author Masayuki Nakano <>
Wed, 26 Aug 2015 21:56:59 +0900
changeset 291977 cd06f5f5641c3dfb7f07db878584d389fb4df1b7
parent 276868 924686491f340c1e2bb9213a0d35823245a0633f
child 289453 79ae2fb834bbdc5da2741e08e0ecbd5d6a0bd864
child 299207 48dfe8c77b2f6f3cf8a81ea22d47c3f095d38b35
permissions -rw-r--r--
Bug 895274 part.3 Make the enum of event messages a named enum IGNORE IDL r=smaug

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at */

#ifndef mozilla_dom_CryptoKey_h
#define mozilla_dom_CryptoKey_h

#include "nsCycleCollectionParticipant.h"
#include "nsWrapperCache.h"
#include "nsIGlobalObject.h"
#include "nsNSSShutDown.h"
#include "pk11pub.h"
#include "keyhi.h"
#include "ScopedNSSTypes.h"
#include "mozilla/ErrorResult.h"
#include "mozilla/dom/CryptoBuffer.h"
#include "mozilla/dom/KeyAlgorithmProxy.h"
#include "js/StructuredClone.h"
#include "js/TypeDecls.h"

#define CRYPTOKEY_SC_VERSION 0x00000001

class nsIGlobalObject;

namespace mozilla {
namespace dom {


The internal structure of keys is dictated by the need for cloning.
We store everything besides the key data itself in a 32-bit bitmask,
with the following structure (byte-aligned for simplicity, in order
from least to most significant):

Bits  Usage
0     Extractable
1-7   [reserved]
8-15  KeyType
16-23 KeyUsage
24-31 [reserved]

In the order of a hex value for a uint32_t

   3                   2                   1                   0
 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
|~~~~~~~~~~~~~~~|     Usage     |     Type      |~~~~~~~~~~~~~|E|

Thus, internally, a key has the following fields:
* uint32_t - flags for extractable, usage, type
* KeyAlgorithm - the algorithm (which must serialize/deserialize itself)
* The actual keys (which the CryptoKey must serialize)


struct JsonWebKey;

class CryptoKey final : public nsISupports,
                        public nsWrapperCache,
                        public nsNSSShutDownObject

  static const uint32_t CLEAR_EXTRACTABLE = 0xFFFFFFE;
  static const uint32_t EXTRACTABLE = 0x00000001;

  static const uint32_t CLEAR_TYPE = 0xFFFF00FF;
  static const uint32_t TYPE_MASK = 0x0000FF00;
  enum KeyType {
    UNKNOWN = 0x00000000,
    SECRET  = 0x00000100,
    PUBLIC  = 0x00000200,
    PRIVATE = 0x00000300

  static const uint32_t CLEAR_USAGES = 0xFF00FFFF;
  static const uint32_t USAGES_MASK = 0x00FF0000;
  enum KeyUsage {
    ENCRYPT    = 0x00010000,
    DECRYPT    = 0x00020000,
    SIGN       = 0x00040000,
    VERIFY     = 0x00080000,
    DERIVEKEY  = 0x00100000,
    DERIVEBITS = 0x00200000,
    WRAPKEY    = 0x00400000,
    UNWRAPKEY  = 0x00800000

  explicit CryptoKey(nsIGlobalObject* aWindow);

  nsIGlobalObject* GetParentObject() const
    return mGlobal;

  virtual JSObject* WrapObject(JSContext* aCx, JS::Handle<JSObject*> aGivenProto) override;

  // WebIDL methods
  void GetType(nsString& aRetVal) const;
  bool Extractable() const;
  void GetAlgorithm(JSContext* cx, JS::MutableHandle<JSObject*> aRetVal,
                    ErrorResult& aRv) const;
  void GetUsages(nsTArray<nsString>& aRetVal) const;

  // The below methods are not exposed to JS, but C++ can use
  // them to manipulate the object

  KeyAlgorithmProxy& Algorithm();
  const KeyAlgorithmProxy& Algorithm() const;
  KeyType GetKeyType() const;
  nsresult SetType(const nsString& aType);
  void SetType(KeyType aType);
  void SetExtractable(bool aExtractable);
  nsresult AddPublicKeyData(SECKEYPublicKey* point);
  void ClearUsages();
  nsresult AddUsage(const nsString& aUsage);
  nsresult AddUsageIntersecting(const nsString& aUsage, uint32_t aUsageMask);
  void AddUsage(KeyUsage aUsage);
  bool HasAnyUsage();
  bool HasUsage(KeyUsage aUsage);
  bool HasUsageOtherThan(uint32_t aUsages);
  static bool IsRecognizedUsage(const nsString& aUsage);
  static bool AllUsagesRecognized(const Sequence<nsString>& aUsages);

  void SetSymKey(const CryptoBuffer& aSymKey);
  void SetPrivateKey(SECKEYPrivateKey* aPrivateKey);
  void SetPublicKey(SECKEYPublicKey* aPublicKey);

  // Accessors for the keys themselves
  // Note: GetPrivateKey and GetPublicKey return copies of the internal
  // key handles, which the caller must free with SECKEY_DestroyPrivateKey
  // or SECKEY_DestroyPublicKey.
  const CryptoBuffer& GetSymKey() const;
  SECKEYPrivateKey* GetPrivateKey() const;
  SECKEYPublicKey* GetPublicKey() const;

  // For nsNSSShutDownObject
  virtual void virtualDestroyNSSReference() override;
  void destructorSafeDestroyNSSReference();

  // Serialization and deserialization convenience methods
  // Note:
  // 1. The inputs aKeyData are non-const only because the NSS import
  //    functions lack the const modifier.  They should not be modified.
  // 2. All of the NSS key objects returned need to be freed by the caller.
  static SECKEYPrivateKey* PrivateKeyFromPkcs8(CryptoBuffer& aKeyData,
                                               const nsNSSShutDownPreventionLock& /*proofOfLock*/);
  static nsresult PrivateKeyToPkcs8(SECKEYPrivateKey* aPrivKey,
                                    CryptoBuffer& aRetVal,
                                    const nsNSSShutDownPreventionLock& /*proofOfLock*/);

  static SECKEYPublicKey* PublicKeyFromSpki(CryptoBuffer& aKeyData,
                                            const nsNSSShutDownPreventionLock& /*proofOfLock*/);
  static nsresult PublicKeyToSpki(SECKEYPublicKey* aPubKey,
                                  CryptoBuffer& aRetVal,
                                  const nsNSSShutDownPreventionLock& /*proofOfLock*/);

  static SECKEYPrivateKey* PrivateKeyFromJwk(const JsonWebKey& aJwk,
                                             const nsNSSShutDownPreventionLock& /*proofOfLock*/);
  static nsresult PrivateKeyToJwk(SECKEYPrivateKey* aPrivKey,
                                  JsonWebKey& aRetVal,
                                  const nsNSSShutDownPreventionLock& /*proofOfLock*/);

  static SECKEYPublicKey* PublicKeyFromJwk(const JsonWebKey& aKeyData,
                                           const nsNSSShutDownPreventionLock& /*proofOfLock*/);
  static nsresult PublicKeyToJwk(SECKEYPublicKey* aPubKey,
                                 JsonWebKey& aRetVal,
                                 const nsNSSShutDownPreventionLock& /*proofOfLock*/);

  static SECKEYPublicKey* PublicDhKeyFromRaw(CryptoBuffer& aKeyData,
                                             const CryptoBuffer& aPrime,
                                             const CryptoBuffer& aGenerator,
                                             const nsNSSShutDownPreventionLock& /*proofOfLock*/);
  static nsresult PublicDhKeyToRaw(SECKEYPublicKey* aPubKey,
                                   CryptoBuffer& aRetVal,
                                   const nsNSSShutDownPreventionLock& /*proofOfLock*/);

  static SECKEYPublicKey* PublicECKeyFromRaw(CryptoBuffer& aKeyData,
                                             const nsString& aNamedCurve,
                                             const nsNSSShutDownPreventionLock& /*proofOfLock*/);
  static nsresult PublicECKeyToRaw(SECKEYPublicKey* aPubKey,
                                   CryptoBuffer& aRetVal,
                                   const nsNSSShutDownPreventionLock& /*proofOfLock*/);

  static bool PublicKeyValid(SECKEYPublicKey* aPubKey);

  // Structured clone methods use these to clone keys
  bool WriteStructuredClone(JSStructuredCloneWriter* aWriter) const;
  bool ReadStructuredClone(JSStructuredCloneReader* aReader);


  nsRefPtr<nsIGlobalObject> mGlobal;
  uint32_t mAttributes; // see above
  KeyAlgorithmProxy mAlgorithm;

  // Only one key handle should be set, according to the KeyType
  CryptoBuffer mSymKey;
  ScopedSECKEYPrivateKey mPrivateKey;
  ScopedSECKEYPublicKey mPublicKey;

} // namespace dom
} // namespace mozilla

#endif // mozilla_dom_CryptoKey_h