                 strm->msg = (char *)"invalid literal/lengths set";
                 state->mode = BAD;
@@ -469,94 +478,94 @@ void FAR *out_desc;
                     state->whave = state->wsize - left;
                 inflate_fast(strm, state->wsize);
                 LOAD();
                 break;
             }
 
             /* get a literal, length, or end-of-block code */
             for (;;) {
-                this = state->lencode[BITS(state->lenbits)];
-                if ((unsigned)(this.bits) <= bits) break;
+                here = state->lencode[BITS(state->lenbits)];
+                if ((unsigned)(here.bits) <= bits) break;
                 PULLBYTE();
             }
-            if (this.op && (this.op & 0xf0) == 0) {
-                last = this;
+            if (here.op && (here.op & 0xf0) == 0) {
+                last = here;
                 for (;;) {
-                    this = state->lencode[last.val +
+                    here = state->lencode[last.val +
                             (BITS(last.bits + last.op) >> last.bits)];
-                    if ((unsigned)(last.bits + this.bits) <= bits) break;
+                    if ((unsigned)(last.bits + here.bits) <= bits) break;
                     PULLBYTE();
                 }
                 DROPBITS(last.bits);
             }
-            DROPBITS(this.bits);
-            state->length = (unsigned)this.val;
+            DROPBITS(here.bits);
+            state->length = (unsigned)here.val;
 
             /* process literal */
-            if (this.op == 0) {
-                Tracevv((stderr, this.val >= 0x20 && this.val < 0x7f ?
+            if (here.op == 0) {
+                Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ?
                         "inflate:         literal '%c'\n" :
-                        "inflate:         literal 0x%02x\n", this.val));
+                        "inflate:         literal 0x%02x\n", here.val));
                 ROOM();
                 *put++ = (unsigned char)(state->length);
                 left--;
                 state->mode = LEN;
                 break;
             }
 
             /* process end of block */
-            if (this.op & 32) {
+            if (here.op & 32) {
                 Tracevv((stderr, "inflate:         end of block\n"));
                 state->mode = TYPE;
                 break;
             }
 
             /* invalid code */
-            if (this.op & 64) {
+            if (here.op & 64) {
                 strm->msg = (char *)"invalid literal/length code";
                 state->mode = BAD;
                 break;
             }
 
             /* length code -- get extra bits, if any */
-            state->extra = (unsigned)(this.op) & 15;
+            state->extra = (unsigned)(here.op) & 15;
             if (state->extra != 0) {
                 NEEDBITS(state->extra);
                 state->length += BITS(state->extra);
                 DROPBITS(state->extra);
             }
             Tracevv((stderr, "inflate:         length %u\n", state->length));
 
             /* get distance code */
             for (;;) {
-                this = state->distcode[BITS(state->distbits)];
-                if ((unsigned)(this.bits) <= bits) break;
+                here = state->distcode[BITS(state->distbits)];
+                if ((unsigned)(here.bits) <= bits) break;
                 PULLBYTE();
             }
-            if ((this.op & 0xf0) == 0) {
-                last = this;
+            if ((here.op & 0xf0) == 0) {
+                last = here;
                 for (;;) {
-                    this = state->distcode[last.val +
+                    here = state->distcode[last.val +
                             (BITS(last.bits + last.op) >> last.bits)];
-                    if ((unsigned)(last.bits + this.bits) <= bits) break;
+                    if ((unsigned)(last.bits + here.bits) <= bits) break;
                     PULLBYTE();
                 }
                 DROPBITS(last.bits);
             }
-            DROPBITS(this.bits);
-            if (this.op & 64) {
+            DROPBITS(here.bits);
+            if (here.op & 64) {
                 strm->msg = (char *)"invalid distance code";
                 state->mode = BAD;
                 break;
             }
-            state->offset = (unsigned)this.val;
+            state->offset = (unsigned)here.val;
 
             /* get distance extra bits, if any */
-            state->extra = (unsigned)(this.op) & 15;
+            state->extra = (unsigned)(here.op) & 15;
             if (state->extra != 0) {
                 NEEDBITS(state->extra);
                 state->offset += BITS(state->extra);
                 DROPBITS(state->extra);
             }
             if (state->offset > state->wsize - (state->whave < state->wsize ?
                                                 left : 0)) {
                 strm->msg = (char *)"invalid distance too far back";
--- a/modules/zlib/src/inffast.c
+++ b/modules/zlib/src/inffast.c
@@ -1,10 +1,10 @@
 /* inffast.c -- fast decoding
- * Copyright (C) 1995-2004 Mark Adler
+ * Copyright (C) 1995-2008, 2010 Mark Adler
  * For conditions of distribution and use, see copyright notice in zlib.h
  */
 
 #include "zutil.h"
 #include "inftrees.h"
 #include "inflate.h"
 #include "inffast.h"
 
@@ -59,40 +59,40 @@
       Therefore if strm->avail_in >= 6, then there is enough input to avoid
       checking for available input while decoding.
 
     - The maximum bytes that a single length/distance pair can output is 258
       bytes, which is the maximum length that can be coded.  inflate_fast()
       requires strm->avail_out >= 258 for each loop to avoid checking for
       output space.
  */
-void inflate_fast(strm, start)
+void ZLIB_INTERNAL inflate_fast(strm, start)
 z_streamp strm;
 unsigned start;         /* inflate()'s starting value for strm->avail_out */
 {
     struct inflate_state FAR *state;
     unsigned char FAR *in;      /* local strm->next_in */
     unsigned char FAR *last;    /* while in < last, enough input available */
     unsigned char FAR *out;     /* local strm->next_out */
     unsigned char FAR *beg;     /* inflate()'s initial strm->next_out */
     unsigned char FAR *end;     /* while out < end, enough space available */
 #ifdef INFLATE_STRICT
     unsigned dmax;              /* maximum distance from zlib header */
 #endif
     unsigned wsize;             /* window size or zero if not using window */
     unsigned whave;             /* valid bytes in the window */
-    unsigned write;             /* window write index */
+    unsigned wnext;             /* window write index */
     unsigned char FAR *window;  /* allocated sliding window, if wsize != 0 */
     unsigned long hold;         /* local strm->hold */
     unsigned bits;              /* local strm->bits */
     code const FAR *lcode;      /* local strm->lencode */
     code const FAR *dcode;      /* local strm->distcode */
     unsigned lmask;             /* mask for first level of length codes */
     unsigned dmask;             /* mask for first level of distance codes */
-    code this;                  /* retrieved table entry */
+    code here;                  /* retrieved table entry */
     unsigned op;                /* code bits, operation, extra bits, or */
                                 /*  window position, window bytes to copy */
     unsigned len;               /* match length, unused bytes */
     unsigned dist;              /* match distance */
     unsigned char FAR *from;    /* where to copy match from */
 
     /* copy state to local variables */
     state = (struct inflate_state FAR *)strm->state;
@@ -101,17 +101,17 @@ unsigned start;         /* inflate()'s s
     out = strm->next_out - OFF;
     beg = out - (start - strm->avail_out);
     end = out + (strm->avail_out - 257);
 #ifdef INFLATE_STRICT
     dmax = state->dmax;
 #endif
     wsize = state->wsize;
     whave = state->whave;
-    write = state->write;
+    wnext = state->wnext;
     window = state->window;
     hold = state->hold;
     bits = state->bits;
     lcode = state->lencode;
     dcode = state->distcode;
     lmask = (1U << state->lenbits) - 1;
     dmask = (1U << state->distbits) - 1;
 
@@ -119,30 +119,30 @@ unsigned start;         /* inflate()'s s
        input data or output space */
     do {
         if (bits < 15) {
             hold += (unsigned long)(PUP(in)) << bits;
             bits += 8;
             hold += (unsigned long)(PUP(in)) << bits;
             bits += 8;
         }
-        this = lcode[hold & lmask];
+        here = lcode[hold & lmask];
       dolen:
-        op = (unsigned)(this.bits);
+        op = (unsigned)(here.bits);
         hold >>= op;
         bits -= op;
-        op = (unsigned)(this.op);
+        op = (unsigned)(here.op);
         if (op == 0) {                          /* literal */
-            Tracevv((stderr, this.val >= 0x20 && this.val < 0x7f ?
+            Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ?
                     "inflate:         literal '%c'\n" :
-                    "inflate:         literal 0x%02x\n", this.val));
-            PUP(out) = (unsigned char)(this.val);
+                    "inflate:         literal 0x%02x\n", here.val));
+            PUP(out) = (unsigned char)(here.val);
         }
         else if (op & 16) {                     /* length base */
-            len = (unsigned)(this.val);
+            len = (unsigned)(here.val);
             op &= 15;                           /* number of extra bits */
             if (op) {
                 if (bits < op) {
                     hold += (unsigned long)(PUP(in)) << bits;
                     bits += 8;
                 }
                 len += (unsigned)hold & ((1U << op) - 1);
                 hold >>= op;
@@ -150,24 +150,24 @@ unsigned start;         /* inflate()'s s
             }
             Tracevv((stderr, "inflate:         length %u\n", len));
             if (bits < 15) {
                 hold += (unsigned long)(PUP(in)) << bits;
                 bits += 8;
                 hold += (unsigned long)(PUP(in)) << bits;
                 bits += 8;
             }
-            this = dcode[hold & dmask];
+            here = dcode[hold & dmask];
           dodist:
-            op = (unsigned)(this.bits);
+            op = (unsigned)(here.bits);
             hold >>= op;
             bits -= op;
-            op = (unsigned)(this.op);
+            op = (unsigned)(here.op);
             if (op & 16) {                      /* distance base */
-                dist = (unsigned)(this.val);
+                dist = (unsigned)(here.val);
                 op &= 15;                       /* number of extra bits */
                 if (bits < op) {
                     hold += (unsigned long)(PUP(in)) << bits;
                     bits += 8;
                     if (bits < op) {
                         hold += (unsigned long)(PUP(in)) << bits;
                         bits += 8;
                     }
@@ -182,52 +182,74 @@ unsigned start;         /* inflate()'s s
 #endif
                 hold >>= op;
                 bits -= op;
                 Tracevv((stderr, "inflate:         distance %u\n", dist));
                 op = (unsigned)(out - beg);     /* max distance in output */
                 if (dist > op) {                /* see if copy from window */
                     op = dist - op;             /* distance back in window */
                     if (op > whave) {
-                        strm->msg = (char *)"invalid distance too far back";
-                        state->mode = BAD;
-                        break;
+                        if (state->sane) {
+                            strm->msg =
+                                (char *)"invalid distance too far back";
+                            state->mode = BAD;
+                            break;
+                        }
+#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR
+                        if (len <= op - whave) {
+                            do {
+                                PUP(out) = 0;
+                            } while (--len);
+                            continue;
+                        }
+                        len -= op - whave;
+                        do {
+                            PUP(out) = 0;
+                        } while (--op > whave);
+                        if (op == 0) {
+                            from = out - dist;
+                            do {
+                                PUP(out) = PUP(from);
+                            } while (--len);
+                            continue;
+                        }
+#endif
                     }
                     from = window - OFF;
-                    if (write == 0) {           /* very common case */
+                    if (wnext == 0) {           /* very common case */
                         from += wsize - op;
                         if (op < len) {         /* some from window */
                             len -= op;
                             do {
                                 PUP(out) = PUP(from);
                             } while (--op);
                             from = out - dist;  /* rest from output */
                         }
                     }
-                    else if (write < op) {      /* wrap around window */
-                        from += wsize + write - op;
-                        op -= write;
+                    else if (wnext < op) {      /* wrap around window */
+                        from += wsize + wnext - op;
+                        op -= wnext;
                         if (op < len) {         /* some from end of window */
                             len -= op;
                             do {
                                 PUP(out) = PUP(from);
                             } while (--op);
                             from = window - OFF;
-                            if (write < len) {  /* some from start of window */
-                                op = write;
+                            if (wnext < len) {  /* some from start of window */
+                                op = wnext;
                                 len -= op;
                                 do {
                                     PUP(out) = PUP(from);
                                 } while (--op);
                                 from = out - dist;      /* rest from output */
                             }
                         }
                     }
                     else {                      /* contiguous in window */
-                        from += write - op;
+                        from += wnext - op;
                         if (op < len) {         /* some from window */
                             len -= op;
                             do {
                                 PUP(out) = PUP(from);
                             } while (--op);
                             from = out - dist;  /* rest from output */
                         }
                     }
@@ -254,27 +276,27 @@ unsigned start;         /* inflate()'s s
                     if (len) {
                         PUP(out) = PUP(from);
                         if (len > 1)
                             PUP(out) = PUP(from);
                     }
                 }
             }
             else if ((op & 64) == 0) {          /* 2nd level distance code */
-                this = dcode[this.val + (hold & ((1U << op) - 1))];
+                here = dcode[here.val + (hold & ((1U << op) - 1))];
                 goto dodist;
             }
             else {
                 strm->msg = (char *)"invalid distance code";
                 state->mode = BAD;
                 break;
             }
         }
         else if ((op & 64) == 0) {              /* 2nd level length code */
-            this = lcode[this.val + (hold & ((1U << op) - 1))];
+            here = lcode[here.val + (hold & ((1U << op) - 1))];
             goto dolen;
         }
         else if (op & 32) {                     /* end-of-block */
             Tracevv((stderr, "inflate:         end of block\n"));
             state->mode = TYPE;
             break;
         }
         else {
@@ -300,17 +322,17 @@ unsigned start;         /* inflate()'s s
     state->bits = bits;
     return;
 }
 
 /*
    inflate_fast() speedups that turned out slower (on a PowerPC G3 750CXe):
    - Using bit fields for code structure
    - Different op definition to avoid & for extra bits (do & for table bits)
-   - Three separate decoding do-loops for direct, window, and write == 0
+   - Three separate decoding do-loops for direct, window, and wnext == 0
    - Special case for distance > 1 copies to do overlapped load and store copy
    - Explicit branch predictions (based on measured branch probabilities)
    - Deferring match copy and interspersed it with decoding subsequent codes
    - Swapping literal/length else
    - Swapping window/direct else
    - Larger unrolled copy loops (three is about right)
    - Moving len -= 3 statement into middle of loop
  */
--- a/modules/zlib/src/inffast.h
+++ b/modules/zlib/src/inffast.h
@@ -1,11 +1,11 @@
 /* inffast.h -- header to use inffast.c
- * Copyright (C) 1995-2003 Mark Adler
+ * Copyright (C) 1995-2003, 2010 Mark Adler
  * For conditions of distribution and use, see copyright notice in zlib.h
  */
 
 /* WARNING: this file should *not* be used by applications. It is
    part of the implementation of the compression library and is
    subject to change. Applications should only use zlib.h.
  */
 
-void inflate_fast OF((z_streamp strm, unsigned start));
+void ZLIB_INTERNAL inflate_fast OF((z_streamp strm, unsigned start));
--- a/modules/zlib/src/inflate.c
+++ b/modules/zlib/src/inflate.c
@@ -1,10 +1,10 @@
 /* inflate.c -- zlib decompression
- * Copyright (C) 1995-2005 Mark Adler
+ * Copyright (C) 1995-2010 Mark Adler
  * For conditions of distribution and use, see copyright notice in zlib.h
  */
 
 /*
  * Change history:
  *
  * 1.2.beta0    24 Nov 2002
  * - First version -- complete rewrite of inflate to simplify code, avoid
@@ -40,17 +40,17 @@
  *
  * 1.2.beta4    1 Jan 2003
  * - Split ptr - 257 statements in inflate_table() to avoid compiler warnings
  * - Move a comment on output buffer sizes from inffast.c to inflate.c
  * - Add comments in inffast.c to introduce the inflate_fast() routine
  * - Rearrange window copies in inflate_fast() for speed and simplification
  * - Unroll last copy for window match in inflate_fast()
  * - Use local copies of window variables in inflate_fast() for speed
- * - Pull out common write == 0 case for speed in inflate_fast()
+ * - Pull out common wnext == 0 case for speed in inflate_fast()
  * - Make op and len in inflate_fast() unsigned for consistency
  * - Add FAR to lcode and dcode declarations in inflate_fast()
  * - Simplified bad distance check in inflate_fast()
  * - Added inflateBackInit(), inflateBack(), and inflateBackEnd() in new
  *   source file infback.c to provide a call-back interface to inflate for
  *   programs like gzip and unzip -- uses window as output buffer to avoid
  *   window copying
  *
@@ -112,46 +112,71 @@ z_streamp strm;
     strm->adler = 1;        /* to support ill-conceived Java test suite */
     state->mode = HEAD;
     state->last = 0;
     state->havedict = 0;
     state->dmax = 32768U;
     state->head = Z_NULL;
     state->wsize = 0;
     state->whave = 0;
-    state->write = 0;
+    state->wnext = 0;
     state->hold = 0;
     state->bits = 0;
     state->lencode = state->distcode = state->next = state->codes;
+    state->sane = 1;
+    state->back = -1;
     Tracev((stderr, "inflate: reset\n"));
     return Z_OK;
 }
 
-int ZEXPORT inflatePrime(strm, bits, value)
+int ZEXPORT inflateReset2(strm, windowBits)
 z_streamp strm;
-int bits;
-int value;
+int windowBits;
 {
+    int wrap;
     struct inflate_state FAR *state;
 
+    /* get the state */
     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
     state = (struct inflate_state FAR *)strm->state;
-    if (bits > 16 || state->bits + bits > 32) return Z_STREAM_ERROR;
-    value &= (1L << bits) - 1;
-    state->hold += value << state->bits;
-    state->bits += bits;
-    return Z_OK;
+
+    /* extract wrap request from windowBits parameter */
+    if (windowBits < 0) {
+        wrap = 0;
+        windowBits = -windowBits;
+    }
+    else {
+        wrap = (windowBits >> 4) + 1;
+#ifdef GUNZIP
+        if (windowBits < 48)
+            windowBits &= 15;
+#endif
+    }
+
+    /* set number of window bits, free window if different */
+    if (windowBits && (windowBits < 8 || windowBits > 15))
+        return Z_STREAM_ERROR;
+    if (state->window != Z_NULL && state->wbits != (unsigned)windowBits) {
+        ZFREE(strm, state->window);
+        state->window = Z_NULL;
+    }
+
+    /* update state and reset the rest of it */
+    state->wrap = wrap;
+    state->wbits = (unsigned)windowBits;
+    return inflateReset(strm);
 }
 
 int ZEXPORT inflateInit2_(strm, windowBits, version, stream_size)
 z_streamp strm;
 int windowBits;
 const char *version;
 int stream_size;
 {
+    int ret;
     struct inflate_state FAR *state;
 
     if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
         stream_size != (int)(sizeof(z_stream)))
         return Z_VERSION_ERROR;
     if (strm == Z_NULL) return Z_STREAM_ERROR;
     strm->msg = Z_NULL;                 /* in case we return an error */
     if (strm->zalloc == (alloc_func)0) {
@@ -159,44 +184,54 @@ int stream_size;
         strm->opaque = (voidpf)0;
     }
     if (strm->zfree == (free_func)0) strm->zfree = zcfree;
     state = (struct inflate_state FAR *)
             ZALLOC(strm, 1, sizeof(struct inflate_state));
     if (state == Z_NULL) return Z_MEM_ERROR;
     Tracev((stderr, "inflate: allocated\n"));
     strm->state = (struct internal_state FAR *)state;
-    if (windowBits < 0) {
-        state->wrap = 0;
-        windowBits = -windowBits;
-    }
-    else {
-        state->wrap = (windowBits >> 4) + 1;
-#ifdef GUNZIP
-        if (windowBits < 48) windowBits &= 15;
-#endif
-    }
-    if (windowBits < 8 || windowBits > 15) {
+    state->window = Z_NULL;
+    ret = inflateReset2(strm, windowBits);
+    if (ret != Z_OK) {
         ZFREE(strm, state);
         strm->state = Z_NULL;
-        return Z_STREAM_ERROR;
     }
-    state->wbits = (unsigned)windowBits;
-    state->window = Z_NULL;
-    return inflateReset(strm);
+    return ret;
 }
 
 int ZEXPORT inflateInit_(strm, version, stream_size)
 z_streamp strm;
 const char *version;
 int stream_size;
 {
     return inflateInit2_(strm, DEF_WBITS, version, stream_size);
 }
 
+int ZEXPORT inflatePrime(strm, bits, value)
+z_streamp strm;
+int bits;
+int value;
+{
+    struct inflate_state FAR *state;
+
+    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
+    state = (struct inflate_state FAR *)strm->state;
+    if (bits < 0) {
+        state->hold = 0;
+        state->bits = 0;
+        return Z_OK;
+    }
+    if (bits > 16 || state->bits + bits > 32) return Z_STREAM_ERROR;
+    value &= (1L << bits) - 1;
+    state->hold += value << state->bits;
+    state->bits += bits;
+    return Z_OK;
+}
+
 /*
    Return state with length and distance decoding tables and index sizes set to
    fixed code decoding.  Normally this returns fixed tables from inffixed.h.
    If BUILDFIXED is defined, then instead this routine builds the tables the
    first time it's called, and returns those tables the first time and
    thereafter.  This reduces the size of the code by about 2K bytes, in
    exchange for a little execution time.  However, BUILDFIXED should not be
    used for threaded applications, since the rewriting of the tables and virgin
@@ -335,40 +370,40 @@ unsigned out;
                         ZALLOC(strm, 1U << state->wbits,
                                sizeof(unsigned char));
         if (state->window == Z_NULL) return 1;
     }
 
     /* if window not in use yet, initialize */
     if (state->wsize == 0) {
         state->wsize = 1U << state->wbits;
-        state->write = 0;
+        state->wnext = 0;
         state->whave = 0;
     }
 
     /* copy state->wsize or less output bytes into the circular window */
     copy = out - strm->avail_out;
     if (copy >= state->wsize) {
         zmemcpy(state->window, strm->next_out - state->wsize, state->wsize);
-        state->write = 0;
+        state->wnext = 0;
         state->whave = state->wsize;
     }
     else {
-        dist = state->wsize - state->write;
+        dist = state->wsize - state->wnext;
         if (dist > copy) dist = copy;
-        zmemcpy(state->window + state->write, strm->next_out - copy, dist);
+        zmemcpy(state->window + state->wnext, strm->next_out - copy, dist);
         copy -= dist;
         if (copy) {
             zmemcpy(state->window, strm->next_out - copy, copy);
-            state->write = copy;
+            state->wnext = copy;
             state->whave = state->wsize;
         }
         else {
-            state->write += dist;
-            if (state->write == state->wsize) state->write = 0;
+            state->wnext += dist;
+            if (state->wnext == state->wsize) state->wnext = 0;
             if (state->whave < state->wsize) state->whave += dist;
         }
     }
     return 0;
 }
 
 /* Macros for inflate(): */
 
@@ -559,17 +594,17 @@ int flush;
     unsigned char FAR *next;    /* next input */
     unsigned char FAR *put;     /* next output */
     unsigned have, left;        /* available input and output */
     unsigned long hold;         /* bit buffer */
     unsigned bits;              /* bits in bit buffer */
     unsigned in, out;           /* save starting available input and output */
     unsigned copy;              /* number of stored or match bytes to copy */
     unsigned char FAR *from;    /* where to copy match bytes from */
-    code this;                  /* current decoding table entry */
+    code here;                  /* current decoding table entry */
     code last;                  /* parent table entry */
     unsigned len;               /* length to copy for repeats, bits to drop */
     int ret;                    /* return code */
 #ifdef GUNZIP
     unsigned char hbuf[4];      /* buffer for gzip header crc calculation */
 #endif
     static const unsigned short order[19] = /* permutation of code lengths */
         {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
@@ -614,17 +649,19 @@ int flush;
             }
             if (BITS(4) != Z_DEFLATED) {
                 strm->msg = (char *)"unknown compression method";
                 state->mode = BAD;
                 break;
             }
             DROPBITS(4);
             len = BITS(4) + 8;
-            if (len > state->wbits) {
+            if (state->wbits == 0)
+                state->wbits = len;
+            else if (len > state->wbits) {
                 strm->msg = (char *)"invalid window size";
                 state->mode = BAD;
                 break;
             }
             state->dmax = 1U << len;
             Tracev((stderr, "inflate:   zlib header ok\n"));
             strm->adler = state->check = adler32(0L, Z_NULL, 0);
             state->mode = hold & 0x200 ? DICTID : TYPE;
@@ -766,17 +803,17 @@ int flush;
         case DICT:
             if (state->havedict == 0) {
                 RESTORE();
                 return Z_NEED_DICT;
             }
             strm->adler = state->check = adler32(0L, Z_NULL, 0);
             state->mode = TYPE;
         case TYPE:
-            if (flush == Z_BLOCK) goto inf_leave;
+            if (flush == Z_BLOCK || flush == Z_TREES) goto inf_leave;
         case TYPEDO:
             if (state->last) {
                 BYTEBITS();
                 state->mode = CHECK;
                 break;
             }
             NEEDBITS(3);
             state->last = BITS(1);
@@ -786,17 +823,21 @@ int flush;
                 Tracev((stderr, "inflate:     stored block%s\n",
                         state->last ? " (last)" : ""));
                 state->mode = STORED;
                 break;
             case 1:                             /* fixed block */
                 fixedtables(state);
                 Tracev((stderr, "inflate:     fixed codes block%s\n",
                         state->last ? " (last)" : ""));
-                state->mode = LEN;              /* decode codes */
+                state->mode = LEN_;             /* decode codes */
+                if (flush == Z_TREES) {
+                    DROPBITS(2);
+                    goto inf_leave;
+                }
                 break;
             case 2:                             /* dynamic block */
                 Tracev((stderr, "inflate:     dynamic codes block%s\n",
                         state->last ? " (last)" : ""));
                 state->mode = TABLE;
                 break;
             case 3:
                 strm->msg = (char *)"invalid block type";
@@ -811,16 +852,19 @@ int flush;
                 strm->msg = (char *)"invalid stored block lengths";
                 state->mode = BAD;
                 break;
             }
             state->length = (unsigned)hold & 0xffff;
             Tracev((stderr, "inflate:       stored length %u\n",
                     state->length));
             INITBITS();
+            state->mode = COPY_;
+            if (flush == Z_TREES) goto inf_leave;
+        case COPY_:
             state->mode = COPY;
         case COPY:
             copy = state->length;
             if (copy) {
                 if (copy > have) copy = have;
                 if (copy > left) copy = left;
                 if (copy == 0) goto inf_leave;
                 zmemcpy(put, next, copy);
@@ -871,48 +915,48 @@ int flush;
                 break;
             }
             Tracev((stderr, "inflate:       code lengths ok\n"));
             state->have = 0;
             state->mode = CODELENS;
         case CODELENS:
             while (state->have < state->nlen + state->ndist) {
                 for (;;) {
-                    this = state->lencode[BITS(state->lenbits)];
-                    if ((unsigned)(this.bits) <= bits) break;
+                    here = state->lencode[BITS(state->lenbits)];
+                    if ((unsigned)(here.bits) <= bits) break;
                     PULLBYTE();
                 }
-                if (this.val < 16) {
-                    NEEDBITS(this.bits);
-                    DROPBITS(this.bits);
-                    state->lens[state->have++] = this.val;
+                if (here.val < 16) {
+                    NEEDBITS(here.bits);
+                    DROPBITS(here.bits);
+                    state->lens[state->have++] = here.val;
                 }
                 else {
-                    if (this.val == 16) {
-                        NEEDBITS(this.bits + 2);
-                        DROPBITS(this.bits);
+                    if (here.val == 16) {
+                        NEEDBITS(here.bits + 2);
+                        DROPBITS(here.bits);
                         if (state->have == 0) {
                             strm->msg = (char *)"invalid bit length repeat";
                             state->mode = BAD;
                             break;
                         }
                         len = state->lens[state->have - 1];
                         copy = 3 + BITS(2);
                         DROPBITS(2);
                     }
-                    else if (this.val == 17) {
-                        NEEDBITS(this.bits + 3);
-                        DROPBITS(this.bits);
+                    else if (here.val == 17) {
+                        NEEDBITS(here.bits + 3);
+                        DROPBITS(here.bits);
                         len = 0;
                         copy = 3 + BITS(3);
                         DROPBITS(3);
                     }
                     else {
-                        NEEDBITS(this.bits + 7);
-                        DROPBITS(this.bits);
+                        NEEDBITS(here.bits + 7);
+                        DROPBITS(here.bits);
                         len = 0;
                         copy = 11 + BITS(7);
                         DROPBITS(7);
                     }
                     if (state->have + copy > state->nlen + state->ndist) {
                         strm->msg = (char *)"invalid bit length repeat";
                         state->mode = BAD;
                         break;
@@ -920,17 +964,26 @@ int flush;
                     while (copy--)
                         state->lens[state->have++] = (unsigned short)len;
                 }
             }
 
             /* handle error breaks in while */
             if (state->mode == BAD) break;
 
-            /* build code tables */
+            /* check for end-of-block code (better have one) */
+            if (state->lens[256] == 0) {
+                strm->msg = (char *)"invalid code -- missing end-of-block";
+                state->mode = BAD;
+                break;
+            }
+
+            /* build code tables -- note: do not change the lenbits or distbits
+               values here (9 and 6) without reading the comments in inftrees.h
+               concerning the ENOUGH constants, which depend on those values */
             state->next = state->codes;
             state->lencode = (code const FAR *)(state->next);
             state->lenbits = 9;
             ret = inflate_table(LENS, state->lens, state->nlen, &(state->next),
                                 &(state->lenbits), state->work);
             if (ret) {
                 strm->msg = (char *)"invalid literal/lengths set";
                 state->mode = BAD;
@@ -941,124 +994,153 @@ int flush;
             ret = inflate_table(DISTS, state->lens + state->nlen, state->ndist,
                             &(state->next), &(state->distbits), state->work);
             if (ret) {
                 strm->msg = (char *)"invalid distances set";
                 state->mode = BAD;
                 break;
             }
             Tracev((stderr, "inflate:       codes ok\n"));
+            state->mode = LEN_;
+            if (flush == Z_TREES) goto inf_leave;
+        case LEN_:
             state->mode = LEN;
         case LEN:
             if (have >= 6 && left >= 258) {
                 RESTORE();
                 inflate_fast(strm, out);
                 LOAD();
+                if (state->mode == TYPE)
+                    state->back = -1;
                 break;
             }
+            state->back = 0;
             for (;;) {
-                this = state->lencode[BITS(state->lenbits)];
-                if ((unsigned)(this.bits) <= bits) break;
+                here = state->lencode[BITS(state->lenbits)];
+                if ((unsigned)(here.bits) <= bits) break;
                 PULLBYTE();
             }
-            if (this.op && (this.op & 0xf0) == 0) {
-                last = this;
+            if (here.op && (here.op & 0xf0) == 0) {
+                last = here;
                 for (;;) {
-                    this = state->lencode[last.val +
+                    here = state->lencode[last.val +
                             (BITS(last.bits + last.op) >> last.bits)];
-                    if ((unsigned)(last.bits + this.bits) <= bits) break;
+                    if ((unsigned)(last.bits + here.bits) <= bits) break;
                     PULLBYTE();
                 }
                 DROPBITS(last.bits);
+                state->back += last.bits;
             }
-            DROPBITS(this.bits);
-            state->length = (unsigned)this.val;
-            if ((int)(this.op) == 0) {
-                Tracevv((stderr, this.val >= 0x20 && this.val < 0x7f ?
+            DROPBITS(here.bits);
+            state->back += here.bits;
+            state->length = (unsigned)here.val;
+            if ((int)(here.op) == 0) {
+                Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ?
                         "inflate:         literal '%c'\n" :
-                        "inflate:         literal 0x%02x\n", this.val));
+                        "inflate:         literal 0x%02x\n", here.val));
                 state->mode = LIT;
                 break;
             }
-            if (this.op & 32) {
+            if (here.op & 32) {
                 Tracevv((stderr, "inflate:         end of block\n"));
+                state->back = -1;
                 state->mode = TYPE;
                 break;
             }
-            if (this.op & 64) {
+            if (here.op & 64) {
                 strm->msg = (char *)"invalid literal/length code";
                 state->mode = BAD;
                 break;
             }
-            state->extra = (unsigned)(this.op) & 15;
+            state->extra = (unsigned)(here.op) & 15;
             state->mode = LENEXT;
         case LENEXT:
             if (state->extra) {
                 NEEDBITS(state->extra);
                 state->length += BITS(state->extra);
                 DROPBITS(state->extra);
+                state->back += state->extra;
             }
             Tracevv((stderr, "inflate:         length %u\n", state->length));
+            state->was = state->length;
             state->mode = DIST;
         case DIST:
             for (;;) {
-                this = state->distcode[BITS(state->distbits)];
-                if ((unsigned)(this.bits) <= bits) break;
+                here = state->distcode[BITS(state->distbits)];
+                if ((unsigned)(here.bits) <= bits) break;
                 PULLBYTE();
             }
-            if ((this.op & 0xf0) == 0) {
-                last = this;
+            if ((here.op & 0xf0) == 0) {
+                last = here;
                 for (;;) {
-                    this = state->distcode[last.val +
+                    here = state->distcode[last.val +
                             (BITS(last.bits + last.op) >> last.bits)];
-                    if ((unsigned)(last.bits + this.bits) <= bits) break;
+                    if ((unsigned)(last.bits + here.bits) <= bits) break;
                     PULLBYTE();
                 }
                 DROPBITS(last.bits);
+                state->back += last.bits;
             }
-            DROPBITS(this.bits);
-            if (this.op & 64) {
+            DROPBITS(here.bits);
+            state->back += here.bits;
+            if (here.op & 64) {
                 strm->msg = (char *)"invalid distance code";
                 state->mode = BAD;
                 break;
             }
-            state->offset = (unsigned)this.val;
-            state->extra = (unsigned)(this.op) & 15;
+            state->offset = (unsigned)here.val;
+            state->extra = (unsigned)(here.op) & 15;
             state->mode = DISTEXT;
         case DISTEXT:
             if (state->extra) {
                 NEEDBITS(state->extra);
                 state->offset += BITS(state->extra);
                 DROPBITS(state->extra);
+                state->back += state->extra;
             }
 #ifdef INFLATE_STRICT
             if (state->offset > state->dmax) {
                 strm->msg = (char *)"invalid distance too far back";
                 state->mode = BAD;
                 break;
             }
 #endif
-            if (state->offset > state->whave + out - left) {
-                strm->msg = (char *)"invalid distance too far back";
-                state->mode = BAD;
-                break;
-            }
             Tracevv((stderr, "inflate:         distance %u\n", state->offset));
             state->mode = MATCH;
         case MATCH:
             if (left == 0) goto inf_leave;
             copy = out - left;
             if (state->offset > copy) {         /* copy from window */
                 copy = state->offset - copy;
-                if (copy > state->write) {
-                    copy -= state->write;
+                if (copy > state->whave) {
+                    if (state->sane) {
+                        strm->msg = (char *)"invalid distance too far back";
+                        state->mode = BAD;
+                        break;
+                    }
+#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR
+                    Trace((stderr, "inflate.c too far\n"));
+                    copy -= state->whave;
+                    if (copy > state->length) copy = state->length;
+                    if (copy > left) copy = left;
+                    left -= copy;
+                    state->length -= copy;
+                    do {
+                        *put++ = 0;
+                    } while (--copy);
+                    if (state->length == 0) state->mode = LEN;
+                    break;
+#endif
+                }
+                if (copy > state->wnext) {
+                    copy -= state->wnext;
                     from = state->window + (state->wsize - copy);
                 }
                 else
-                    from = state->window + (state->write - copy);
+                    from = state->window + (state->wnext - copy);
                 if (copy > state->length) copy = state->length;
             }
             else {                              /* copy from output */
                 from = put - state->offset;
                 copy = state->length;
             }
             if (copy > left) copy = left;
             left -= copy;
@@ -1141,17 +1223,18 @@ int flush;
     out -= strm->avail_out;
     strm->total_in += in;
     strm->total_out += out;
     state->total += out;
     if (state->wrap && out)
         strm->adler = state->check =
             UPDATE(state->check, strm->next_out - out, out);
     strm->data_type = state->bits + (state->last ? 64 : 0) +
-                      (state->mode == TYPE ? 128 : 0);
+                      (state->mode == TYPE ? 128 : 0) +
+                      (state->mode == LEN_ || state->mode == COPY_ ? 256 : 0);
     if (((in == 0 && out == 0) || flush == Z_FINISH) && ret == Z_OK)
         ret = Z_BUF_ERROR;
     return ret;
 }
 
 int ZEXPORT inflateEnd(strm)
 z_streamp strm;
 {
@@ -1361,8 +1444,37 @@ z_streamp source;
     if (window != Z_NULL) {
         wsize = 1U << state->wbits;
         zmemcpy(window, state->window, wsize);
     }
     copy->window = window;
     dest->state = (struct internal_state FAR *)copy;
     return Z_OK;
 }
+
+int ZEXPORT inflateUndermine(strm, subvert)
+z_streamp strm;
+int subvert;
+{
+    struct inflate_state FAR *state;
+
+    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
+    state = (struct inflate_state FAR *)strm->state;
+    state->sane = !subvert;
+#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR
+    return Z_OK;
+#else
+    state->sane = 1;
+    return Z_DATA_ERROR;
+#endif
+}
+
+long ZEXPORT inflateMark(strm)
+z_streamp strm;
+{
+    struct inflate_state FAR *state;
+
+    if (strm == Z_NULL || strm->state == Z_NULL) return -1L << 16;
+    state = (struct inflate_state FAR *)strm->state;
+    return ((long)(state->back) << 16) +
+        (state->mode == COPY ? state->length :
+            (state->mode == MATCH ? state->was - state->length : 0));
+}
--- a/modules/zlib/src/inflate.h
+++ b/modules/zlib/src/inflate.h
@@ -1,10 +1,10 @@
 /* inflate.h -- internal inflate state definition
- * Copyright (C) 1995-2004 Mark Adler
+ * Copyright (C) 1995-2009 Mark Adler
  * For conditions of distribution and use, see copyright notice in zlib.h
  */
 
 /* WARNING: this file should *not* be used by applications. It is
    part of the implementation of the compression library and is
    subject to change. Applications should only use zlib.h.
  */
 
@@ -27,73 +27,77 @@ typedef enum {
     NAME,       /* i: waiting for end of file name (gzip) */
     COMMENT,    /* i: waiting for end of comment (gzip) */
     HCRC,       /* i: waiting for header crc (gzip) */
     DICTID,     /* i: waiting for dictionary check value */
     DICT,       /* waiting for inflateSetDictionary() call */
         TYPE,       /* i: waiting for type bits, including last-flag bit */
         TYPEDO,     /* i: same, but skip check to exit inflate on new block */
         STORED,     /* i: waiting for stored size (length and complement) */
+        COPY_,      /* i/o: same as COPY below, but only first time in */
         COPY,       /* i/o: waiting for input or output to copy stored block */
         TABLE,      /* i: waiting for dynamic block table lengths */
         LENLENS,    /* i: waiting for code length code lengths */
         CODELENS,   /* i: waiting for length/lit and distance code lengths */
-            LEN,        /* i: waiting for length/lit code */
+            LEN_,       /* i: same as LEN below, but only first time in */
+            LEN,        /* i: waiting for length/lit/eob code */
             LENEXT,     /* i: waiting for length extra bits */
             DIST,       /* i: waiting for distance code */
             DISTEXT,    /* i: waiting for distance extra bits */
             MATCH,      /* o: waiting for output space to copy string */
             LIT,        /* o: waiting for output space to write literal */
     CHECK,      /* i: waiting for 32-bit check value */
     LENGTH,     /* i: waiting for 32-bit length (gzip) */
     DONE,       /* finished check, done -- remain here until reset */
     BAD,        /* got a data error -- remain here until reset */
     MEM,        /* got an inflate() memory error -- remain here until reset */
     SYNC        /* looking for synchronization bytes to restart inflate() */
 } inflate_mode;
 
 /*
     State transitions between above modes -
 
-    (most modes can go to the BAD or MEM mode -- not shown for clarity)
+    (most modes can go to BAD or MEM on error -- not shown for clarity)
 
     Process header:
-        HEAD -> (gzip) or (zlib)
-        (gzip) -> FLAGS -> TIME -> OS -> EXLEN -> EXTRA -> NAME
-        NAME -> COMMENT -> HCRC -> TYPE
+        HEAD -> (gzip) or (zlib) or (raw)
+        (gzip) -> FLAGS -> TIME -> OS -> EXLEN -> EXTRA -> NAME -> COMMENT ->
+                  HCRC -> TYPE
         (zlib) -> DICTID or TYPE
         DICTID -> DICT -> TYPE
+        (raw) -> TYPEDO
     Read deflate blocks:
-            TYPE -> STORED or TABLE or LEN or CHECK
-            STORED -> COPY -> TYPE
-            TABLE -> LENLENS -> CODELENS -> LEN
-    Read deflate codes:
+            TYPE -> TYPEDO -> STORED or TABLE or LEN_ or CHECK
+            STORED -> COPY_ -> COPY -> TYPE
+            TABLE -> LENLENS -> CODELENS -> LEN_
+            LEN_ -> LEN
+    Read deflate codes in fixed or dynamic block:
                 LEN -> LENEXT or LIT or TYPE
                 LENEXT -> DIST -> DISTEXT -> MATCH -> LEN
                 LIT -> LEN
     Process trailer:
         CHECK -> LENGTH -> DONE
  */
 
-/* state maintained between inflate() calls.  Approximately 7K bytes. */
+/* state maintained between inflate() calls.  Approximately 10K bytes. */
 struct inflate_state {
     inflate_mode mode;          /* current inflate mode */
     int last;                   /* true if processing last block */
     int wrap;                   /* bit 0 true for zlib, bit 1 true for gzip */
     int havedict;               /* true if dictionary provided */
     int flags;                  /* gzip header method and flags (0 if zlib) */
     unsigned dmax;              /* zlib header max distance (INFLATE_STRICT) */
     unsigned long check;        /* protected copy of check value */
     unsigned long total;        /* protected copy of output count */
     gz_headerp head;            /* where to save gzip header information */
         /* sliding window */
     unsigned wbits;             /* log base 2 of requested window size */
     unsigned wsize;             /* window size or zero if not using window */
     unsigned whave;             /* valid bytes in the window */
-    unsigned write;             /* window write index */
+    unsigned wnext;             /* window write index */
     unsigned char FAR *window;  /* allocated sliding window, if needed */
         /* bit accumulator */
     unsigned long hold;         /* input bit accumulator */
     unsigned bits;              /* number of bits in "in" */
         /* for string and stored block copying */
     unsigned length;            /* literal or length of data to copy */
     unsigned offset;            /* distance back to copy string from */
         /* for table and code decoding */
@@ -107,9 +111,12 @@ struct inflate_state {
     unsigned ncode;             /* number of code length code lengths */
     unsigned nlen;              /* number of length code lengths */
     unsigned ndist;             /* number of distance code lengths */
     unsigned have;              /* number of code lengths in lens[] */
     code FAR *next;             /* next available space in codes[] */
     unsigned short lens[320];   /* temporary storage for code lengths */
     unsigned short work[288];   /* work area for code table building */
     code codes[ENOUGH];         /* space for code tables */
+    int sane;                   /* if false, allow invalid distance too far */
+    int back;                   /* bits back of last unprocessed length/lit */
+    unsigned was;               /* initial length of match */
 };
--- a/modules/zlib/src/inftrees.c
+++ b/modules/zlib/src/inftrees.c
@@ -1,20 +1,20 @@
 /* inftrees.c -- generate Huffman trees for efficient decoding
- * Copyright (C) 1995-2005 Mark Adler
+ * Copyright (C) 1995-2010 Mark Adler
  * For conditions of distribution and use, see copyright notice in zlib.h
  */
 
 #include "zutil.h"
 #include "inftrees.h"
 
 #define MAXBITS 15
 
 const char inflate_copyright[] =
-   " inflate 1.2.3 Copyright 1995-2005 Mark Adler ";
+   " inflate 1.2.5 Copyright 1995-2010 Mark Adler ";
 /*
   If you use the zlib library in a product, an acknowledgment is welcome
   in the documentation of your product. If for some reason you cannot
   include such an acknowledgment, I would appreciate that you keep this
   copyright string in the executable of your product.
  */
 
 /*
@@ -24,17 +24,17 @@ const char inflate_copyright[] =
    lens shorts, which is used as a work area.  type is the type of code
    to be generated, CODES, LENS, or DISTS.  On return, zero is success,
    -1 is an invalid code, and +1 means that ENOUGH isn't enough.  table
    on return points to the next available entry's address.  bits is the
    requested root table index bits, and on return it is the actual root
    table index bits.  It will differ if the request is greater than the
    longest code or if it is less than the shortest code.
  */
-int inflate_table(type, lens, codes, table, bits, work)
+int ZLIB_INTERNAL inflate_table(type, lens, codes, table, bits, work)
 codetype type;
 unsigned short FAR *lens;
 unsigned codes;
 code FAR * FAR *table;
 unsigned FAR *bits;
 unsigned short FAR *work;
 {
     unsigned len;               /* a code's length in bits */
@@ -45,29 +45,29 @@ unsigned short FAR *work;
     unsigned drop;              /* code bits to drop for sub-table */
     int left;                   /* number of prefix codes available */
     unsigned used;              /* code entries in table used */
     unsigned huff;              /* Huffman code */
     unsigned incr;              /* for incrementing code, index */
     unsigned fill;              /* index for replicating entries */
     unsigned low;               /* low bits for current root entry */
     unsigned mask;              /* mask for low root bits */
-    code this;                  /* table entry for duplication */
+    code here;                  /* table entry for duplication */
     code FAR *next;             /* next available space in table */
     const unsigned short FAR *base;     /* base value table to use */
     const unsigned short FAR *extra;    /* extra bits table to use */
     int end;                    /* use base and extra for symbol > end */
     unsigned short count[MAXBITS+1];    /* number of codes of each length */
     unsigned short offs[MAXBITS+1];     /* offsets in table for each length */
     static const unsigned short lbase[31] = { /* Length codes 257..285 base */
         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
     static const unsigned short lext[31] = { /* Length codes 257..285 extra */
         16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
-        19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 201, 196};
+        19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 73, 195};
     static const unsigned short dbase[32] = { /* Distance codes 0..29 base */
         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
         8193, 12289, 16385, 24577, 0, 0};
     static const unsigned short dext[32] = { /* Distance codes 0..29 extra */
         16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
         23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
         28, 28, 29, 29, 64, 64};
@@ -110,25 +110,25 @@ unsigned short FAR *work;
         count[lens[sym]]++;
 
     /* bound code lengths, force root to be within code lengths */
     root = *bits;
     for (max = MAXBITS; max >= 1; max--)
         if (count[max] != 0) break;
     if (root > max) root = max;
     if (max == 0) {                     /* no symbols to code at all */
-        this.op = (unsigned char)64;    /* invalid code marker */
-        this.bits = (unsigned char)1;
-        this.val = (unsigned short)0;
-        *(*table)++ = this;             /* make a table to force an error */
-        *(*table)++ = this;
+        here.op = (unsigned char)64;    /* invalid code marker */
+        here.bits = (unsigned char)1;
+        here.val = (unsigned short)0;
+        *(*table)++ = here;             /* make a table to force an error */
+        *(*table)++ = here;
         *bits = 1;
         return 0;     /* no symbols, but wait for decoding to report error */
     }
-    for (min = 1; min <= MAXBITS; min++)
+    for (min = 1; min < max; min++)
         if (count[min] != 0) break;
     if (root < min) root = min;
 
     /* check for an over-subscribed or incomplete set of lengths */
     left = 1;
     for (len = 1; len <= MAXBITS; len++) {
         left <<= 1;
         left -= count[len];
@@ -161,21 +161,20 @@ unsigned short FAR *work;
        being filled, and drop is root when sub-tables are being filled.
 
        When a new sub-table is needed, it is necessary to look ahead in the
        code lengths to determine what size sub-table is needed.  The length
        counts are used for this, and so count[] is decremented as codes are
        entered in the tables.
 
        used keeps track of how many table entries have been allocated from the
-       provided *table space.  It is checked when a LENS table is being made
-       against the space in *table, ENOUGH, minus the maximum space needed by
-       the worst case distance code, MAXD.  This should never happen, but the
-       sufficiency of ENOUGH has not been proven exhaustively, hence the check.
-       This assumes that when type == LENS, bits == 9.
+       provided *table space.  It is checked for LENS and DIST tables against
+       the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
+       the initial root table size constants.  See the comments in inftrees.h
+       for more information.
 
        sym increments through all symbols, and the loop terminates when
        all codes of length max, i.e. all codes, have been processed.  This
        routine permits incomplete codes, so another loop after this one fills
        in the rest of the decoding tables with invalid code markers.
      */
 
     /* set up for code type */
@@ -204,43 +203,44 @@ unsigned short FAR *work;
     next = *table;              /* current table to fill in */
     curr = root;                /* current table index bits */
     drop = 0;                   /* current bits to drop from code for index */
     low = (unsigned)(-1);       /* trigger new sub-table when len > root */
     used = 1U << root;          /* use root table entries */
     mask = used - 1;            /* mask for comparing low */
 
     /* check available table space */
-    if (type == LENS && used >= ENOUGH - MAXD)
+    if ((type == LENS && used >= ENOUGH_LENS) ||
+        (type == DISTS && used >= ENOUGH_DISTS))
         return 1;
 
     /* process all codes and make table entries */
     for (;;) {
         /* create table entry */
-        this.bits = (unsigned char)(len - drop);
+        here.bits = (unsigned char)(len - drop);
         if ((int)(work[sym]) < end) {
-            this.op = (unsigned char)0;
-            this.val = work[sym];
+            here.op = (unsigned char)0;
+            here.val = work[sym];
         }
         else if ((int)(work[sym]) > end) {
-            this.op = (unsigned char)(extra[work[sym]]);
-            this.val = base[work[sym]];
+            here.op = (unsigned char)(extra[work[sym]]);
+            here.val = base[work[sym]];
         }
         else {
-            this.op = (unsigned char)(32 + 64);         /* end of block */
-            this.val = 0;
+            here.op = (unsigned char)(32 + 64);         /* end of block */
+            here.val = 0;
         }
 
         /* replicate for those indices with low len bits equal to huff */
         incr = 1U << (len - drop);
         fill = 1U << curr;
         min = fill;                 /* save offset to next table */
         do {
             fill -= incr;
-            next[(huff >> drop) + fill] = this;
+            next[(huff >> drop) + fill] = here;
         } while (fill != 0);
 
         /* backwards increment the len-bit code huff */
         incr = 1U << (len - 1);
         while (huff & incr)
             incr >>= 1;
         if (incr != 0) {
             huff &= incr - 1;
@@ -272,17 +272,18 @@ unsigned short FAR *work;
                 left -= count[curr + drop];
                 if (left <= 0) break;
                 curr++;
                 left <<= 1;
             }
 
             /* check for enough space */
             used += 1U << curr;
-            if (type == LENS && used >= ENOUGH - MAXD)
+            if ((type == LENS && used >= ENOUGH_LENS) ||
+                (type == DISTS && used >= ENOUGH_DISTS))
                 return 1;
 
             /* point entry in root table to sub-table */
             low = huff & mask;
             (*table)[low].op = (unsigned char)curr;
             (*table)[low].bits = (unsigned char)root;
             (*table)[low].val = (unsigned short)(next - *table);
         }
@@ -290,30 +291,30 @@ unsigned short FAR *work;
 
     /*
        Fill in rest of table for incomplete codes.  This loop is similar to the
        loop above in incrementing huff for table indices.  It is assumed that
        len is equal to curr + drop, so there is no loop needed to increment
        through high index bits.  When the current sub-table is filled, the loop
        drops back to the root table to fill in any remaining entries there.
      */
-    this.op = (unsigned char)64;                /* invalid code marker */
-    this.bits = (unsigned char)(len - drop);
-    this.val = (unsigned short)0;
+    here.op = (unsigned char)64;                /* invalid code marker */
+    here.bits = (unsigned char)(len - drop);
+    here.val = (unsigned short)0;
     while (huff != 0) {
         /* when done with sub-table, drop back to root table */
         if (drop != 0 && (huff & mask) != low) {
             drop = 0;
             len = root;
             next = *table;
-            this.bits = (unsigned char)len;
+            here.bits = (unsigned char)len;
         }
 
         /* put invalid code marker in table */
-        next[huff >> drop] = this;
+        next[huff >> drop] = here;
 
         /* backwards increment the len-bit code huff */
         incr = 1U << (len - 1);
         while (huff & incr)
             incr >>= 1;
         if (incr != 0) {
             huff &= incr - 1;
             huff += incr;
--- a/modules/zlib/src/inftrees.h
+++ b/modules/zlib/src/inftrees.h
@@ -1,10 +1,10 @@
 /* inftrees.h -- header to use inftrees.c
- * Copyright (C) 1995-2005 Mark Adler
+ * Copyright (C) 1995-2005, 2010 Mark Adler
  * For conditions of distribution and use, see copyright notice in zlib.h
  */
 
 /* WARNING: this file should *not* be used by applications. It is
    part of the implementation of the compression library and is
    subject to change. Applications should only use zlib.h.
  */
 
@@ -30,26 +30,33 @@ typedef struct {
 /* op values as set by inflate_table():
     00000000 - literal
     0000tttt - table link, tttt != 0 is the number of table index bits
     0001eeee - length or distance, eeee is the number of extra bits
     01100000 - end of block
     01000000 - invalid code
  */
 
-/* Maximum size of dynamic tree.  The maximum found in a long but non-
-   exhaustive search was 1444 code structures (852 for length/literals
-   and 592 for distances, the latter actually the result of an
-   exhaustive search).  The true maximum is not known, but the value
-   below is more than safe. */
-#define ENOUGH 2048
-#define MAXD 592
+/* Maximum size of the dynamic table.  The maximum number of code structures is
+   1444, which is the sum of 852 for literal/length codes and 592 for distance
+   codes.  These values were found by exhaustive searches using the program
+   examples/enough.c found in the zlib distribtution.  The arguments to that
+   program are the number of symbols, the initial root table size, and the
+   maximum bit length of a code.  "enough 286 9 15" for literal/length codes
+   returns returns 852, and "enough 30 6 15" for distance codes returns 592.
+   The initial root table size (9 or 6) is found in the fifth argument of the
+   inflate_table() calls in inflate.c and infback.c.  If the root table size is
+   changed, then these maximum sizes would be need to be recalculated and
+   updated. */
+#define ENOUGH_LENS 852
+#define ENOUGH_DISTS 592
+#define ENOUGH (ENOUGH_LENS+ENOUGH_DISTS)
 
-/* Type of code to build for inftable() */
+/* Type of code to build for inflate_table() */
 typedef enum {
     CODES,
     LENS,
     DISTS
 } codetype;
 
-extern int inflate_table OF((codetype type, unsigned short FAR *lens,
+int ZLIB_INTERNAL inflate_table OF((codetype type, unsigned short FAR *lens,
                              unsigned codes, code FAR * FAR *table,
                              unsigned FAR *bits, unsigned short FAR *work));
--- a/modules/zlib/src/mozzconf.h
+++ b/modules/zlib/src/mozzconf.h
@@ -113,18 +113,36 @@
 #define z_errmsg MOZ_Z_z_errmsg
 #define zcalloc MOZ_Z_zcalloc
 #define zcfree MOZ_Z_zcfree
 #define alloc_func MOZ_Z_alloc_func
 #define free_func MOZ_Z_free_func
 #define in_func MOZ_Z_in_func
 #define out_func MOZ_Z_out_func
 
-/* New as of libpng-1.2.3 */
+/* New as of zlib-1.2.3 */
 #define adler32_combine MOZ_Z_adler32_combine
 #define crc32_combine MOZ_Z_crc32_combine
 #define deflateSetHeader MOZ_Z_deflateSetHeader
 #define deflateTune MOZ_Z_deflateTune
 #define gzdirect MOZ_Z_gzdirect
 #define inflatePrime MOZ_Z_inflatePrime
 #define inflateGetHeader MOZ_Z_inflateGetHeader
 
+/* New as of zlib-1.2.4 */
+#define adler32_combine64 MOZ_Z_adler32_combine64
+#define crc32_combine64 MOZ_Z_crc32_combine64
+#define gz_error MOZ_Z_gz_error
+#define gz_intmax MOZ_Z_gz_intmax
+#define gz_strwinerror MOZ_Z_gz_strwinerror
+#define gzbuffer MOZ_Z_gzbuffer
+#define gzclose_r MOZ_Z_gzclose_r
+#define gzclose_w MOZ_Z_gzclose_w
+#define gzoffset MOZ_Z_gzoffset
+#define gzoffset64 MOZ_Z_gzoffset64
+#define gzopen64 MOZ_Z_gzopen64
+#define gzseek64 MOZ_Z_gzseek64
+#define gztell64 MOZ_Z_gztell64
+#define inflateMark MOZ_Z_inflateMark
+#define inflateReset2 MOZ_Z_inflateReset2
+#define inflateUndermine MOZ_Z_inflateUndermine
+
 #endif
--- a/modules/zlib/src/objs.mk
+++ b/modules/zlib/src/objs.mk
@@ -35,17 +35,20 @@
 #
 # ***** END LICENSE BLOCK *****
 
 MODULES_ZLIB_SRC_LCSRCS = \
 		adler32.c \
 		compress.c \
 		crc32.c \
 		deflate.c \
-		gzio.c \
+		gzclose.c \
+		gzlib.c \
+		gzread.c \
+		gzwrite.c \
 		infback.c \
 		inffast.c \
 		inflate.c \
 		inftrees.c \
 		trees.c \
 		uncompr.c \
 		zutil.c \
 		$(NULL)
--- a/modules/zlib/src/trees.c
+++ b/modules/zlib/src/trees.c
@@ -1,10 +1,11 @@
 /* trees.c -- output deflated data using Huffman coding
- * Copyright (C) 1995-2005 Jean-loup Gailly
+ * Copyright (C) 1995-2010 Jean-loup Gailly
+ * detect_data_type() function provided freely by Cosmin Truta, 2006
  * For conditions of distribution and use, see copyright notice in zlib.h
  */
 
 /*
  *  ALGORITHM
  *
  *      The "deflation" process uses several Huffman trees. The more
  *      common source values are represented by shorter bit sequences.
@@ -24,17 +25,17 @@
  *          Data Compression:  Methods and Theory, pp. 49-50.
  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
  *
  *      Sedgewick, R.
  *          Algorithms, p290.
  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
  */
 
-/* @(#) $Id: trees.c,v 3.6 2005/08/04 19:14:14 tor%cs.brown.edu Exp $ */
+/* @(#) $Id$ */
 
 /* #define GEN_TREES_H */
 
 #include "deflate.h"
 
 #ifdef DEBUG
 #  include <ctype.h>
 #endif
@@ -147,17 +148,17 @@ local void gen_codes      OF((ct_data *t
 local void build_tree     OF((deflate_state *s, tree_desc *desc));
 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
 local int  build_bl_tree  OF((deflate_state *s));
 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
                               int blcodes));
 local void compress_block OF((deflate_state *s, ct_data *ltree,
                               ct_data *dtree));
-local void set_data_type  OF((deflate_state *s));
+local int  detect_data_type OF((deflate_state *s));
 local unsigned bi_reverse OF((unsigned value, int length));
 local void bi_windup      OF((deflate_state *s));
 local void bi_flush       OF((deflate_state *s));
 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
                               int header));
 
 #ifdef GEN_TREES_H
 local void gen_trees_header OF((void));
@@ -198,37 +199,37 @@ local void send_bits(s, value, length)
     Assert(length > 0 && length <= 15, "invalid length");
     s->bits_sent += (ulg)length;
 
     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
      * unused bits in value.
      */
     if (s->bi_valid > (int)Buf_size - length) {
-        s->bi_buf |= (value << s->bi_valid);
+        s->bi_buf |= (ush)value << s->bi_valid;
         put_short(s, s->bi_buf);
         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
         s->bi_valid += length - Buf_size;
     } else {
-        s->bi_buf |= value << s->bi_valid;
+        s->bi_buf |= (ush)value << s->bi_valid;
         s->bi_valid += length;
     }
 }
 #else /* !DEBUG */
 
 #define send_bits(s, value, length) \
 { int len = length;\
   if (s->bi_valid > (int)Buf_size - len) {\
     int val = value;\
-    s->bi_buf |= (val << s->bi_valid);\
+    s->bi_buf |= (ush)val << s->bi_valid;\
     put_short(s, s->bi_buf);\
     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
     s->bi_valid += len - Buf_size;\
   } else {\
-    s->bi_buf |= (value) << s->bi_valid;\
+    s->bi_buf |= (ush)(value) << s->bi_valid;\
     s->bi_valid += len;\
   }\
 }
 #endif /* DEBUG */
 
 
 /* the arguments must not have side effects */
 
@@ -245,21 +246,23 @@ local void tr_static_init()
     int code;     /* code value */
     int dist;     /* distance index */
     ush bl_count[MAX_BITS+1];
     /* number of codes at each bit length for an optimal tree */
 
     if (static_init_done) return;
 
     /* For some embedded targets, global variables are not initialized: */
+#ifdef NO_INIT_GLOBAL_POINTERS
     static_l_desc.static_tree = static_ltree;
     static_l_desc.extra_bits = extra_lbits;
     static_d_desc.static_tree = static_dtree;
     static_d_desc.extra_bits = extra_dbits;
     static_bl_desc.extra_bits = extra_blbits;
+#endif
 
     /* Initialize the mapping length (0..255) -> length code (0..28) */
     length = 0;
     for (code = 0; code < LENGTH_CODES-1; code++) {
         base_length[code] = length;
         for (n = 0; n < (1<<extra_lbits[code]); n++) {
             _length_code[length++] = (uch)code;
         }
@@ -343,23 +346,24 @@ void gen_trees_header()
     }
 
     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
     for (i = 0; i < D_CODES; i++) {
         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
     }
 
-    fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
+    fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
     for (i = 0; i < DIST_CODE_LEN; i++) {
         fprintf(header, "%2u%s", _dist_code[i],
                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
     }
 
-    fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
+    fprintf(header,
+        "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
         fprintf(header, "%2u%s", _length_code[i],
                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
     }
 
     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
     for (i = 0; i < LENGTH_CODES; i++) {
         fprintf(header, "%1u%s", base_length[i],
@@ -374,17 +378,17 @@ void gen_trees_header()
 
     fclose(header);
 }
 #endif /* GEN_TREES_H */
 
 /* ===========================================================================
  * Initialize the tree data structures for a new zlib stream.
  */
-void _tr_init(s)
+void ZLIB_INTERNAL _tr_init(s)
     deflate_state *s;
 {
     tr_static_init();
 
     s->l_desc.dyn_tree = s->dyn_ltree;
     s->l_desc.stat_desc = &static_l_desc;
 
     s->d_desc.dyn_tree = s->dyn_dtree;
@@ -859,23 +863,23 @@ local void send_all_trees(s, lcodes, dco
 
     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
 }
 
 /* ===========================================================================
  * Send a stored block
  */
-void _tr_stored_block(s, buf, stored_len, eof)
+void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
     deflate_state *s;
     charf *buf;       /* input block */
     ulg stored_len;   /* length of input block */
-    int eof;          /* true if this is the last block for a file */
+    int last;         /* one if this is the last block for a file */
 {
-    send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
+    send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
 #ifdef DEBUG
     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
     s->compressed_len += (stored_len + 4) << 3;
 #endif
     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
 }
 
 /* ===========================================================================
@@ -884,17 +888,17 @@ void _tr_stored_block(s, buf, stored_len
  * The current inflate code requires 9 bits of lookahead. If the
  * last two codes for the previous block (real code plus EOB) were coded
  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
  * the last real code. In this case we send two empty static blocks instead
  * of one. (There are no problems if the previous block is stored or fixed.)
  * To simplify the code, we assume the worst case of last real code encoded
  * on one bit only.
  */
-void _tr_align(s)
+void ZLIB_INTERNAL _tr_align(s)
     deflate_state *s;
 {
     send_bits(s, STATIC_TREES<<1, 3);
     send_code(s, END_BLOCK, static_ltree);
 #ifdef DEBUG
     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
 #endif
     bi_flush(s);
@@ -913,31 +917,31 @@ void _tr_align(s)
     }
     s->last_eob_len = 7;
 }
 
 /* ===========================================================================
  * Determine the best encoding for the current block: dynamic trees, static
  * trees or store, and output the encoded block to the zip file.
  */
-void _tr_flush_block(s, buf, stored_len, eof)
+void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
     deflate_state *s;
     charf *buf;       /* input block, or NULL if too old */
     ulg stored_len;   /* length of input block */
-    int eof;          /* true if this is the last block for a file */
+    int last;         /* one if this is the last block for a file */
 {
     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
     int max_blindex = 0;  /* index of last bit length code of non zero freq */
 
     /* Build the Huffman trees unless a stored block is forced */
     if (s->level > 0) {
 
         /* Check if the file is binary or text */
-        if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN)
-            set_data_type(s);
+        if (s->strm->data_type == Z_UNKNOWN)
+            s->strm->data_type = detect_data_type(s);
 
         /* Construct the literal and distance trees */
         build_tree(s, (tree_desc *)(&(s->l_desc)));
         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
                 s->static_len));
 
         build_tree(s, (tree_desc *)(&(s->d_desc)));
         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
@@ -973,58 +977,58 @@ void _tr_flush_block(s, buf, stored_len,
                        /* 4: two words for the lengths */
 #endif
         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
          * Otherwise we can't have processed more than WSIZE input bytes since
          * the last block flush, because compression would have been
          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
          * transform a block into a stored block.
          */
-        _tr_stored_block(s, buf, stored_len, eof);
+        _tr_stored_block(s, buf, stored_len, last);
 
 #ifdef FORCE_STATIC
     } else if (static_lenb >= 0) { /* force static trees */
 #else
     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
 #endif
-        send_bits(s, (STATIC_TREES<<1)+eof, 3);
+        send_bits(s, (STATIC_TREES<<1)+last, 3);
         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
 #ifdef DEBUG
         s->compressed_len += 3 + s->static_len;
 #endif
     } else {
-        send_bits(s, (DYN_TREES<<1)+eof, 3);
+        send_bits(s, (DYN_TREES<<1)+last, 3);
         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
                        max_blindex+1);
         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
 #ifdef DEBUG
         s->compressed_len += 3 + s->opt_len;
 #endif
     }
     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
     /* The above check is made mod 2^32, for files larger than 512 MB
      * and uLong implemented on 32 bits.
      */
     init_block(s);
 
-    if (eof) {
+    if (last) {
         bi_windup(s);
 #ifdef DEBUG
         s->compressed_len += 7;  /* align on byte boundary */
 #endif
     }
     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
-           s->compressed_len-7*eof));
+           s->compressed_len-7*last));
 }
 
 /* ===========================================================================
  * Save the match info and tally the frequency counts. Return true if
  * the current block must be flushed.
  */
-int _tr_tally (s, dist, lc)
+int ZLIB_INTERNAL _tr_tally (s, dist, lc)
     deflate_state *s;
     unsigned dist;  /* distance of matched string */
     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
 {
     s->d_buf[s->last_lit] = (ush)dist;
     s->l_buf[s->last_lit++] = (uch)lc;
     if (dist == 0) {
         /* lc is the unmatched char */
@@ -1113,34 +1117,55 @@ local void compress_block(s, ltree, dtre
 
     } while (lx < s->last_lit);
 
     send_code(s, END_BLOCK, ltree);
     s->last_eob_len = ltree[END_BLOCK].Len;
 }
 
 /* ===========================================================================
- * Set the data type to BINARY or TEXT, using a crude approximation:
- * set it to Z_TEXT if all symbols are either printable characters (33 to 255)
- * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise.
+ * Check if the data type is TEXT or BINARY, using the following algorithm:
+ * - TEXT if the two conditions below are satisfied:
+ *    a) There are no non-portable control characters belonging to the
+ *       "black list" (0..6, 14..25, 28..31).
+ *    b) There is at least one printable character belonging to the
+ *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
+ * - BINARY otherwise.
+ * - The following partially-portable control characters form a
+ *   "gray list" that is ignored in this detection algorithm:
+ *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
  * IN assertion: the fields Freq of dyn_ltree are set.
  */
-local void set_data_type(s)
+local int detect_data_type(s)
     deflate_state *s;
 {
+    /* black_mask is the bit mask of black-listed bytes
+     * set bits 0..6, 14..25, and 28..31
+     * 0xf3ffc07f = binary 11110011111111111100000001111111
+     */
+    unsigned long black_mask = 0xf3ffc07fUL;
     int n;
 
-    for (n = 0; n < 9; n++)
+    /* Check for non-textual ("black-listed") bytes. */
+    for (n = 0; n <= 31; n++, black_mask >>= 1)
+        if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
+            return Z_BINARY;
+
+    /* Check for textual ("white-listed") bytes. */
+    if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
+            || s->dyn_ltree[13].Freq != 0)
+        return Z_TEXT;
+    for (n = 32; n < LITERALS; n++)
         if (s->dyn_ltree[n].Freq != 0)
-            break;
-    if (n == 9)
-        for (n = 14; n < 32; n++)
-            if (s->dyn_ltree[n].Freq != 0)
-                break;
-    s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY;
+            return Z_TEXT;
+
+    /* There are no "black-listed" or "white-listed" bytes:
+     * this stream either is empty or has tolerated ("gray-listed") bytes only.
+     */
+    return Z_BINARY;
 }
 
 /* ===========================================================================
  * Reverse the first len bits of a code, using straightforward code (a faster
  * method would use a table)
  * IN assertion: 1 <= len <= 15
  */
 local unsigned bi_reverse(code, len)
--- a/modules/zlib/src/trees.h
+++ b/modules/zlib/src/trees.h
@@ -65,17 +65,17 @@ local const ct_data static_dtree[D_CODES
 {{ 0},{ 5}}, {{16},{ 5}}, {{ 8},{ 5}}, {{24},{ 5}}, {{ 4},{ 5}},
 {{20},{ 5}}, {{12},{ 5}}, {{28},{ 5}}, {{ 2},{ 5}}, {{18},{ 5}},
 {{10},{ 5}}, {{26},{ 5}}, {{ 6},{ 5}}, {{22},{ 5}}, {{14},{ 5}},
 {{30},{ 5}}, {{ 1},{ 5}}, {{17},{ 5}}, {{ 9},{ 5}}, {{25},{ 5}},
 {{ 5},{ 5}}, {{21},{ 5}}, {{13},{ 5}}, {{29},{ 5}}, {{ 3},{ 5}},
 {{19},{ 5}}, {{11},{ 5}}, {{27},{ 5}}, {{ 7},{ 5}}, {{23},{ 5}}
 };
 
-const uch _dist_code[DIST_CODE_LEN] = {
+const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {
  0,  1,  2,  3,  4,  4,  5,  5,  6,  6,  6,  6,  7,  7,  7,  7,  8,  8,  8,  8,
  8,  8,  8,  8,  9,  9,  9,  9,  9,  9,  9,  9, 10, 10, 10, 10, 10, 10, 10, 10,
 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13,
 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
@@ -94,17 +94,17 @@ 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 
 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29
 };
 
-const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {
+const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {
  0,  1,  2,  3,  4,  5,  6,  7,  8,  8,  9,  9, 10, 10, 11, 11, 12, 12, 12, 12,
 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19,
 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22,
 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
--- a/modules/zlib/src/uncompr.c
+++ b/modules/zlib/src/uncompr.c
@@ -1,28 +1,26 @@
 /* uncompr.c -- decompress a memory buffer
- * Copyright (C) 1995-2003 Jean-loup Gailly.
+ * Copyright (C) 1995-2003, 2010 Jean-loup Gailly.
  * For conditions of distribution and use, see copyright notice in zlib.h
  */
 
-/* @(#) $Id: uncompr.c,v 3.6 2005/08/04 19:14:14 tor%cs.brown.edu Exp $ */
+/* @(#) $Id$ */
 
 #define ZLIB_INTERNAL
 #include "zlib.h"
 
 /* ===========================================================================
      Decompresses the source buffer into the destination buffer.  sourceLen is
    the byte length of the source buffer. Upon entry, destLen is the total
    size of the destination buffer, which must be large enough to hold the
    entire uncompressed data. (The size of the uncompressed data must have
    been saved previously by the compressor and transmitted to the decompressor
    by some mechanism outside the scope of this compression library.)
    Upon exit, destLen is the actual size of the compressed buffer.
-     This function can be used to decompress a whole file at once if the
-   input file is mmap'ed.
 
      uncompress returns Z_OK if success, Z_MEM_ERROR if there was not
    enough memory, Z_BUF_ERROR if there was not enough room in the output
    buffer, or Z_DATA_ERROR if the input data was corrupted.
 */
 int ZEXPORT uncompress (dest, destLen, source, sourceLen)
     Bytef *dest;
     uLongf *destLen;
--- a/modules/zlib/src/zconf.h
+++ b/modules/zlib/src/zconf.h
@@ -1,70 +1,142 @@
 /* zconf.h -- configuration of the zlib compression library
- * Copyright (C) 1995-2005 Jean-loup Gailly.
+ * Copyright (C) 1995-2010 Jean-loup Gailly.
  * For conditions of distribution and use, see copyright notice in zlib.h
  */
 
-/* @(#) $Id: zconf.h,v 3.10 2006/03/08 19:21:35 mkaply%us.ibm.com Exp $ */
+/* @(#) $Id$ */
 
 #ifndef ZCONF_H
 #define ZCONF_H
 
 /* This include does prefixing as below, but with an updated set of names */
 #include "mozzconf.h"
 
 /*
  * If you *really* need a unique prefix for all types and library functions,
  * compile with -DZ_PREFIX. The "standard" zlib should be compiled without it.
+ * Even better than compiling with -DZ_PREFIX would be to use configure to set
+ * this permanently in zconf.h using "./configure --zprefix".
  */
-#ifdef Z_PREFIX
-#  define deflateInit_          z_deflateInit_
+#ifdef Z_PREFIX     /* may be set to #if 1 by ./configure */
+
+/* all linked symbols */
+#  define _dist_code            z__dist_code
+#  define _length_code          z__length_code
+#  define _tr_align             z__tr_align
+#  define _tr_flush_block       z__tr_flush_block
+#  define _tr_init              z__tr_init
+#  define _tr_stored_block      z__tr_stored_block
+#  define _tr_tally             z__tr_tally
+#  define adler32               z_adler32
+#  define adler32_combine       z_adler32_combine
+#  define adler32_combine64     z_adler32_combine64
+#  define compress              z_compress
+#  define compress2             z_compress2
+#  define compressBound         z_compressBound
+#  define crc32                 z_crc32
+#  define crc32_combine         z_crc32_combine
+#  define crc32_combine64       z_crc32_combine64
 #  define deflate               z_deflate
+#  define deflateBound          z_deflateBound
+#  define deflateCopy           z_deflateCopy
 #  define deflateEnd            z_deflateEnd
-#  define inflateInit_          z_inflateInit_
+#  define deflateInit2_         z_deflateInit2_
+#  define deflateInit_          z_deflateInit_
+#  define deflateParams         z_deflateParams
+#  define deflatePrime          z_deflatePrime
+#  define deflateReset          z_deflateReset
+#  define deflateSetDictionary  z_deflateSetDictionary
+#  define deflateSetHeader      z_deflateSetHeader
+#  define deflateTune           z_deflateTune
+#  define deflate_copyright     z_deflate_copyright
+#  define get_crc_table         z_get_crc_table
+#  define gz_error              z_gz_error
+#  define gz_intmax             z_gz_intmax
+#  define gz_strwinerror        z_gz_strwinerror
+#  define gzbuffer              z_gzbuffer
+#  define gzclearerr            z_gzclearerr
+#  define gzclose               z_gzclose
+#  define gzclose_r             z_gzclose_r
+#  define gzclose_w             z_gzclose_w
+#  define gzdirect              z_gzdirect
+#  define gzdopen               z_gzdopen
+#  define gzeof                 z_gzeof
+#  define gzerror               z_gzerror
+#  define gzflush               z_gzflush
+#  define gzgetc                z_gzgetc
+#  define gzgets                z_gzgets
+#  define gzoffset              z_gzoffset
+#  define gzoffset64            z_gzoffset64
+#  define gzopen                z_gzopen
+#  define gzopen64              z_gzopen64
+#  define gzprintf              z_gzprintf
+#  define gzputc                z_gzputc
+#  define gzputs                z_gzputs
+#  define gzread                z_gzread
+#  define gzrewind              z_gzrewind
+#  define gzseek                z_gzseek
+#  define gzseek64              z_gzseek64
+#  define gzsetparams           z_gzsetparams
+#  define gztell                z_gztell
+#  define gztell64              z_gztell64
+#  define gzungetc              z_gzungetc
+#  define gzwrite               z_gzwrite
 #  define inflate               z_inflate
+#  define inflateBack           z_inflateBack
+#  define inflateBackEnd        z_inflateBackEnd
+#  define inflateBackInit_      z_inflateBackInit_
+#  define inflateCopy           z_inflateCopy
 #  define inflateEnd            z_inflateEnd
-#  define deflateInit2_         z_deflateInit2_
-#  define deflateSetDictionary  z_deflateSetDictionary
-#  define deflateCopy           z_deflateCopy
-#  define deflateReset          z_deflateReset
-#  define deflateParams         z_deflateParams
-#  define deflateBound          z_deflateBound
-#  define deflatePrime          z_deflatePrime
+#  define inflateGetHeader      z_inflateGetHeader
 #  define inflateInit2_         z_inflateInit2_
+#  define inflateInit_          z_inflateInit_
+#  define inflateMark           z_inflateMark
+#  define inflatePrime          z_inflatePrime
+#  define inflateReset          z_inflateReset
+#  define inflateReset2         z_inflateReset2
 #  define inflateSetDictionary  z_inflateSetDictionary
 #  define inflateSync           z_inflateSync
 #  define inflateSyncPoint      z_inflateSyncPoint
-#  define inflateCopy           z_inflateCopy
-#  define inflateReset          z_inflateReset
-#  define inflateBack           z_inflateBack
-#  define inflateBackEnd        z_inflateBackEnd
-#  define compress              z_compress
-#  define compress2             z_compress2
-#  define compressBound         z_compressBound
+#  define inflateUndermine      z_inflateUndermine
+#  define inflate_copyright     z_inflate_copyright
+#  define inflate_fast          z_inflate_fast
+#  define inflate_table         z_inflate_table
 #  define uncompress            z_uncompress
-#  define adler32               z_adler32
-#  define crc32                 z_crc32
-#  define get_crc_table         z_get_crc_table
 #  define zError                z_zError
+#  define zcalloc               z_zcalloc
+#  define zcfree                z_zcfree
+#  define zlibCompileFlags      z_zlibCompileFlags
+#  define zlibVersion           z_zlibVersion
 
+/* all zlib typedefs in zlib.h and zconf.h */
+#  define Byte                  z_Byte
+#  define Bytef                 z_Bytef
 #  define alloc_func            z_alloc_func
+#  define charf                 z_charf
 #  define free_func             z_free_func
+#  define gzFile                z_gzFile
+#  define gz_header             z_gz_header
+#  define gz_headerp            z_gz_headerp
 #  define in_func               z_in_func
+#  define intf                  z_intf
 #  define out_func              z_out_func
-#  define Byte                  z_Byte
 #  define uInt                  z_uInt
+#  define uIntf                 z_uIntf
 #  define uLong                 z_uLong
-#  define Bytef                 z_Bytef
-#  define charf                 z_charf
-#  define intf                  z_intf
-#  define uIntf                 z_uIntf
 #  define uLongf                z_uLongf
+#  define voidp                 z_voidp
+#  define voidpc                z_voidpc
 #  define voidpf                z_voidpf
-#  define voidp                 z_voidp
+
+/* all zlib structs in zlib.h and zconf.h */
+#  define gz_header_s           z_gz_header_s
+#  define internal_state        z_internal_state
+
 #endif
 
 #if defined(__MSDOS__) && !defined(MSDOS)
 #  define MSDOS
 #endif
 #if (defined(OS_2) || defined(__OS2__)) && !defined(OS2)
 #  define OS2
 #endif
@@ -294,54 +366,78 @@ typedef uLong FAR uLongf;
    typedef void FAR   *voidpf;
    typedef void       *voidp;
 #else
    typedef Byte const *voidpc;
    typedef Byte FAR   *voidpf;
    typedef Byte       *voidp;
 #endif
 
-#if 0           /* HAVE_UNISTD_H -- this line is updated by ./configure */
-#  include <sys/types.h> /* for off_t */
-#  include <unistd.h>    /* for SEEK_* and off_t */
+#ifdef HAVE_UNISTD_H    /* may be set to #if 1 by ./configure */
+#  define Z_HAVE_UNISTD_H
+#endif
+
+#ifdef STDC
+#  include <sys/types.h>    /* for off_t */
+#endif
+
+/* a little trick to accommodate both "#define _LARGEFILE64_SOURCE" and
+ * "#define _LARGEFILE64_SOURCE 1" as requesting 64-bit operations, (even
+ * though the former does not conform to the LFS document), but considering
+ * both "#undef _LARGEFILE64_SOURCE" and "#define _LARGEFILE64_SOURCE 0" as
+ * equivalently requesting no 64-bit operations
+ */
+#if -_LARGEFILE64_SOURCE - -1 == 1
+#  undef _LARGEFILE64_SOURCE
+#endif
+
+#if defined(Z_HAVE_UNISTD_H) || defined(_LARGEFILE64_SOURCE)
+#  include <unistd.h>       /* for SEEK_* and off_t */
 #  ifdef VMS
-#    include <unixio.h>   /* for off_t */
+#    include <unixio.h>     /* for off_t */
 #  endif
-#  define z_off_t off_t
+#  ifndef z_off_t
+#    define z_off_t off_t
+#  endif
 #endif
+
 #ifndef SEEK_SET
 #  define SEEK_SET        0       /* Seek from beginning of file.  */
 #  define SEEK_CUR        1       /* Seek from current position.  */
 #  define SEEK_END        2       /* Set file pointer to EOF plus "offset" */
 #endif
+
 #ifndef z_off_t
 #  define z_off_t long
 #endif
 
+#if defined(_LARGEFILE64_SOURCE) && _LFS64_LARGEFILE-0
+#  define z_off64_t off64_t
+#else
+#  define z_off64_t z_off_t
+#endif
+
 #if defined(__OS400__)
 #  define NO_vsnprintf
 #endif
 
 #if defined(__MVS__)
 #  define NO_vsnprintf
-#  ifdef FAR
-#    undef FAR
-#  endif
 #endif
 
 /* MVS linker does not support external names larger than 8 bytes */
 #if defined(__MVS__)
-#   pragma map(deflateInit_,"DEIN")
-#   pragma map(deflateInit2_,"DEIN2")
-#   pragma map(deflateEnd,"DEEND")
-#   pragma map(deflateBound,"DEBND")
-#   pragma map(inflateInit_,"ININ")
-#   pragma map(inflateInit2_,"ININ2")
-#   pragma map(inflateEnd,"INEND")
-#   pragma map(inflateSync,"INSY")
-#   pragma map(inflateSetDictionary,"INSEDI")
-#   pragma map(compressBound,"CMBND")
-#   pragma map(inflate_table,"INTABL")
-#   pragma map(inflate_fast,"INFA")
-#   pragma map(inflate_copyright,"INCOPY")
+  #pragma map(deflateInit_,"DEIN")
+  #pragma map(deflateInit2_,"DEIN2")
+  #pragma map(deflateEnd,"DEEND")
+  #pragma map(deflateBound,"DEBND")
+  #pragma map(inflateInit_,"ININ")
+  #pragma map(inflateInit2_,"ININ2")
+  #pragma map(inflateEnd,"INEND")
+  #pragma map(inflateSync,"INSY")
+  #pragma map(inflateSetDictionary,"INSEDI")
+  #pragma map(compressBound,"CMBND")
+  #pragma map(inflate_table,"INTABL")
+  #pragma map(inflate_fast,"INFA")
+  #pragma map(inflate_copyright,"INCOPY")
 #endif
 
 #endif /* ZCONF_H */
--- a/modules/zlib/src/zlib.def
+++ b/modules/zlib/src/zlib.def
@@ -8,61 +8,67 @@ EXPORTS
     MOZ_Z_deflateEnd
     MOZ_Z_inflate
     MOZ_Z_inflateEnd
 ; advanced functions
     MOZ_Z_deflateSetDictionary
     MOZ_Z_deflateCopy
     MOZ_Z_deflateReset
     MOZ_Z_deflateParams
+    MOZ_Z_deflateTune
     MOZ_Z_deflateBound
     MOZ_Z_deflatePrime
+    MOZ_Z_deflateSetHeader
     MOZ_Z_inflateSetDictionary
     MOZ_Z_inflateSync
     MOZ_Z_inflateCopy
     MOZ_Z_inflateReset
+    MOZ_Z_inflateReset2
+    MOZ_Z_inflatePrime
+    MOZ_Z_inflateMark
+    MOZ_Z_inflateGetHeader
     MOZ_Z_inflateBack
     MOZ_Z_inflateBackEnd
     MOZ_Z_zlibCompileFlags
 ; utility functions
     MOZ_Z_compress
     MOZ_Z_compress2
     MOZ_Z_compressBound
     MOZ_Z_uncompress
     MOZ_Z_gzopen
     MOZ_Z_gzdopen
+    MOZ_Z_gzbuffer
     MOZ_Z_gzsetparams
     MOZ_Z_gzread
     MOZ_Z_gzwrite
     MOZ_Z_gzprintf
     MOZ_Z_gzputs
     MOZ_Z_gzgets
     MOZ_Z_gzputc
     MOZ_Z_gzgetc
     MOZ_Z_gzungetc
     MOZ_Z_gzflush
     MOZ_Z_gzseek
     MOZ_Z_gzrewind
     MOZ_Z_gztell
+    MOZ_Z_gzoffset
     MOZ_Z_gzeof
+    MOZ_Z_gzdirect
     MOZ_Z_gzclose
+    MOZ_Z_gzclose_r
+    MOZ_Z_gzclose_w
     MOZ_Z_gzerror
     MOZ_Z_gzclearerr
 ; checksum functions
     MOZ_Z_adler32
     MOZ_Z_crc32
+    MOZ_Z_adler32_combine
+    MOZ_Z_crc32_combine
 ; various hacks, don't look :)
     MOZ_Z_deflateInit_
     MOZ_Z_deflateInit2_
     MOZ_Z_inflateInit_
     MOZ_Z_inflateInit2_
     MOZ_Z_inflateBackInit_
+    MOZ_Z_zError
     MOZ_Z_inflateSyncPoint
     MOZ_Z_get_crc_table
-    MOZ_Z_zError
-; new in zlib-1.2.3
-    MOZ_Z_adler32_combine
-    MOZ_Z_crc32_combine
-    MOZ_Z_deflateSetHeader
-    MOZ_Z_deflateTune
-    MOZ_Z_gzdirect
-    MOZ_Z_inflatePrime
-    MOZ_Z_inflateGetHeader
+    MOZ_Z_inflateUndermine
--- a/modules/zlib/src/zlib.h
+++ b/modules/zlib/src/zlib.h
@@ -1,12 +1,12 @@
 /* zlib.h -- interface of the 'zlib' general purpose compression library
-  version 1.2.3, July 18th, 2005
+  version 1.2.5, April 19th, 2010
 
-  Copyright (C) 1995-2005 Jean-loup Gailly and Mark Adler
+  Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler
 
   This software is provided 'as-is', without any express or implied
   warranty.  In no event will the authors be held liable for any damages
   arising from the use of this software.
 
   Permission is granted to anyone to use this software for any purpose,
   including commercial applications, and to alter it and redistribute it
   freely, subject to the following restrictions:
@@ -32,51 +32,54 @@
 #define ZLIB_H
 
 #include "zconf.h"
 
 #ifdef __cplusplus
 extern "C" {
 #endif
 
-#define ZLIB_VERSION "1.2.3"
-#define ZLIB_VERNUM 0x1230
+#define ZLIB_VERSION "1.2.5"
+#define ZLIB_VERNUM 0x1250
+#define ZLIB_VER_MAJOR 1
+#define ZLIB_VER_MINOR 2
+#define ZLIB_VER_REVISION 5
+#define ZLIB_VER_SUBREVISION 0
 
 /*
-     The 'zlib' compression library provides in-memory compression and
-  decompression functions, including integrity checks of the uncompressed
-  data.  This version of the library supports only one compression method
-  (deflation) but other algorithms will be added later and will have the same
-  stream interface.
+    The 'zlib' compression library provides in-memory compression and
+  decompression functions, including integrity checks of the uncompressed data.
+  This version of the library supports only one compression method (deflation)
+  but other algorithms will be added later and will have the same stream
+  interface.
 
-     Compression can be done in a single step if the buffers are large
-  enough (for example if an input file is mmap'ed), or can be done by
-  repeated calls of the compression function.  In the latter case, the
-  application must provide more input and/or consume the output
+    Compression can be done in a single step if the buffers are large enough,
+  or can be done by repeated calls of the compression function.  In the latter
+  case, the application must provide more input and/or consume the output
   (providing more output space) before each call.
 
-     The compressed data format used by default by the in-memory functions is
+    The compressed data format used by default by the in-memory functions is
   the zlib format, which is a zlib wrapper documented in RFC 1950, wrapped
   around a deflate stream, which is itself documented in RFC 1951.
 
-     The library also supports reading and writing files in gzip (.gz) format
+    The library also supports reading and writing files in gzip (.gz) format
   with an interface similar to that of stdio using the functions that start
   with "gz".  The gzip format is different from the zlib format.  gzip is a
   gzip wrapper, documented in RFC 1952, wrapped around a deflate stream.
 
-     This library can optionally read and write gzip streams in memory as well.
+    This library can optionally read and write gzip streams in memory as well.
 
-     The zlib format was designed to be compact and fast for use in memory
+    The zlib format was designed to be compact and fast for use in memory
   and on communications channels.  The gzip format was designed for single-
   file compression on file systems, has a larger header than zlib to maintain
   directory information, and uses a different, slower check method than zlib.
 
-     The library does not install any signal handler. The decoder checks
-  the consistency of the compressed data, so the library should never
-  crash even in case of corrupted input.
+    The library does not install any signal handler.  The decoder checks
+  the consistency of the compressed data, so the library should never crash
+  even in case of corrupted input.
 */
 
 typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size));
 typedef void   (*free_func)  OF((voidpf opaque, voidpf address));
 
 struct internal_state;
 
 typedef struct z_stream_s {
@@ -121,68 +124,68 @@ typedef struct gz_header_s {
     int     hcrc;       /* true if there was or will be a header crc */
     int     done;       /* true when done reading gzip header (not used
                            when writing a gzip file) */
 } gz_header;
 
 typedef gz_header FAR *gz_headerp;
 
 /*
-   The application must update next_in and avail_in when avail_in has
-   dropped to zero. It must update next_out and avail_out when avail_out
-   has dropped to zero. The application must initialize zalloc, zfree and
-   opaque before calling the init function. All other fields are set by the
-   compression library and must not be updated by the application.
+     The application must update next_in and avail_in when avail_in has dropped
+   to zero.  It must update next_out and avail_out when avail_out has dropped
+   to zero.  The application must initialize zalloc, zfree and opaque before
+   calling the init function.  All other fields are set by the compression
+   library and must not be updated by the application.
 
-   The opaque value provided by the application will be passed as the first
-   parameter for calls of zalloc and zfree. This can be useful for custom
-   memory management. The compression library attaches no meaning to the
+     The opaque value provided by the application will be passed as the first
+   parameter for calls of zalloc and zfree.  This can be useful for custom
+   memory management.  The compression library attaches no meaning to the
    opaque value.
 
-   zalloc must return Z_NULL if there is not enough memory for the object.
+     zalloc must return Z_NULL if there is not enough memory for the object.
    If zlib is used in a multi-threaded application, zalloc and zfree must be
    thread safe.
 
-   On 16-bit systems, the functions zalloc and zfree must be able to allocate
-   exactly 65536 bytes, but will not be required to allocate more than this
-   if the symbol MAXSEG_64K is defined (see zconf.h). WARNING: On MSDOS,
-   pointers returned by zalloc for objects of exactly 65536 bytes *must*
-   have their offset normalized to zero. The default allocation function
-   provided by this library ensures this (see zutil.c). To reduce memory
-   requirements and avoid any allocation of 64K objects, at the expense of
-   compression ratio, compile the library with -DMAX_WBITS=14 (see zconf.h).
+     On 16-bit systems, the functions zalloc and zfree must be able to allocate
+   exactly 65536 bytes, but will not be required to allocate more than this if
+   the symbol MAXSEG_64K is defined (see zconf.h).  WARNING: On MSDOS, pointers
+   returned by zalloc for objects of exactly 65536 bytes *must* have their
+   offset normalized to zero.  The default allocation function provided by this
+   library ensures this (see zutil.c).  To reduce memory requirements and avoid
+   any allocation of 64K objects, at the expense of compression ratio, compile
+   the library with -DMAX_WBITS=14 (see zconf.h).
 
-   The fields total_in and total_out can be used for statistics or
-   progress reports. After compression, total_in holds the total size of
-   the uncompressed data and may be saved for use in the decompressor
-   (particularly if the decompressor wants to decompress everything in
-   a single step).
+     The fields total_in and total_out can be used for statistics or progress
+   reports.  After compression, total_in holds the total size of the
+   uncompressed data and may be saved for use in the decompressor (particularly
+   if the decompressor wants to decompress everything in a single step).
 */
 
                         /* constants */
 
 #define Z_NO_FLUSH      0
-#define Z_PARTIAL_FLUSH 1 /* will be removed, use Z_SYNC_FLUSH instead */
+#define Z_PARTIAL_FLUSH 1
 #define Z_SYNC_FLUSH    2
 #define Z_FULL_FLUSH    3
 #define Z_FINISH        4
 #define Z_BLOCK         5
+#define Z_TREES         6
 /* Allowed flush values; see deflate() and inflate() below for details */
 
 #define Z_OK            0
 #define Z_STREAM_END    1
 #define Z_NEED_DICT     2
 #define Z_ERRNO        (-1)
 #define Z_STREAM_ERROR (-2)
 #define Z_DATA_ERROR   (-3)
 #define Z_MEM_ERROR    (-4)
 #define Z_BUF_ERROR    (-5)
 #define Z_VERSION_ERROR (-6)
-/* Return codes for the compression/decompression functions. Negative
- * values are errors, positive values are used for special but normal events.
+/* Return codes for the compression/decompression functions. Negative values
+ * are errors, positive values are used for special but normal events.
  */
 
 #define Z_NO_COMPRESSION         0
 #define Z_BEST_SPEED             1
 #define Z_BEST_COMPRESSION       9
 #define Z_DEFAULT_COMPRESSION  (-1)
 /* compression levels */
 
@@ -202,431 +205,468 @@ typedef gz_header FAR *gz_headerp;
 #define Z_DEFLATED   8
 /* The deflate compression method (the only one supported in this version) */
 
 #define Z_NULL  0  /* for initializing zalloc, zfree, opaque */
 
 #define zlib_version zlibVersion()
 /* for compatibility with versions < 1.0.2 */
 
+
                         /* basic functions */
 
 ZEXTERN const char * ZEXPORT zlibVersion OF((void));
 /* The application can compare zlibVersion and ZLIB_VERSION for consistency.
-   If the first character differs, the library code actually used is
-   not compatible with the zlib.h header file used by the application.
-   This check is automatically made by deflateInit and inflateInit.
+   If the first character differs, the library code actually used is not
+   compatible with the zlib.h header file used by the application.  This check
+   is automatically made by deflateInit and inflateInit.
  */
 
 /*
 ZEXTERN int ZEXPORT deflateInit OF((z_streamp strm, int level));
 
-     Initializes the internal stream state for compression. The fields
-   zalloc, zfree and opaque must be initialized before by the caller.
-   If zalloc and zfree are set to Z_NULL, deflateInit updates them to
-   use default allocation functions.
+     Initializes the internal stream state for compression.  The fields
+   zalloc, zfree and opaque must be initialized before by the caller.  If
+   zalloc and zfree are set to Z_NULL, deflateInit updates them to use default
+   allocation functions.
 
      The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9:
-   1 gives best speed, 9 gives best compression, 0 gives no compression at
-   all (the input data is simply copied a block at a time).
-   Z_DEFAULT_COMPRESSION requests a default compromise between speed and
-   compression (currently equivalent to level 6).
+   1 gives best speed, 9 gives best compression, 0 gives no compression at all
+   (the input data is simply copied a block at a time).  Z_DEFAULT_COMPRESSION
+   requests a default compromise between speed and compression (currently
+   equivalent to level 6).
 
-     deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not
-   enough memory, Z_STREAM_ERROR if level is not a valid compression level,
+     deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
+   memory, Z_STREAM_ERROR if level is not a valid compression level, or
    Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible
-   with the version assumed by the caller (ZLIB_VERSION).
-   msg is set to null if there is no error message.  deflateInit does not
-   perform any compression: this will be done by deflate().
+   with the version assumed by the caller (ZLIB_VERSION).  msg is set to null
+   if there is no error message.  deflateInit does not perform any compression:
+   this will be done by deflate().
 */
 
 
 ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush));
 /*
     deflate compresses as much data as possible, and stops when the input
-  buffer becomes empty or the output buffer becomes full. It may introduce some
-  output latency (reading input without producing any output) except when
+  buffer becomes empty or the output buffer becomes full.  It may introduce
+  some output latency (reading input without producing any output) except when
   forced to flush.
 
-    The detailed semantics are as follows. deflate performs one or both of the
+    The detailed semantics are as follows.  deflate performs one or both of the
   following actions:
 
   - Compress more input starting at next_in and update next_in and avail_in
-    accordingly. If not all input can be processed (because there is not
+    accordingly.  If not all input can be processed (because there is not
     enough room in the output buffer), next_in and avail_in are updated and
     processing will resume at this point for the next call of deflate().
 
   - Provide more output starting at next_out and update next_out and avail_out
-    accordingly. This action is forced if the parameter flush is non zero.
+    accordingly.  This action is forced if the parameter flush is non zero.
     Forcing flush frequently degrades the compression ratio, so this parameter
-    should be set only when necessary (in interactive applications).
-    Some output may be provided even if flush is not set.
+    should be set only when necessary (in interactive applications).  Some
+    output may be provided even if flush is not set.
 
-  Before the call of deflate(), the application should ensure that at least
-  one of the actions is possible, by providing more input and/or consuming
-  more output, and updating avail_in or avail_out accordingly; avail_out
-  should never be zero before the call. The application can consume the
-  compressed output when it wants, for example when the output buffer is full
-  (avail_out == 0), or after each call of deflate(). If deflate returns Z_OK
-  and with zero avail_out, it must be called again after making room in the
-  output buffer because there might be more output pending.
+    Before the call of deflate(), the application should ensure that at least
+  one of the actions is possible, by providing more input and/or consuming more
+  output, and updating avail_in or avail_out accordingly; avail_out should
+  never be zero before the call.  The application can consume the compressed
+  output when it wants, for example when the output buffer is full (avail_out
+  == 0), or after each call of deflate().  If deflate returns Z_OK and with
+  zero avail_out, it must be called again after making room in the output
+  buffer because there might be more output pending.
 
     Normally the parameter flush is set to Z_NO_FLUSH, which allows deflate to
-  decide how much data to accumualte before producing output, in order to
+  decide how much data to accumulate before producing output, in order to
   maximize compression.
 
     If the parameter flush is set to Z_SYNC_FLUSH, all pending output is
   flushed to the output buffer and the output is aligned on a byte boundary, so
-  that the decompressor can get all input data available so far. (In particular
-  avail_in is zero after the call if enough output space has been provided
-  before the call.)  Flushing may degrade compression for some compression
-  algorithms and so it should be used only when necessary.
+  that the decompressor can get all input data available so far.  (In
+  particular avail_in is zero after the call if enough output space has been
+  provided before the call.) Flushing may degrade compression for some
+  compression algorithms and so it should be used only when necessary.  This
+  completes the current deflate block and follows it with an empty stored block
+  that is three bits plus filler bits to the next byte, followed by four bytes
+  (00 00 ff ff).
+
+    If flush is set to Z_PARTIAL_FLUSH, all pending output is flushed to the
+  output buffer, but the output is not aligned to a byte boundary.  All of the
+  input data so far will be available to the decompressor, as for Z_SYNC_FLUSH.
+  This completes the current deflate block and follows it with an empty fixed
+  codes block that is 10 bits long.  This assures that enough bytes are output
+  in order for the decompressor to finish the block before the empty fixed code
+  block.
+
+    If flush is set to Z_BLOCK, a deflate block is completed and emitted, as
+  for Z_SYNC_FLUSH, but the output is not aligned on a byte boundary, and up to
+  seven bits of the current block are held to be written as the next byte after
+  the next deflate block is completed.  In this case, the decompressor may not
+  be provided enough bits at this point in order to complete decompression of
+  the data provided so far to the compressor.  It may need to wait for the next
+  block to be emitted.  This is for advanced applications that need to control
+  the emission of deflate blocks.
 
     If flush is set to Z_FULL_FLUSH, all output is flushed as with
   Z_SYNC_FLUSH, and the compression state is reset so that decompression can
   restart from this point if previous compressed data has been damaged or if
-  random access is desired. Using Z_FULL_FLUSH too often can seriously degrade
+  random access is desired.  Using Z_FULL_FLUSH too often can seriously degrade
   compression.
 
     If deflate returns with avail_out == 0, this function must be called again
   with the same value of the flush parameter and more output space (updated
   avail_out), until the flush is complete (deflate returns with non-zero
-  avail_out). In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that
+  avail_out).  In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that
   avail_out is greater than six to avoid repeated flush markers due to
   avail_out == 0 on return.
 
     If the parameter flush is set to Z_FINISH, pending input is processed,
-  pending output is flushed and deflate returns with Z_STREAM_END if there
-  was enough output space; if deflate returns with Z_OK, this function must be
+  pending output is flushed and deflate returns with Z_STREAM_END if there was
+  enough output space; if deflate returns with Z_OK, this function must be
   called again with Z_FINISH and more output space (updated avail_out) but no
-  more input data, until it returns with Z_STREAM_END or an error. After
-  deflate has returned Z_STREAM_END, the only possible operations on the
-  stream are deflateReset or deflateEnd.
+  more input data, until it returns with Z_STREAM_END or an error.  After
+  deflate has returned Z_STREAM_END, the only possible operations on the stream
+  are deflateReset or deflateEnd.
 
     Z_FINISH can be used immediately after deflateInit if all the compression
-  is to be done in a single step. In this case, avail_out must be at least
-  the value returned by deflateBound (see below). If deflate does not return
+  is to be done in a single step.  In this case, avail_out must be at least the
+  value returned by deflateBound (see below).  If deflate does not return
   Z_STREAM_END, then it must be called again as described above.
 
     deflate() sets strm->adler to the adler32 checksum of all input read
   so far (that is, total_in bytes).
 
     deflate() may update strm->data_type if it can make a good guess about
-  the input data type (Z_BINARY or Z_TEXT). In doubt, the data is considered
-  binary. This field is only for information purposes and does not affect
-  the compression algorithm in any manner.
+  the input data type (Z_BINARY or Z_TEXT).  In doubt, the data is considered
+  binary.  This field is only for information purposes and does not affect the
+  compression algorithm in any manner.
 
     deflate() returns Z_OK if some progress has been made (more input
   processed or more output produced), Z_STREAM_END if all input has been
   consumed and all output has been produced (only when flush is set to
   Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example
-  if next_in or next_out was NULL), Z_BUF_ERROR if no progress is possible
-  (for example avail_in or avail_out was zero). Note that Z_BUF_ERROR is not
+  if next_in or next_out was Z_NULL), Z_BUF_ERROR if no progress is possible
+  (for example avail_in or avail_out was zero).  Note that Z_BUF_ERROR is not
   fatal, and deflate() can be called again with more input and more output
   space to continue compressing.
 */
 
 
 ZEXTERN int ZEXPORT deflateEnd OF((z_streamp strm));
 /*
      All dynamically allocated data structures for this stream are freed.
-   This function discards any unprocessed input and does not flush any
-   pending output.
+   This function discards any unprocessed input and does not flush any pending
+   output.
 
      deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the
    stream state was inconsistent, Z_DATA_ERROR if the stream was freed
-   prematurely (some input or output was discarded). In the error case,
-   msg may be set but then points to a static string (which must not be
+   prematurely (some input or output was discarded).  In the error case, msg
+   may be set but then points to a static string (which must not be
    deallocated).
 */
 
 
 /*
 ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm));
 
-     Initializes the internal stream state for decompression. The fields
+     Initializes the internal stream state for decompression.  The fields
    next_in, avail_in, zalloc, zfree and opaque must be initialized before by
-   the caller. If next_in is not Z_NULL and avail_in is large enough (the exact
-   value depends on the compression method), inflateInit determines the
+   the caller.  If next_in is not Z_NULL and avail_in is large enough (the
+   exact value depends on the compression method), inflateInit determines the
    compression method from the zlib header and allocates all data structures
    accordingly; otherwise the allocation will be deferred to the first call of
    inflate.  If zalloc and zfree are set to Z_NULL, inflateInit updates them to
    use default allocation functions.
 
      inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
    memory, Z_VERSION_ERROR if the zlib library version is incompatible with the
-   version assumed by the caller.  msg is set to null if there is no error
-   message. inflateInit does not perform any decompression apart from reading
-   the zlib header if present: this will be done by inflate().  (So next_in and
-   avail_in may be modified, but next_out and avail_out are unchanged.)
+   version assumed by the caller, or Z_STREAM_ERROR if the parameters are
+   invalid, such as a null pointer to the structure.  msg is set to null if
+   there is no error message.  inflateInit does not perform any decompression
+   apart from possibly reading the zlib header if present: actual decompression
+   will be done by inflate().  (So next_in and avail_in may be modified, but
+   next_out and avail_out are unused and unchanged.) The current implementation
+   of inflateInit() does not process any header information -- that is deferred
+   until inflate() is called.
 */
 
 
 ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush));
 /*
     inflate decompresses as much data as possible, and stops when the input
-  buffer becomes empty or the output buffer becomes full. It may introduce
+  buffer becomes empty or the output buffer becomes full.  It may introduce
   some output latency (reading input without producing any output) except when
   forced to flush.
 
-  The detailed semantics are as follows. inflate performs one or both of the
+  The detailed semantics are as follows.  inflate performs one or both of the
   following actions:
 
   - Decompress more input starting at next_in and update next_in and avail_in
-    accordingly. If not all input can be processed (because there is not
-    enough room in the output buffer), next_in is updated and processing
-    will resume at this point for the next call of inflate().
+    accordingly.  If not all input can be processed (because there is not
+    enough room in the output buffer), next_in is updated and processing will
+    resume at this point for the next call of inflate().
 
   - Provide more output starting at next_out and update next_out and avail_out
-    accordingly.  inflate() provides as much output as possible, until there
-    is no more input data or no more space in the output buffer (see below
-    about the flush parameter).
+    accordingly.  inflate() provides as much output as possible, until there is
+    no more input data or no more space in the output buffer (see below about
+    the flush parameter).
 
-  Before the call of inflate(), the application should ensure that at least
-  one of the actions is possible, by providing more input and/or consuming
-  more output, and updating the next_* and avail_* values accordingly.
-  The application can consume the uncompressed output when it wants, for
-  example when the output buffer is full (avail_out == 0), or after each
-  call of inflate(). If inflate returns Z_OK and with zero avail_out, it
-  must be called again after making room in the output buffer because there
-  might be more output pending.
+    Before the call of inflate(), the application should ensure that at least
+  one of the actions is possible, by providing more input and/or consuming more
+  output, and updating the next_* and avail_* values accordingly.  The
+  application can consume the uncompressed output when it wants, for example
+  when the output buffer is full (avail_out == 0), or after each call of
+  inflate().  If inflate returns Z_OK and with zero avail_out, it must be
+  called again after making room in the output buffer because there might be
+  more output pending.
 
-    The flush parameter of inflate() can be Z_NO_FLUSH, Z_SYNC_FLUSH,
-  Z_FINISH, or Z_BLOCK. Z_SYNC_FLUSH requests that inflate() flush as much
-  output as possible to the output buffer. Z_BLOCK requests that inflate() stop
-  if and when it gets to the next deflate block boundary. When decoding the
-  zlib or gzip format, this will cause inflate() to return immediately after
-  the header and before the first block. When doing a raw inflate, inflate()
-  will go ahead and process the first block, and will return when it gets to
-  the end of that block, or when it runs out of data.
+    The flush parameter of inflate() can be Z_NO_FLUSH, Z_SYNC_FLUSH, Z_FINISH,
+  Z_BLOCK, or Z_TREES.  Z_SYNC_FLUSH requests that inflate() flush as much
+  output as possible to the output buffer.  Z_BLOCK requests that inflate()
+  stop if and when it gets to the next deflate block boundary.  When decoding
+  the zlib or gzip format, this will cause inflate() to return immediately
+  after the header and before the first block.  When doing a raw inflate,
+  inflate() will go ahead and process the first block, and will return when it
+  gets to the end of that block, or when it runs out of data.
 
     The Z_BLOCK option assists in appending to or combining deflate streams.
   Also to assist in this, on return inflate() will set strm->data_type to the
-  number of unused bits in the last byte taken from strm->next_in, plus 64
-  if inflate() is currently decoding the last block in the deflate stream,
-  plus 128 if inflate() returned immediately after decoding an end-of-block
-  code or decoding the complete header up to just before the first byte of the
-  deflate stream. The end-of-block will not be indicated until all of the
-  uncompressed data from that block has been written to strm->next_out.  The
-  number of unused bits may in general be greater than seven, except when
-  bit 7 of data_type is set, in which case the number of unused bits will be
-  less than eight.
+  number of unused bits in the last byte taken from strm->next_in, plus 64 if
+  inflate() is currently decoding the last block in the deflate stream, plus
+  128 if inflate() returned immediately after decoding an end-of-block code or
+  decoding the complete header up to just before the first byte of the deflate
+  stream.  The end-of-block will not be indicated until all of the uncompressed
+  data from that block has been written to strm->next_out.  The number of
+  unused bits may in general be greater than seven, except when bit 7 of
+  data_type is set, in which case the number of unused bits will be less than
+  eight.  data_type is set as noted here every time inflate() returns for all
+  flush options, and so can be used to determine the amount of currently
+  consumed input in bits.
+
+    The Z_TREES option behaves as Z_BLOCK does, but it also returns when the
+  end of each deflate block header is reached, before any actual data in that
+  block is decoded.  This allows the caller to determine the length of the
+  deflate block header for later use in random access within a deflate block.
+  256 is added to the value of strm->data_type when inflate() returns
+  immediately after reaching the end of the deflate block header.
 
     inflate() should normally be called until it returns Z_STREAM_END or an
-  error. However if all decompression is to be performed in a single step
-  (a single call of inflate), the parameter flush should be set to
-  Z_FINISH. In this case all pending input is processed and all pending
-  output is flushed; avail_out must be large enough to hold all the
-  uncompressed data. (The size of the uncompressed data may have been saved
-  by the compressor for this purpose.) The next operation on this stream must
-  be inflateEnd to deallocate the decompression state. The use of Z_FINISH
-  is never required, but can be used to inform inflate that a faster approach
-  may be used for the single inflate() call.
+  error.  However if all decompression is to be performed in a single step (a
+  single call of inflate), the parameter flush should be set to Z_FINISH.  In
+  this case all pending input is processed and all pending output is flushed;
+  avail_out must be large enough to hold all the uncompressed data.  (The size
+  of the uncompressed data may have been saved by the compressor for this
+  purpose.) The next operation on this stream must be inflateEnd to deallocate
+  the decompression state.  The use of Z_FINISH is never required, but can be
+  used to inform inflate that a faster approach may be used for the single
+  inflate() call.
 
      In this implementation, inflate() always flushes as much output as
   possible to the output buffer, and always uses the faster approach on the
-  first call. So the only effect of the flush parameter in this implementation
+  first call.  So the only effect of the flush parameter in this implementation
   is on the return value of inflate(), as noted below, or when it returns early
-  because Z_BLOCK is used.
+  because Z_BLOCK or Z_TREES is used.
 
      If a preset dictionary is needed after this call (see inflateSetDictionary
   below), inflate sets strm->adler to the adler32 checksum of the dictionary
   chosen by the compressor and returns Z_NEED_DICT; otherwise it sets
   strm->adler to the adler32 checksum of all output produced so far (that is,
   total_out bytes) and returns Z_OK, Z_STREAM_END or an error code as described
-  below. At the end of the stream, inflate() checks that its computed adler32
+  below.  At the end of the stream, inflate() checks that its computed adler32
   checksum is equal to that saved by the compressor and returns Z_STREAM_END
   only if the checksum is correct.
 
-    inflate() will decompress and check either zlib-wrapped or gzip-wrapped
-  deflate data.  The header type is detected automatically.  Any information
-  contained in the gzip header is not retained, so applications that need that
-  information should instead use raw inflate, see inflateInit2() below, or
-  inflateBack() and perform their own processing of the gzip header and
-  trailer.
+    inflate() can decompress and check either zlib-wrapped or gzip-wrapped
+  deflate data.  The header type is detected automatically, if requested when
+  initializing with inflateInit2().  Any information contained in the gzip
+  header is not retained, so applications that need that information should
+  instead use raw inflate, see inflateInit2() below, or inflateBack() and
+  perform their own processing of the gzip header and trailer.
 
     inflate() returns Z_OK if some progress has been made (more input processed
   or more output produced), Z_STREAM_END if the end of the compressed data has
   been reached and all uncompressed output has been produced, Z_NEED_DICT if a
   preset dictionary is needed at this point, Z_DATA_ERROR if the input data was
   corrupted (input stream not conforming to the zlib format or incorrect check
   value), Z_STREAM_ERROR if the stream structure was inconsistent (for example
-  if next_in or next_out was NULL), Z_MEM_ERROR if there was not enough memory,
+  next_in or next_out was Z_NULL), Z_MEM_ERROR if there was not enough memory,
   Z_BUF_ERROR if no progress is possible or if there was not enough room in the
-  output buffer when Z_FINISH is used. Note that Z_BUF_ERROR is not fatal, and
+  output buffer when Z_FINISH is used.  Note that Z_BUF_ERROR is not fatal, and
   inflate() can be called again with more input and more output space to
-  continue decompressing. If Z_DATA_ERROR is returned, the application may then
-  call inflateSync() to look for a good compression block if a partial recovery
-  of the data is desired.
+  continue decompressing.  If Z_DATA_ERROR is returned, the application may
+  then call inflateSync() to look for a good compression block if a partial
+  recovery of the data is desired.
 */
 
 
 ZEXTERN int ZEXPORT inflateEnd OF((z_streamp strm));
 /*
      All dynamically allocated data structures for this stream are freed.
-   This function discards any unprocessed input and does not flush any
-   pending output.
+   This function discards any unprocessed input and does not flush any pending
+   output.
 
      inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state
-   was inconsistent. In the error case, msg may be set but then points to a
+   was inconsistent.  In the error case, msg may be set but then points to a
    static string (which must not be deallocated).
 */
 
+
                         /* Advanced functions */
 
 /*
     The following functions are needed only in some special applications.
 */
 
 /*
 ZEXTERN int ZEXPORT deflateInit2 OF((z_streamp strm,
                                      int  level,
                                      int  method,
                                      int  windowBits,
                                      int  memLevel,
                                      int  strategy));
 
-     This is another version of deflateInit with more compression options. The
-   fields next_in, zalloc, zfree and opaque must be initialized before by
-   the caller.
+     This is another version of deflateInit with more compression options.  The
+   fields next_in, zalloc, zfree and opaque must be initialized before by the
+   caller.
 
-     The method parameter is the compression method. It must be Z_DEFLATED in
+     The method parameter is the compression method.  It must be Z_DEFLATED in
    this version of the library.
 
      The windowBits parameter is the base two logarithm of the window size
-   (the size of the history buffer). It should be in the range 8..15 for this
-   version of the library. Larger values of this parameter result in better
-   compression at the expense of memory usage. The default value is 15 if
+   (the size of the history buffer).  It should be in the range 8..15 for this
+   version of the library.  Larger values of this parameter result in better
+   compression at the expense of memory usage.  The default value is 15 if
    deflateInit is used instead.
 
-     windowBits can also be -8..-15 for raw deflate. In this case, -windowBits
-   determines the window size. deflate() will then generate raw deflate data
+     windowBits can also be -8..-15 for raw deflate.  In this case, -windowBits
+   determines the window size.  deflate() will then generate raw deflate data
    with no zlib header or trailer, and will not compute an adler32 check value.
 
-     windowBits can also be greater than 15 for optional gzip encoding. Add
+     windowBits can also be greater than 15 for optional gzip encoding.  Add
    16 to windowBits to write a simple gzip header and trailer around the
-   compressed data instead of a zlib wrapper. The gzip header will have no
-   file name, no extra data, no comment, no modification time (set to zero),
-   no header crc, and the operating system will be set to 255 (unknown).  If a
+   compressed data instead of a zlib wrapper.  The gzip header will have no
+   file name, no extra data, no comment, no modification time (set to zero), no
+   header crc, and the operating system will be set to 255 (unknown).  If a
    gzip stream is being written, strm->adler is a crc32 instead of an adler32.
 
      The memLevel parameter specifies how much memory should be allocated
-   for the internal compression state. memLevel=1 uses minimum memory but
-   is slow and reduces compression ratio; memLevel=9 uses maximum memory
-   for optimal speed. The default value is 8. See zconf.h for total memory
-   usage as a function of windowBits and memLevel.
+   for the internal compression state.  memLevel=1 uses minimum memory but is
+   slow and reduces compression ratio; memLevel=9 uses maximum memory for
+   optimal speed.  The default value is 8.  See zconf.h for total memory usage
+   as a function of windowBits and memLevel.
 
-     The strategy parameter is used to tune the compression algorithm. Use the
+     The strategy parameter is used to tune the compression algorithm.  Use the
    value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a
    filter (or predictor), Z_HUFFMAN_ONLY to force Huffman encoding only (no
    string match), or Z_RLE to limit match distances to one (run-length
-   encoding). Filtered data consists mostly of small values with a somewhat
-   random distribution. In this case, the compression algorithm is tuned to
-   compress them better. The effect of Z_FILTERED is to force more Huffman
+   encoding).  Filtered data consists mostly of small values with a somewhat
+   random distribution.  In this case, the compression algorithm is tuned to
+   compress them better.  The effect of Z_FILTERED is to force more Huffman
    coding and less string matching; it is somewhat intermediate between
-   Z_DEFAULT and Z_HUFFMAN_ONLY. Z_RLE is designed to be almost as fast as
-   Z_HUFFMAN_ONLY, but give better compression for PNG image data. The strategy
-   parameter only affects the compression ratio but not the correctness of the
-   compressed output even if it is not set appropriately.  Z_FIXED prevents the
-   use of dynamic Huffman codes, allowing for a simpler decoder for special
-   applications.
+   Z_DEFAULT_STRATEGY and Z_HUFFMAN_ONLY.  Z_RLE is designed to be almost as
+   fast as Z_HUFFMAN_ONLY, but give better compression for PNG image data.  The
+   strategy parameter only affects the compression ratio but not the
+   correctness of the compressed output even if it is not set appropriately.
+   Z_FIXED prevents the use of dynamic Huffman codes, allowing for a simpler
+   decoder for special applications.
 
-      deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
-   memory, Z_STREAM_ERROR if a parameter is invalid (such as an invalid
-   method). msg is set to null if there is no error message.  deflateInit2 does
-   not perform any compression: this will be done by deflate().
+     deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
+   memory, Z_STREAM_ERROR if any parameter is invalid (such as an invalid
+   method), or Z_VERSION_ERROR if the zlib library version (zlib_version) is
+   incompatible with the version assumed by the caller (ZLIB_VERSION).  msg is
+   set to null if there is no error message.  deflateInit2 does not perform any
+   compression: this will be done by deflate().
 */
 
 ZEXTERN int ZEXPORT deflateSetDictionary OF((z_streamp strm,
                                              const Bytef *dictionary,
                                              uInt  dictLength));
 /*
      Initializes the compression dictionary from the given byte sequence
-   without producing any compressed output. This function must be called
-   immediately after deflateInit, deflateInit2 or deflateReset, before any
-   call of deflate. The compressor and decompressor must use exactly the same
+   without producing any compressed output.  This function must be called
+   immediately after deflateInit, deflateInit2 or deflateReset, before any call
+   of deflate.  The compressor and decompressor must use exactly the same
    dictionary (see inflateSetDictionary).
 
      The dictionary should consist of strings (byte sequences) that are likely
    to be encountered later in the data to be compressed, with the most commonly
-   used strings preferably put towards the end of the dictionary. Using a
+   used strings preferably put towards the end of the dictionary.  Using a
    dictionary is most useful when the data to be compressed is short and can be
    predicted with good accuracy; the data can then be compressed better than
    with the default empty dictionary.
 
      Depending on the size of the compression data structures selected by
    deflateInit or deflateInit2, a part of the dictionary may in effect be
-   discarded, for example if the dictionary is larger than the window size in
-   deflate or deflate2. Thus the strings most likely to be useful should be
-   put at the end of the dictionary, not at the front. In addition, the
-   current implementation of deflate will use at most the window size minus
-   262 bytes of the provided dictionary.
+   discarded, for example if the dictionary is larger than the window size
+   provided in deflateInit or deflateInit2.  Thus the strings most likely to be
+   useful should be put at the end of the dictionary, not at the front.  In
+   addition, the current implementation of deflate will use at most the window
+   size minus 262 bytes of the provided dictionary.
 
      Upon return of this function, strm->adler is set to the adler32 value
    of the dictionary; the decompressor may later use this value to determine
-   which dictionary has been used by the compressor. (The adler32 value
+   which dictionary has been used by the compressor.  (The adler32 value
    applies to the whole dictionary even if only a subset of the dictionary is
    actually used by the compressor.) If a raw deflate was requested, then the
    adler32 value is not computed and strm->adler is not set.
 
      deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a
-   parameter is invalid (such as NULL dictionary) or the stream state is
+   parameter is invalid (e.g.  dictionary being Z_NULL) or the stream state is
    inconsistent (for example if deflate has already been called for this stream
-   or if the compression method is bsort). deflateSetDictionary does not
+   or if the compression method is bsort).  deflateSetDictionary does not
    perform any compression: this will be done by deflate().
 */
 
 ZEXTERN int ZEXPORT deflateCopy OF((z_streamp dest,
                                     z_streamp source));
 /*
      Sets the destination stream as a complete copy of the source stream.
 
      This function can be useful when several compression strategies will be
    tried, for example when there are several ways of pre-processing the input
-   data with a filter. The streams that will be discarded should then be freed
+   data with a filter.  The streams that will be discarded should then be freed
    by calling deflateEnd.  Note that deflateCopy duplicates the internal
-   compression state which can be quite large, so this strategy is slow and
-   can consume lots of memory.
+   compression state which can be quite large, so this strategy is slow and can
+   consume lots of memory.
 
      deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not
    enough memory, Z_STREAM_ERROR if the source stream state was inconsistent
-   (such as zalloc being NULL). msg is left unchanged in both source and
+   (such as zalloc being Z_NULL).  msg is left unchanged in both source and
    destination.
 */
 
 ZEXTERN int ZEXPORT deflateReset OF((z_streamp strm));
 /*
      This function is equivalent to deflateEnd followed by deflateInit,
-   but does not free and reallocate all the internal compression state.
-   The stream will keep the same compression level and any other attributes
-   that may have been set by deflateInit2.
+   but does not free and reallocate all the internal compression state.  The
+   stream will keep the same compression level and any other attributes that
+   may have been set by deflateInit2.
 
-      deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
-   stream state was inconsistent (such as zalloc or state being NULL).
+     deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
+   stream state was inconsistent (such as zalloc or state being Z_NULL).
 */
 
 ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm,
                                       int level,
                                       int strategy));
 /*
      Dynamically update the compression level and compression strategy.  The
    interpretation of level and strategy is as in deflateInit2.  This can be
    used to switch between compression and straight copy of the input data, or
-   to switch to a different kind of input data requiring a different
-   strategy. If the compression level is changed, the input available so far
-   is compressed with the old level (and may be flushed); the new level will
-   take effect only at the next call of deflate().
+   to switch to a different kind of input data requiring a different strategy.
+   If the compression level is changed, the input available so far is
+   compressed with the old level (and may be flushed); the new level will take
+   effect only at the next call of deflate().
 
      Before the call of deflateParams, the stream state must be set as for
-   a call of deflate(), since the currently available input may have to
-   be compressed and flushed. In particular, strm->avail_out must be non-zero.
+   a call of deflate(), since the currently available input may have to be
+   compressed and flushed.  In particular, strm->avail_out must be non-zero.
 
      deflateParams returns Z_OK if success, Z_STREAM_ERROR if the source
-   stream state was inconsistent or if a parameter was invalid, Z_BUF_ERROR
-   if strm->avail_out was zero.
+   stream state was inconsistent or if a parameter was invalid, Z_BUF_ERROR if
+   strm->avail_out was zero.
 */
 
 ZEXTERN int ZEXPORT deflateTune OF((z_streamp strm,
                                     int good_length,
                                     int max_lazy,
                                     int nice_length,
                                     int max_chain));
 /*
@@ -640,220 +680,273 @@ ZEXTERN int ZEXPORT deflateTune OF((z_st
      deflateTune() can be called after deflateInit() or deflateInit2(), and
    returns Z_OK on success, or Z_STREAM_ERROR for an invalid deflate stream.
  */
 
 ZEXTERN uLong ZEXPORT deflateBound OF((z_streamp strm,
                                        uLong sourceLen));
 /*
      deflateBound() returns an upper bound on the compressed size after
-   deflation of sourceLen bytes.  It must be called after deflateInit()
-   or deflateInit2().  This would be used to allocate an output buffer
-   for deflation in a single pass, and so would be called before deflate().
+   deflation of sourceLen bytes.  It must be called after deflateInit() or
+   deflateInit2(), and after deflateSetHeader(), if used.  This would be used
+   to allocate an output buffer for deflation in a single pass, and so would be
+   called before deflate().
 */
 
 ZEXTERN int ZEXPORT deflatePrime OF((z_streamp strm,
                                      int bits,
                                      int value));
 /*
      deflatePrime() inserts bits in the deflate output stream.  The intent
-  is that this function is used to start off the deflate output with the
-  bits leftover from a previous deflate stream when appending to it.  As such,
-  this function can only be used for raw deflate, and must be used before the
-  first deflate() call after a deflateInit2() or deflateReset().  bits must be
-  less than or equal to 16, and that many of the least significant bits of
-  value will be inserted in the output.
+   is that this function is used to start off the deflate output with the bits
+   leftover from a previous deflate stream when appending to it.  As such, this
+   function can only be used for raw deflate, and must be used before the first
+   deflate() call after a deflateInit2() or deflateReset().  bits must be less
+   than or equal to 16, and that many of the least significant bits of value
+   will be inserted in the output.
 
-      deflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source
+     deflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source
    stream state was inconsistent.
 */
 
 ZEXTERN int ZEXPORT deflateSetHeader OF((z_streamp strm,
                                          gz_headerp head));
 /*
-      deflateSetHeader() provides gzip header information for when a gzip
+     deflateSetHeader() provides gzip header information for when a gzip
    stream is requested by deflateInit2().  deflateSetHeader() may be called
    after deflateInit2() or deflateReset() and before the first call of
    deflate().  The text, time, os, extra field, name, and comment information
    in the provided gz_header structure are written to the gzip header (xflag is
    ignored -- the extra flags are set according to the compression level).  The
    caller must assure that, if not Z_NULL, name and comment are terminated with
    a zero byte, and that if extra is not Z_NULL, that extra_len bytes are
    available there.  If hcrc is true, a gzip header crc is included.  Note that
    the current versions of the command-line version of gzip (up through version
    1.3.x) do not support header crc's, and will report that it is a "multi-part
    gzip file" and give up.
 
-      If deflateSetHeader is not used, the default gzip header has text false,
+     If deflateSetHeader is not used, the default gzip header has text false,
    the time set to zero, and os set to 255, with no extra, name, or comment
    fields.  The gzip header is returned to the default state by deflateReset().
 
-      deflateSetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source
+     deflateSetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source
    stream state was inconsistent.
 */
 
 /*
 ZEXTERN int ZEXPORT inflateInit2 OF((z_streamp strm,
                                      int  windowBits));
 
-     This is another version of inflateInit with an extra parameter. The
+     This is another version of inflateInit with an extra parameter.  The
    fields next_in, avail_in, zalloc, zfree and opaque must be initialized
    before by the caller.
 
      The windowBits parameter is the base two logarithm of the maximum window
    size (the size of the history buffer).  It should be in the range 8..15 for
-   this version of the library. The default value is 15 if inflateInit is used
-   instead. windowBits must be greater than or equal to the windowBits value
+   this version of the library.  The default value is 15 if inflateInit is used
+   instead.  windowBits must be greater than or equal to the windowBits value
    provided to deflateInit2() while compressing, or it must be equal to 15 if
-   deflateInit2() was not used. If a compressed stream with a larger window
+   deflateInit2() was not used.  If a compressed stream with a larger window
    size is given as input, inflate() will return with the error code
    Z_DATA_ERROR instead of trying to allocate a larger window.
 
-     windowBits can also be -8..-15 for raw inflate. In this case, -windowBits
-   determines the window size. inflate() will then process raw deflate data,
+     windowBits can also be zero to request that inflate use the window size in
+   the zlib header of the compressed stream.
+
+     windowBits can also be -8..-15 for raw inflate.  In this case, -windowBits
+   determines the window size.  inflate() will then process raw deflate data,
    not looking for a zlib or gzip header, not generating a check value, and not
-   looking for any check values for comparison at the end of the stream. This
+   looking for any check values for comparison at the end of the stream.  This
    is for use with other formats that use the deflate compressed data format
-   such as zip.  Those formats provide their own check values. If a custom
+   such as zip.  Those formats provide their own check values.  If a custom
    format is developed using the raw deflate format for compressed data, it is
    recommended that a check value such as an adler32 or a crc32 be applied to
    the uncompressed data as is done in the zlib, gzip, and zip formats.  For
-   most applications, the zlib format should be used as is. Note that comments
+   most applications, the zlib format should be used as is.  Note that comments
    above on the use in deflateInit2() applies to the magnitude of windowBits.
 
-     windowBits can also be greater than 15 for optional gzip decoding. Add
+     windowBits can also be greater than 15 for optional gzip decoding.  Add
    32 to windowBits to enable zlib and gzip decoding with automatic header
    detection, or add 16 to decode only the gzip format (the zlib format will
-   return a Z_DATA_ERROR).  If a gzip stream is being decoded, strm->adler is
-   a crc32 instead of an adler32.
+   return a Z_DATA_ERROR).  If a gzip stream is being decoded, strm->adler is a
+   crc32 instead of an adler32.
 
      inflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
-   memory, Z_STREAM_ERROR if a parameter is invalid (such as a null strm). msg
-   is set to null if there is no error message.  inflateInit2 does not perform
-   any decompression apart from reading the zlib header if present: this will
-   be done by inflate(). (So next_in and avail_in may be modified, but next_out
-   and avail_out are unchanged.)
+   memory, Z_VERSION_ERROR if the zlib library version is incompatible with the
+   version assumed by the caller, or Z_STREAM_ERROR if the parameters are
+   invalid, such as a null pointer to the structure.  msg is set to null if
+   there is no error message.  inflateInit2 does not perform any decompression
+   apart from possibly reading the zlib header if present: actual decompression
+   will be done by inflate().  (So next_in and avail_in may be modified, but
+   next_out and avail_out are unused and unchanged.) The current implementation
+   of inflateInit2() does not process any header information -- that is
+   deferred until inflate() is called.
 */
 
 ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm,
                                              const Bytef *dictionary,
                                              uInt  dictLength));
 /*
      Initializes the decompression dictionary from the given uncompressed byte
-   sequence. This function must be called immediately after a call of inflate,
-   if that call returned Z_NEED_DICT. The dictionary chosen by the compressor
+   sequence.  This function must be called immediately after a call of inflate,
+   if that call returned Z_NEED_DICT.  The dictionary chosen by the compressor
    can be determined from the adler32 value returned by that call of inflate.
    The compressor and decompressor must use exactly the same dictionary (see
    deflateSetDictionary).  For raw inflate, this function can be called
    immediately after inflateInit2() or inflateReset() and before any call of
    inflate() to set the dictionary.  The application must insure that the
    dictionary that was used for compression is provided.
 
      inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a
-   parameter is invalid (such as NULL dictionary) or the stream state is
+   parameter is invalid (e.g.  dictionary being Z_NULL) or the stream state is
    inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the
-   expected one (incorrect adler32 value). inflateSetDictionary does not
+   expected one (incorrect adler32 value).  inflateSetDictionary does not
    perform any decompression: this will be done by subsequent calls of
    inflate().
 */
 
 ZEXTERN int ZEXPORT inflateSync OF((z_streamp strm));
 /*
-    Skips invalid compressed data until a full flush point (see above the
-  description of deflate with Z_FULL_FLUSH) can be found, or until all
-  available input is skipped. No output is provided.
+     Skips invalid compressed data until a full flush point (see above the
+   description of deflate with Z_FULL_FLUSH) can be found, or until all
+   available input is skipped.  No output is provided.
 
-    inflateSync returns Z_OK if a full flush point has been found, Z_BUF_ERROR
-  if no more input was provided, Z_DATA_ERROR if no flush point has been found,
-  or Z_STREAM_ERROR if the stream structure was inconsistent. In the success
-  case, the application may save the current current value of total_in which
-  indicates where valid compressed data was found. In the error case, the
-  application may repeatedly call inflateSync, providing more input each time,
-  until success or end of the input data.
+     inflateSync returns Z_OK if a full flush point has been found, Z_BUF_ERROR
+   if no more input was provided, Z_DATA_ERROR if no flush point has been
+   found, or Z_STREAM_ERROR if the stream structure was inconsistent.  In the
+   success case, the application may save the current current value of total_in
+   which indicates where valid compressed data was found.  In the error case,
+   the application may repeatedly call inflateSync, providing more input each
+   time, until success or end of the input data.
 */
 
 ZEXTERN int ZEXPORT inflateCopy OF((z_streamp dest,
                                     z_streamp source));
 /*
      Sets the destination stream as a complete copy of the source stream.
 
      This function can be useful when randomly accessing a large stream.  The
    first pass through the stream can periodically record the inflate state,
    allowing restarting inflate at those points when randomly accessing the
    stream.
 
      inflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not
    enough memory, Z_STREAM_ERROR if the source stream state was inconsistent
-   (such as zalloc being NULL). msg is left unchanged in both source and
+   (such as zalloc being Z_NULL).  msg is left unchanged in both source and
    destination.
 */
 
 ZEXTERN int ZEXPORT inflateReset OF((z_streamp strm));
 /*
      This function is equivalent to inflateEnd followed by inflateInit,
-   but does not free and reallocate all the internal decompression state.
-   The stream will keep attributes that may have been set by inflateInit2.
+   but does not free and reallocate all the internal decompression state.  The
+   stream will keep attributes that may have been set by inflateInit2.
+
+     inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
+   stream state was inconsistent (such as zalloc or state being Z_NULL).
+*/
 
-      inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
-   stream state was inconsistent (such as zalloc or state being NULL).
+ZEXTERN int ZEXPORT inflateReset2 OF((z_streamp strm,
+                                      int windowBits));
+/*
+     This function is the same as inflateReset, but it also permits changing
+   the wrap and window size requests.  The windowBits parameter is interpreted
+   the same as it is for inflateInit2.
+
+     inflateReset2 returns Z_OK if success, or Z_STREAM_ERROR if the source
+   stream state was inconsistent (such as zalloc or state being Z_NULL), or if
+   the windowBits parameter is invalid.
 */
 
 ZEXTERN int ZEXPORT inflatePrime OF((z_streamp strm,
                                      int bits,
                                      int value));
 /*
      This function inserts bits in the inflate input stream.  The intent is
-  that this function is used to start inflating at a bit position in the
-  middle of a byte.  The provided bits will be used before any bytes are used
-  from next_in.  This function should only be used with raw inflate, and
-  should be used before the first inflate() call after inflateInit2() or
-  inflateReset().  bits must be less than or equal to 16, and that many of the
-  least significant bits of value will be inserted in the input.
+   that this function is used to start inflating at a bit position in the
+   middle of a byte.  The provided bits will be used before any bytes are used
+   from next_in.  This function should only be used with raw inflate, and
+   should be used before the first inflate() call after inflateInit2() or
+   inflateReset().  bits must be less than or equal to 16, and that many of the
+   least significant bits of value will be inserted in the input.
+
+     If bits is negative, then the input stream bit buffer is emptied.  Then
+   inflatePrime() can be called again to put bits in the buffer.  This is used
+   to clear out bits leftover after feeding inflate a block description prior
+   to feeding inflate codes.
+
+     inflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source
+   stream state was inconsistent.
+*/
 
-      inflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source
-   stream state was inconsistent.
+ZEXTERN long ZEXPORT inflateMark OF((z_streamp strm));
+/*
+     This function returns two values, one in the lower 16 bits of the return
+   value, and the other in the remaining upper bits, obtained by shifting the
+   return value down 16 bits.  If the upper value is -1 and the lower value is
+   zero, then inflate() is currently decoding information outside of a block.
+   If the upper value is -1 and the lower value is non-zero, then inflate is in
+   the middle of a stored block, with the lower value equaling the number of
+   bytes from the input remaining to copy.  If the upper value is not -1, then
+   it is the number of bits back from the current bit position in the input of
+   the code (literal or length/distance pair) currently being processed.  In
+   that case the lower value is the number of bytes already emitted for that
+   code.
+
+     A code is being processed if inflate is waiting for more input to complete
+   decoding of the code, or if it has completed decoding but is waiting for
+   more output space to write the literal or match data.
+
+     inflateMark() is used to mark locations in the input data for random
+   access, which may be at bit positions, and to note those cases where the
+   output of a code may span boundaries of random access blocks.  The current
+   location in the input stream can be determined from avail_in and data_type
+   as noted in the description for the Z_BLOCK flush parameter for inflate.
+
+     inflateMark returns the value noted above or -1 << 16 if the provided
+   source stream state was inconsistent.
 */
 
 ZEXTERN int ZEXPORT inflateGetHeader OF((z_streamp strm,
                                          gz_headerp head));
 /*
-      inflateGetHeader() requests that gzip header information be stored in the
+     inflateGetHeader() requests that gzip header information be stored in the
    provided gz_header structure.  inflateGetHeader() may be called after
    inflateInit2() or inflateReset(), and before the first call of inflate().
    As inflate() processes the gzip stream, head->done is zero until the header
    is completed, at which time head->done is set to one.  If a zlib stream is
    being decoded, then head->done is set to -1 to indicate that there will be
-   no gzip header information forthcoming.  Note that Z_BLOCK can be used to
-   force inflate() to return immediately after header processing is complete
-   and before any actual data is decompressed.
+   no gzip header information forthcoming.  Note that Z_BLOCK or Z_TREES can be
+   used to force inflate() to return immediately after header processing is
+   complete and before any actual data is decompressed.
 
-      The text, time, xflags, and os fields are filled in with the gzip header
+     The text, time, xflags, and os fields are filled in with the gzip header
    contents.  hcrc is set to true if there is a header CRC.  (The header CRC
-   was valid if done is set to one.)  If extra is not Z_NULL, then extra_max
+   was valid if done is set to one.) If extra is not Z_NULL, then extra_max
    contains the maximum number of bytes to write to extra.  Once done is true,
    extra_len contains the actual extra field length, and extra contains the
    extra field, or that field truncated if extra_max is less than extra_len.
    If name is not Z_NULL, then up to name_max characters are written there,
    terminated with a zero unless the length is greater than name_max.  If
    comment is not Z_NULL, then up to comm_max characters are written there,
-   terminated with a zero unless the length is greater than comm_max.  When
-   any of extra, name, or comment are not Z_NULL and the respective field is
-   not present in the header, then that field is set to Z_NULL to signal its
+   terminated with a zero unless the length is greater than comm_max.  When any
+   of extra, name, or comment are not Z_NULL and the respective field is not
+   present in the header, then that field is set to Z_NULL to signal its
    absence.  This allows the use of deflateSetHeader() with the returned
    structure to duplicate the header.  However if those fields are set to
    allocated memory, then the application will need to save those pointers
    elsewhere so that they can be eventually freed.
 
-      If inflateGetHeader is not used, then the header information is simply
+     If inflateGetHeader is not used, then the header information is simply
    discarded.  The header is always checked for validity, including the header
    CRC if present.  inflateReset() will reset the process to discard the header
    information.  The application would need to call inflateGetHeader() again to
    retrieve the header from the next gzip stream.
 
-      inflateGetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source
+     inflateGetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source
    stream state was inconsistent.
 */
 
 /*
 ZEXTERN int ZEXPORT inflateBackInit OF((z_streamp strm, int windowBits,
                                         unsigned char FAR *window));
 
      Initialize the internal stream state for decompression using inflateBack()
@@ -864,19 +957,19 @@ ZEXTERN int ZEXPORT inflateBackInit OF((
    supplied buffer of that size.  Except for special applications where it is
    assured that deflate was used with small window sizes, windowBits must be 15
    and a 32K byte window must be supplied to be able to decompress general
    deflate streams.
 
      See inflateBack() for the usage of these routines.
 
      inflateBackInit will return Z_OK on success, Z_STREAM_ERROR if any of
-   the paramaters are invalid, Z_MEM_ERROR if the internal state could not
-   be allocated, or Z_VERSION_ERROR if the version of the library does not
-   match the version of the header file.
+   the paramaters are invalid, Z_MEM_ERROR if the internal state could not be
+   allocated, or Z_VERSION_ERROR if the version of the library does not match
+   the version of the header file.
 */
 
 typedef unsigned (*in_func) OF((void FAR *, unsigned char FAR * FAR *));
 typedef int (*out_func) OF((void FAR *, unsigned char FAR *, unsigned));
 
 ZEXTERN int ZEXPORT inflateBack OF((z_streamp strm,
                                     in_func in, void FAR *in_desc,
                                     out_func out, void FAR *out_desc));
@@ -886,25 +979,25 @@ ZEXTERN int ZEXPORT inflateBack OF((z_st
    file i/o applications in that it avoids copying between the output and the
    sliding window by simply making the window itself the output buffer.  This
    function trusts the application to not change the output buffer passed by
    the output function, at least until inflateBack() returns.
 
      inflateBackInit() must be called first to allocate the internal state
    and to initialize the state with the user-provided window buffer.
    inflateBack() may then be used multiple times to inflate a complete, raw
-   deflate stream with each call.  inflateBackEnd() is then called to free
-   the allocated state.
+   deflate stream with each call.  inflateBackEnd() is then called to free the
+   allocated state.
 
      A raw deflate stream is one with no zlib or gzip header or trailer.
    This routine would normally be used in a utility that reads zip or gzip
    files and writes out uncompressed files.  The utility would decode the
-   header and process the trailer on its own, hence this routine expects
-   only the raw deflate stream to decompress.  This is different from the
-   normal behavior of inflate(), which expects either a zlib or gzip header and
+   header and process the trailer on its own, hence this routine expects only
+   the raw deflate stream to decompress.  This is different from the normal
+   behavior of inflate(), which expects either a zlib or gzip header and
    trailer around the deflate stream.
 
      inflateBack() uses two subroutines supplied by the caller that are then
    called by inflateBack() for input and output.  inflateBack() calls those
    routines until it reads a complete deflate stream and writes out all of the
    uncompressed data, or until it encounters an error.  The function's
    parameters and return types are defined above in the in_func and out_func
    typedefs.  inflateBack() will call in(in_desc, &buf) which should return the
@@ -920,35 +1013,35 @@ ZEXTERN int ZEXPORT inflateBack OF((z_st
    amount of input may be provided by in().
 
      For convenience, inflateBack() can be provided input on the first call by
    setting strm->next_in and strm->avail_in.  If that input is exhausted, then
    in() will be called.  Therefore strm->next_in must be initialized before
    calling inflateBack().  If strm->next_in is Z_NULL, then in() will be called
    immediately for input.  If strm->next_in is not Z_NULL, then strm->avail_in
    must also be initialized, and then if strm->avail_in is not zero, input will
-   initially be taken from strm->next_in[0 .. strm->avail_in - 1].
+   initially be taken from strm->next_in[0 ..  strm->avail_in - 1].
 
      The in_desc and out_desc parameters of inflateBack() is passed as the
    first parameter of in() and out() respectively when they are called.  These
    descriptors can be optionally used to pass any information that the caller-
    supplied in() and out() functions need to do their job.
 
      On return, inflateBack() will set strm->next_in and strm->avail_in to
    pass back any unused input that was provided by the last in() call.  The
    return values of inflateBack() can be Z_STREAM_END on success, Z_BUF_ERROR
-   if in() or out() returned an error, Z_DATA_ERROR if there was a format
-   error in the deflate stream (in which case strm->msg is set to indicate the
-   nature of the error), or Z_STREAM_ERROR if the stream was not properly
-   initialized.  In the case of Z_BUF_ERROR, an input or output error can be
-   distinguished using strm->next_in which will be Z_NULL only if in() returned
-   an error.  If strm->next is not Z_NULL, then the Z_BUF_ERROR was due to
-   out() returning non-zero.  (in() will always be called before out(), so
-   strm->next_in is assured to be defined if out() returns non-zero.)  Note
-   that inflateBack() cannot return Z_OK.
+   if in() or out() returned an error, Z_DATA_ERROR if there was a format error
+   in the deflate stream (in which case strm->msg is set to indicate the nature
+   of the error), or Z_STREAM_ERROR if the stream was not properly initialized.
+   In the case of Z_BUF_ERROR, an input or output error can be distinguished
+   using strm->next_in which will be Z_NULL only if in() returned an error.  If
+   strm->next_in is not Z_NULL, then the Z_BUF_ERROR was due to out() returning
+   non-zero.  (in() will always be called before out(), so strm->next_in is
+   assured to be defined if out() returns non-zero.) Note that inflateBack()
+   cannot return Z_OK.
 */
 
 ZEXTERN int ZEXPORT inflateBackEnd OF((z_streamp strm));
 /*
      All memory allocated by inflateBackInit() is freed.
 
      inflateBackEnd() returns Z_OK on success, or Z_STREAM_ERROR if the stream
    state was inconsistent.
@@ -994,318 +1087,440 @@ ZEXTERN uLong ZEXPORT zlibCompileFlags O
     Remainder:
      27-31: 0 (reserved)
  */
 
 
                         /* utility functions */
 
 /*
-     The following utility functions are implemented on top of the
-   basic stream-oriented functions. To simplify the interface, some
-   default options are assumed (compression level and memory usage,
-   standard memory allocation functions). The source code of these
-   utility functions can easily be modified if you need special options.
+     The following utility functions are implemented on top of the basic
+   stream-oriented functions.  To simplify the interface, some default options
+   are assumed (compression level and memory usage, standard memory allocation
+   functions).  The source code of these utility functions can be modified if
+   you need special options.
 */
 
 ZEXTERN int ZEXPORT compress OF((Bytef *dest,   uLongf *destLen,
                                  const Bytef *source, uLong sourceLen));
 /*
      Compresses the source buffer into the destination buffer.  sourceLen is
-   the byte length of the source buffer. Upon entry, destLen is the total
-   size of the destination buffer, which must be at least the value returned
-   by compressBound(sourceLen). Upon exit, destLen is the actual size of the
+   the byte length of the source buffer.  Upon entry, destLen is the total size
+   of the destination buffer, which must be at least the value returned by
+   compressBound(sourceLen).  Upon exit, destLen is the actual size of the
    compressed buffer.
-     This function can be used to compress a whole file at once if the
-   input file is mmap'ed.
+
      compress returns Z_OK if success, Z_MEM_ERROR if there was not
    enough memory, Z_BUF_ERROR if there was not enough room in the output
    buffer.
 */
 
 ZEXTERN int ZEXPORT compress2 OF((Bytef *dest,   uLongf *destLen,
                                   const Bytef *source, uLong sourceLen,
                                   int level));
 /*
-     Compresses the source buffer into the destination buffer. The level
+     Compresses the source buffer into the destination buffer.  The level
    parameter has the same meaning as in deflateInit.  sourceLen is the byte
-   length of the source buffer. Upon entry, destLen is the total size of the
+   length of the source buffer.  Upon entry, destLen is the total size of the
    destination buffer, which must be at least the value returned by
-   compressBound(sourceLen). Upon exit, destLen is the actual size of the
+   compressBound(sourceLen).  Upon exit, destLen is the actual size of the
    compressed buffer.
 
      compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
    memory, Z_BUF_ERROR if there was not enough room in the output buffer,
    Z_STREAM_ERROR if the level parameter is invalid.
 */
 
 ZEXTERN uLong ZEXPORT compressBound OF((uLong sourceLen));
 /*
      compressBound() returns an upper bound on the compressed size after
-   compress() or compress2() on sourceLen bytes.  It would be used before
-   a compress() or compress2() call to allocate the destination buffer.
+   compress() or compress2() on sourceLen bytes.  It would be used before a
+   compress() or compress2() call to allocate the destination buffer.
 */
 
 ZEXTERN int ZEXPORT uncompress OF((Bytef *dest,   uLongf *destLen,
                                    const Bytef *source, uLong sourceLen));
 /*
      Decompresses the source buffer into the destination buffer.  sourceLen is
-   the byte length of the source buffer. Upon entry, destLen is the total
-   size of the destination buffer, which must be large enough to hold the
-   entire uncompressed data. (The size of the uncompressed data must have
-   been saved previously by the compressor and transmitted to the decompressor
-   by some mechanism outside the scope of this compression library.)
-   Upon exit, destLen is the actual size of the compressed buffer.
-     This function can be used to decompress a whole file at once if the
-   input file is mmap'ed.
+   the byte length of the source buffer.  Upon entry, destLen is the total size
+   of the destination buffer, which must be large enough to hold the entire
+   uncompressed data.  (The size of the uncompressed data must have been saved
+   previously by the compressor and transmitted to the decompressor by some
+   mechanism outside the scope of this compression library.) Upon exit, destLen
+   is the actual size of the uncompressed buffer.
 
      uncompress returns Z_OK if success, Z_MEM_ERROR if there was not
    enough memory, Z_BUF_ERROR if there was not enough room in the output
    buffer, or Z_DATA_ERROR if the input data was corrupted or incomplete.
 */
 
 
-typedef voidp gzFile;
+                        /* gzip file access functions */
 
-ZEXTERN gzFile ZEXPORT gzopen  OF((const char *path, const char *mode));
+/*
+     This library supports reading and writing files in gzip (.gz) format with
+   an interface similar to that of stdio, using the functions that start with
+   "gz".  The gzip format is different from the zlib format.  gzip is a gzip
+   wrapper, documented in RFC 1952, wrapped around a deflate stream.
+*/
+
+typedef voidp gzFile;       /* opaque gzip file descriptor */
+
 /*
-     Opens a gzip (.gz) file for reading or writing. The mode parameter
-   is as in fopen ("rb" or "wb") but can also include a compression level
-   ("wb9") or a strategy: 'f' for filtered data as in "wb6f", 'h' for
-   Huffman only compression as in "wb1h", or 'R' for run-length encoding
-   as in "wb1R". (See the description of deflateInit2 for more information
-   about the strategy parameter.)
+ZEXTERN gzFile ZEXPORT gzopen OF((const char *path, const char *mode));
+
+     Opens a gzip (.gz) file for reading or writing.  The mode parameter is as
+   in fopen ("rb" or "wb") but can also include a compression level ("wb9") or
+   a strategy: 'f' for filtered data as in "wb6f", 'h' for Huffman-only
+   compression as in "wb1h", 'R' for run-length encoding as in "wb1R", or 'F'
+   for fixed code compression as in "wb9F".  (See the description of
+   deflateInit2 for more information about the strategy parameter.) Also "a"
+   can be used instead of "w" to request that the gzip stream that will be
+   written be appended to the file.  "+" will result in an error, since reading
+   and writing to the same gzip file is not supported.
 
      gzopen can be used to read a file which is not in gzip format; in this
    case gzread will directly read from the file without decompression.
 
-     gzopen returns NULL if the file could not be opened or if there was
-   insufficient memory to allocate the (de)compression state; errno
-   can be checked to distinguish the two cases (if errno is zero, the
-   zlib error is Z_MEM_ERROR).  */
+     gzopen returns NULL if the file could not be opened, if there was
+   insufficient memory to allocate the gzFile state, or if an invalid mode was
+   specified (an 'r', 'w', or 'a' was not provided, or '+' was provided).
+   errno can be checked to determine if the reason gzopen failed was that the
+   file could not be opened.
+*/
 
-ZEXTERN gzFile ZEXPORT gzdopen  OF((int fd, const char *mode));
+ZEXTERN gzFile ZEXPORT gzdopen OF((int fd, const char *mode));
 /*
-     gzdopen() associates a gzFile with the file descriptor fd.  File
-   descriptors are obtained from calls like open, dup, creat, pipe or
-   fileno (in the file has been previously opened with fopen).
-   The mode parameter is as in gzopen.
-     The next call of gzclose on the returned gzFile will also close the
-   file descriptor fd, just like fclose(fdopen(fd), mode) closes the file
-   descriptor fd. If you want to keep fd open, use gzdopen(dup(fd), mode).
-     gzdopen returns NULL if there was insufficient memory to allocate
-   the (de)compression state.
+     gzdopen associates a gzFile with the file descriptor fd.  File descriptors
+   are obtained from calls like open, dup, creat, pipe or fileno (if the file
+   has been previously opened with fopen).  The mode parameter is as in gzopen.
+
+     The next call of gzclose on the returned gzFile will also close the file
+   descriptor fd, just like fclose(fdopen(fd, mode)) closes the file descriptor
+   fd.  If you want to keep fd open, use fd = dup(fd_keep); gz = gzdopen(fd,
+   mode);.  The duplicated descriptor should be saved to avoid a leak, since
+   gzdopen does not close fd if it fails.
+
+     gzdopen returns NULL if there was insufficient memory to allocate the
+   gzFile state, if an invalid mode was specified (an 'r', 'w', or 'a' was not
+   provided, or '+' was provided), or if fd is -1.  The file descriptor is not
+   used until the next gz* read, write, seek, or close operation, so gzdopen
+   will not detect if fd is invalid (unless fd is -1).
+*/
+
+ZEXTERN int ZEXPORT gzbuffer OF((gzFile file, unsigned size));
+/*
+     Set the internal buffer size used by this library's functions.  The
+   default buffer size is 8192 bytes.  This function must be called after
+   gzopen() or gzdopen(), and before any other calls that read or write the
+   file.  The buffer memory allocation is always deferred to the first read or
+   write.  Two buffers are allocated, either both of the specified size when
+   writing, or one of the specified size and the other twice that size when
+   reading.  A larger buffer size of, for example, 64K or 128K bytes will
+   noticeably increase the speed of decompression (reading).
+
+     The new buffer size also affects the maximum length for gzprintf().
+
+     gzbuffer() returns 0 on success, or -1 on failure, such as being called
+   too late.
 */
 
 ZEXTERN int ZEXPORT gzsetparams OF((gzFile file, int level, int strategy));
 /*
-     Dynamically update the compression level or strategy. See the description
+     Dynamically update the compression level or strategy.  See the description
    of deflateInit2 for the meaning of these parameters.
+
      gzsetparams returns Z_OK if success, or Z_STREAM_ERROR if the file was not
    opened for writing.
 */
 
-ZEXTERN int ZEXPORT    gzread  OF((gzFile file, voidp buf, unsigned len));
+ZEXTERN int ZEXPORT gzread OF((gzFile file, voidp buf, unsigned len));
 /*
-     Reads the given number of uncompressed bytes from the compressed file.
-   If the input file was not in gzip format, gzread copies the given number
-   of bytes into the buffer.
-     gzread returns the number of uncompressed bytes actually read (0 for
-   end of file, -1 for error). */
+     Reads the given number of uncompressed bytes from the compressed file.  If
+   the input file was not in gzip format, gzread copies the given number of
+   bytes into the buffer.
 
-ZEXTERN int ZEXPORT    gzwrite OF((gzFile file,
-                                   voidpc buf, unsigned len));
+     After reaching the end of a gzip stream in the input, gzread will continue
+   to read, looking for another gzip stream, or failing that, reading the rest
+   of the input file directly without decompression.  The entire input file
+   will be read if gzread is called until it returns less than the requested
+   len.
+
+     gzread returns the number of uncompressed bytes actually read, less than
+   len for end of file, or -1 for error.
+*/
+
+ZEXTERN int ZEXPORT gzwrite OF((gzFile file,
+                                voidpc buf, unsigned len));
 /*
      Writes the given number of uncompressed bytes into the compressed file.
-   gzwrite returns the number of uncompressed bytes actually written
-   (0 in case of error).
+   gzwrite returns the number of uncompressed bytes written or 0 in case of
+   error.
 */
 
-ZEXTERN int ZEXPORTVA   gzprintf OF((gzFile file, const char *format, ...));
+ZEXTERN int ZEXPORTVA gzprintf OF((gzFile file, const char *format, ...));
 /*
-     Converts, formats, and writes the args to the compressed file under
-   control of the format string, as in fprintf. gzprintf returns the number of
-   uncompressed bytes actually written (0 in case of error).  The number of
-   uncompressed bytes written is limited to 4095. The caller should assure that
-   this limit is not exceeded. If it is exceeded, then gzprintf() will return
-   return an error (0) with nothing written. In this case, there may also be a
-   buffer overflow with unpredictable consequences, which is possible only if
-   zlib was compiled with the insecure functions sprintf() or vsprintf()
-   because the secure snprintf() or vsnprintf() functions were not available.
+     Converts, formats, and writes the arguments to the compressed file under
+   control of the format string, as in fprintf.  gzprintf returns the number of
+   uncompressed bytes actually written, or 0 in case of error.  The number of
+   uncompressed bytes written is limited to 8191, or one less than the buffer
+   size given to gzbuffer().  The caller should assure that this limit is not
+   exceeded.  If it is exceeded, then gzprintf() will return an error (0) with
+   nothing written.  In this case, there may also be a buffer overflow with
+   unpredictable consequences, which is possible only if zlib was compiled with
+   the insecure functions sprintf() or vsprintf() because the secure snprintf()
+   or vsnprintf() functions were not available.  This can be determined using
+   zlibCompileFlags().
 */
 
 ZEXTERN int ZEXPORT gzputs OF((gzFile file, const char *s));
 /*
-      Writes the given null-terminated string to the compressed file, excluding
+     Writes the given null-terminated string to the compressed file, excluding
    the terminating null character.
-      gzputs returns the number of characters written, or -1 in case of error.
+
+     gzputs returns the number of characters written, or -1 in case of error.
 */
 
 ZEXTERN char * ZEXPORT gzgets OF((gzFile file, char *buf, int len));
 /*
-      Reads bytes from the compressed file until len-1 characters are read, or
-   a newline character is read and transferred to buf, or an end-of-file
-   condition is encountered.  The string is then terminated with a null
-   character.
-      gzgets returns buf, or Z_NULL in case of error.
+     Reads bytes from the compressed file until len-1 characters are read, or a
+   newline character is read and transferred to buf, or an end-of-file
+   condition is encountered.  If any characters are read or if len == 1, the
+   string is terminated with a null character.  If no characters are read due
+   to an end-of-file or len < 1, then the buffer is left untouched.
+
+     gzgets returns buf which is a null-terminated string, or it returns NULL
+   for end-of-file or in case of error.  If there was an error, the contents at
+   buf are indeterminate.
 */
 
-ZEXTERN int ZEXPORT    gzputc OF((gzFile file, int c));
+ZEXTERN int ZEXPORT gzputc OF((gzFile file, int c));
 /*
-      Writes c, converted to an unsigned char, into the compressed file.
-   gzputc returns the value that was written, or -1 in case of error.
+     Writes c, converted to an unsigned char, into the compressed file.  gzputc
+   returns the value that was written, or -1 in case of error.
 */
 
-ZEXTERN int ZEXPORT    gzgetc OF((gzFile file));
+ZEXTERN int ZEXPORT gzgetc OF((gzFile file));
 /*
-      Reads one byte from the compressed file. gzgetc returns this byte
-   or -1 in case of end of file or error.
+     Reads one byte from the compressed file.  gzgetc returns this byte or -1
+   in case of end of file or error.
 */
 
-ZEXTERN int ZEXPORT    gzungetc OF((int c, gzFile file));
+ZEXTERN int ZEXPORT gzungetc OF((int c, gzFile file));
 /*
-      Push one character back onto the stream to be read again later.
-   Only one character of push-back is allowed.  gzungetc() returns the
-   character pushed, or -1 on failure.  gzungetc() will fail if a
-   character has been pushed but not read yet, or if c is -1. The pushed
-   character will be discarded if the stream is repositioned with gzseek()
-   or gzrewind().
+     Push one character back onto the stream to be read as the first character
+   on the next read.  At least one character of push-back is allowed.
+   gzungetc() returns the character pushed, or -1 on failure.  gzungetc() will
+   fail if c is -1, and may fail if a character has been pushed but not read
+   yet.  If gzungetc is used immediately after gzopen or gzdopen, at least the
+   output buffer size of pushed characters is allowed.  (See gzbuffer above.)
+   The pushed character will be discarded if the stream is repositioned with
+   gzseek() or gzrewind().
 */
 
-ZEXTERN int ZEXPORT    gzflush OF((gzFile file, int flush));
+ZEXTERN int ZEXPORT gzflush OF((gzFile file, int flush));
 /*
-     Flushes all pending output into the compressed file. The parameter
-   flush is as in the deflate() function. The return value is the zlib
-   error number (see function gzerror below). gzflush returns Z_OK if
-   the flush parameter is Z_FINISH and all output could be flushed.
-     gzflush should be called only when strictly necessary because it can
-   degrade compression.
+     Flushes all pending output into the compressed file.  The parameter flush
+   is as in the deflate() function.  The return value is the zlib error number
+   (see function gzerror below).  gzflush is only permitted when writing.
+
+     If the flush parameter is Z_FINISH, the remaining data is written and the
+   gzip stream is completed in the output.  If gzwrite() is called again, a new
+   gzip stream will be started in the output.  gzread() is able to read such
+   concatented gzip streams.
+
+     gzflush should be called only when strictly necessary because it will
+   degrade compression if called too often.
 */
 
-ZEXTERN z_off_t ZEXPORT    gzseek OF((gzFile file,
-                                      z_off_t offset, int whence));
 /*
-      Sets the starting position for the next gzread or gzwrite on the
-   given compressed file. The offset represents a number of bytes in the
-   uncompressed data stream. The whence parameter is defined as in lseek(2);
+ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile file,
+                                   z_off_t offset, int whence));
+
+     Sets the starting position for the next gzread or gzwrite on the given
+   compressed file.  The offset represents a number of bytes in the
+   uncompressed data stream.  The whence parameter is defined as in lseek(2);
    the value SEEK_END is not supported.
+
      If the file is opened for reading, this function is emulated but can be
-   extremely slow. If the file is opened for writing, only forward seeks are
+   extremely slow.  If the file is opened for writing, only forward seeks are
    supported; gzseek then compresses a sequence of zeroes up to the new
    starting position.
 
-      gzseek returns the resulting offset location as measured in bytes from
+     gzseek returns the resulting offset location as measured in bytes from
    the beginning of the uncompressed stream, or -1 in case of error, in
    particular if the file is opened for writing and the new starting position
    would be before the current position.
 */
 
 ZEXTERN int ZEXPORT    gzrewind OF((gzFile file));
 /*
      Rewinds the given file. This function is supported only for reading.
 
-   gzrewind(file) is equivalent to (int)gzseek(file, 0L, SEEK_SET)
+     gzrewind(file) is equivalent to (int)gzseek(file, 0L, SEEK_SET)
 */
 
-ZEXTERN z_off_t ZEXPORT    gztell OF((gzFile file));
 /*
-     Returns the starting position for the next gzread or gzwrite on the
-   given compressed file. This position represents a number of bytes in the
-   uncompressed data stream.
+ZEXTERN z_off_t ZEXPORT    gztell OF((gzFile file));
+
+     Returns the starting position for the next gzread or gzwrite on the given
+   compressed file.  This position represents a number of bytes in the
+   uncompressed data stream, and is zero when starting, even if appending or
+   reading a gzip stream from the middle of a file using gzdopen().
 
-   gztell(file) is equivalent to gzseek(file, 0L, SEEK_CUR)
+     gztell(file) is equivalent to gzseek(file, 0L, SEEK_CUR)
+*/
+
+/*
+ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile file));
+
+     Returns the current offset in the file being read or written.  This offset
+   includes the count of bytes that precede the gzip stream, for example when
+   appending or when using gzdopen() for reading.  When reading, the offset
+   does not include as yet unused buffered input.  This information can be used
+   for a progress indicator.  On error, gzoffset() returns -1.
 */
 
 ZEXTERN int ZEXPORT gzeof OF((gzFile file));
 /*
-     Returns 1 when EOF has previously been detected reading the given
-   input stream, otherwise zero.
+     Returns true (1) if the end-of-file indicator has been set while reading,
+   false (0) otherwise.  Note that the end-of-file indicator is set only if the
+   read tried to go past the end of the input, but came up short.  Therefore,
+   just like feof(), gzeof() may return false even if there is no more data to
+   read, in the event that the last read request was for the exact number of
+   bytes remaining in the input file.  This will happen if the input file size
+   is an exact multiple of the buffer size.
+
+     If gzeof() returns true, then the read functions will return no more data,
+   unless the end-of-file indicator is reset by gzclearerr() and the input file
+   has grown since the previous end of file was detected.
 */
 
 ZEXTERN int ZEXPORT gzdirect OF((gzFile file));
 /*
-     Returns 1 if file is being read directly without decompression, otherwise
-   zero.
+     Returns true (1) if file is being copied directly while reading, or false
+   (0) if file is a gzip stream being decompressed.  This state can change from
+   false to true while reading the input file if the end of a gzip stream is
+   reached, but is followed by data that is not another gzip stream.
+
+     If the input file is empty, gzdirect() will return true, since the input
+   does not contain a gzip stream.
+
+     If gzdirect() is used immediately after gzopen() or gzdopen() it will
+   cause buffers to be allocated to allow reading the file to determine if it
+   is a gzip file.  Therefore if gzbuffer() is used, it should be called before
+   gzdirect().
 */
 
 ZEXTERN int ZEXPORT    gzclose OF((gzFile file));
 /*
-     Flushes all pending output if necessary, closes the compressed file
-   and deallocates all the (de)compression state. The return value is the zlib
-   error number (see function gzerror below).
+     Flushes all pending output if necessary, closes the compressed file and
+   deallocates the (de)compression state.  Note that once file is closed, you
+   cannot call gzerror with file, since its structures have been deallocated.
+   gzclose must not be called more than once on the same file, just as free
+   must not be called more than once on the same allocation.
+
+     gzclose will return Z_STREAM_ERROR if file is not valid, Z_ERRNO on a
+   file operation error, or Z_OK on success.
+*/
+
+ZEXTERN int ZEXPORT gzclose_r OF((gzFile file));
+ZEXTERN int ZEXPORT gzclose_w OF((gzFile file));
+/*
+     Same as gzclose(), but gzclose_r() is only for use when reading, and
+   gzclose_w() is only for use when writing or appending.  The advantage to
+   using these instead of gzclose() is that they avoid linking in zlib
+   compression or decompression code that is not used when only reading or only
+   writing respectively.  If gzclose() is used, then both compression and
+   decompression code will be included the application when linking to a static
+   zlib library.
 */
 
 ZEXTERN const char * ZEXPORT gzerror OF((gzFile file, int *errnum));
 /*
-     Returns the error message for the last error which occurred on the
-   given compressed file. errnum is set to zlib error number. If an
-   error occurred in the file system and not in the compression library,
-   errnum is set to Z_ERRNO and the application may consult errno
-   to get the exact error code.
+     Returns the error message for the last error which occurred on the given
+   compressed file.  errnum is set to zlib error number.  If an error occurred
+   in the file system and not in the compression library, errnum is set to
+   Z_ERRNO and the application may consult errno to get the exact error code.
+
+     The application must not modify the returned string.  Future calls to
+   this function may invalidate the previously returned string.  If file is
+   closed, then the string previously returned by gzerror will no longer be
+   available.
+
+     gzerror() should be used to distinguish errors from end-of-file for those
+   functions above that do not distinguish those cases in their return values.
 */
 
 ZEXTERN void ZEXPORT gzclearerr OF((gzFile file));
 /*
-     Clears the error and end-of-file flags for file. This is analogous to the
-   clearerr() function in stdio. This is useful for continuing to read a gzip
+     Clears the error and end-of-file flags for file.  This is analogous to the
+   clearerr() function in stdio.  This is useful for continuing to read a gzip
    file that is being written concurrently.
 */
 
+
                         /* checksum functions */
 
 /*
      These functions are not related to compression but are exported
-   anyway because they might be useful in applications using the
-   compression library.
+   anyway because they might be useful in applications using the compression
+   library.
 */
 
 ZEXTERN uLong ZEXPORT adler32 OF((uLong adler, const Bytef *buf, uInt len));
 /*
      Update a running Adler-32 checksum with the bytes buf[0..len-1] and
-   return the updated checksum. If buf is NULL, this function returns
-   the required initial value for the checksum.
-   An Adler-32 checksum is almost as reliable as a CRC32 but can be computed
-   much faster. Usage example:
+   return the updated checksum.  If buf is Z_NULL, this function returns the
+   required initial value for the checksum.
+
+     An Adler-32 checksum is almost as reliable as a CRC32 but can be computed
+   much faster.
+
+   Usage example:
 
      uLong adler = adler32(0L, Z_NULL, 0);
 
      while (read_buffer(buffer, length) != EOF) {
        adler = adler32(adler, buffer, length);
      }
      if (adler != original_adler) error();
 */
 
+/*
 ZEXTERN uLong ZEXPORT adler32_combine OF((uLong adler1, uLong adler2,
                                           z_off_t len2));
-/*
+
      Combine two Adler-32 checksums into one.  For two sequences of bytes, seq1
    and seq2 with lengths len1 and len2, Adler-32 checksums were calculated for
    each, adler1 and adler2.  adler32_combine() returns the Adler-32 checksum of
    seq1 and seq2 concatenated, requiring only adler1, adler2, and len2.
 */
 
 ZEXTERN uLong ZEXPORT crc32   OF((uLong crc, const Bytef *buf, uInt len));
 /*
      Update a running CRC-32 with the bytes buf[0..len-1] and return the
-   updated CRC-32. If buf is NULL, this function returns the required initial
-   value for the for the crc. Pre- and post-conditioning (one's complement) is
-   performed within this function so it shouldn't be done by the application.
+   updated CRC-32.  If buf is Z_NULL, this function returns the required
+   initial value for the for the crc.  Pre- and post-conditioning (one's
+   complement) is performed within this function so it shouldn't be done by the
+   application.
+
    Usage example:
 
      uLong crc = crc32(0L, Z_NULL, 0);
 
      while (read_buffer(buffer, length) != EOF) {
        crc = crc32(crc, buffer, length);
      }
      if (crc != original_crc) error();
 */
 
+/*
 ZEXTERN uLong ZEXPORT crc32_combine OF((uLong crc1, uLong crc2, z_off_t len2));
 
-/*
      Combine two CRC-32 check values into one.  For two sequences of bytes,
    seq1 and seq2 with lengths len1 and len2, CRC-32 check values were
    calculated for each, crc1 and crc2.  crc32_combine() returns the CRC-32
    check value of seq1 and seq2 concatenated, requiring only crc1, crc2, and
    len2.
 */
 
 
@@ -1334,24 +1549,65 @@ ZEXTERN int ZEXPORT inflateBackInit_ OF(
         inflateInit_((strm),                ZLIB_VERSION, sizeof(z_stream))
 #define deflateInit2(strm, level, method, windowBits, memLevel, strategy) \
         deflateInit2_((strm),(level),(method),(windowBits),(memLevel),\
                       (strategy),           ZLIB_VERSION, sizeof(z_stream))
 #define inflateInit2(strm, windowBits) \
         inflateInit2_((strm), (windowBits), ZLIB_VERSION, sizeof(z_stream))
 #define inflateBackInit(strm, windowBits, window) \
         inflateBackInit_((strm), (windowBits), (window), \
-        ZLIB_VERSION, sizeof(z_stream))
-
+                                            ZLIB_VERSION, sizeof(z_stream))
 
-#if !defined(ZUTIL_H) && !defined(NO_DUMMY_DECL)
-    struct internal_state {int dummy;}; /* hack for buggy compilers */
+/* provide 64-bit offset functions if _LARGEFILE64_SOURCE defined, and/or
+ * change the regular functions to 64 bits if _FILE_OFFSET_BITS is 64 (if
+ * both are true, the application gets the *64 functions, and the regular
+ * functions are changed to 64 bits) -- in case these are set on systems
+ * without large file support, _LFS64_LARGEFILE must also be true
+ */
+#if defined(_LARGEFILE64_SOURCE) && _LFS64_LARGEFILE-0
+   ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *));
+   ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int));
+   ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile));
+   ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile));
+   ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off64_t));
+   ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off64_t));
 #endif
 
+#if !defined(ZLIB_INTERNAL) && _FILE_OFFSET_BITS-0 == 64 && _LFS64_LARGEFILE-0
+#  define gzopen gzopen64
+#  define gzseek gzseek64
+#  define gztell gztell64
+#  define gzoffset gzoffset64
+#  define adler32_combine adler32_combine64
+#  define crc32_combine crc32_combine64
+#  ifdef _LARGEFILE64_SOURCE
+     ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *));
+     ZEXTERN z_off_t ZEXPORT gzseek64 OF((gzFile, z_off_t, int));
+     ZEXTERN z_off_t ZEXPORT gztell64 OF((gzFile));
+     ZEXTERN z_off_t ZEXPORT gzoffset64 OF((gzFile));
+     ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t));
+     ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t));
+#  endif
+#else
+   ZEXTERN gzFile ZEXPORT gzopen OF((const char *, const char *));
+   ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile, z_off_t, int));
+   ZEXTERN z_off_t ZEXPORT gztell OF((gzFile));
+   ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile));
+   ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t));
+   ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t));
+#endif
+
+/* hack for buggy compilers */
+#if !defined(ZUTIL_H) && !defined(NO_DUMMY_DECL)
+    struct internal_state {int dummy;};
+#endif
+
+/* undocumented functions */
 ZEXTERN const char   * ZEXPORT zError           OF((int));
-ZEXTERN int            ZEXPORT inflateSyncPoint OF((z_streamp z));
+ZEXTERN int            ZEXPORT inflateSyncPoint OF((z_streamp));
 ZEXTERN const uLongf * ZEXPORT get_crc_table    OF((void));
+ZEXTERN int            ZEXPORT inflateUndermine OF((z_streamp, int));
 
 #ifdef __cplusplus
 }
 #endif
 
 #endif /* ZLIB_H */
--- a/modules/zlib/src/zutil.c
+++ b/modules/zlib/src/zutil.c
@@ -1,14 +1,14 @@
 /* zutil.c -- target dependent utility functions for the compression library
- * Copyright (C) 1995-2005 Jean-loup Gailly.
+ * Copyright (C) 1995-2005, 2010 Jean-loup Gailly.
  * For conditions of distribution and use, see copyright notice in zlib.h
  */
 
-/* @(#) $Id: zutil.c,v 3.11 2005/08/04 19:14:14 tor%cs.brown.edu Exp $ */
+/* @(#) $Id$ */
 
 #include "zutil.h"
 
 #ifndef NO_DUMMY_DECL
 struct internal_state      {int dummy;}; /* for buggy compilers */
 #endif
 
 const char * const z_errmsg[10] = {
@@ -29,35 +29,35 @@ const char * ZEXPORT zlibVersion()
     return ZLIB_VERSION;
 }
 
 uLong ZEXPORT zlibCompileFlags()
 {
     uLong flags;
 
     flags = 0;
-    switch (sizeof(uInt)) {
+    switch ((int)(sizeof(uInt))) {
     case 2:     break;
     case 4:     flags += 1;     break;
     case 8:     flags += 2;     break;
     default:    flags += 3;
     }
-    switch (sizeof(uLong)) {
+    switch ((int)(sizeof(uLong))) {
     case 2:     break;
     case 4:     flags += 1 << 2;        break;
     case 8:     flags += 2 << 2;        break;
     default:    flags += 3 << 2;
     }
-    switch (sizeof(voidpf)) {
+    switch ((int)(sizeof(voidpf))) {
     case 2:     break;
     case 4:     flags += 1 << 4;        break;
     case 8:     flags += 2 << 4;        break;
     default:    flags += 3 << 4;
     }
-    switch (sizeof(z_off_t)) {
+    switch ((int)(sizeof(z_off_t))) {
     case 2:     break;
     case 4:     flags += 1 << 6;        break;
     case 8:     flags += 2 << 6;        break;
     default:    flags += 3 << 6;
     }
 #ifdef DEBUG
     flags += 1 << 8;
 #endif
@@ -112,19 +112,19 @@ uLong ZEXPORT zlibCompileFlags()
     return flags;
 }