author James Willcox <snorp@snorp.net>
Wed, 05 Nov 2014 10:17:49 -0600
changeset 225937 9d1af2396d4586505320768ee24e59693320756d
parent 222679 1324c90058c28851d07ce3d107a85f5eef825a9b
child 232478 e56bf4ea89fbe8633f23035e98bbd547ad262b0c
permissions -rw-r--r--
Bug 1014614 - Expose Android native window via AndroidNativeWindow wrapper r=blassey a=lsblakk --HG-- extra : rebase_source : e8fef05b2fdc3ef2b7c43a01655f2c7bf3789208

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: sw=4 ts=4 et :
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef ipc_glue_MessageChannel_h
#define ipc_glue_MessageChannel_h 1

#include "base/basictypes.h"
#include "base/message_loop.h"

#include "mozilla/DebugOnly.h"
#include "mozilla/Monitor.h"
#include "mozilla/Vector.h"
#include "mozilla/WeakPtr.h"
#include "mozilla/ipc/Transport.h"
#include "MessageLink.h"
#include "nsAutoPtr.h"

#include <deque>
#include <stack>
#include <math.h>

namespace mozilla {
namespace ipc {

class MessageChannel;

class RefCountedMonitor : public Monitor
        : Monitor("mozilla.ipc.MessageChannel.mMonitor")


    ~RefCountedMonitor() {}

class MessageChannel : HasResultCodes
    friend class ProcessLink;
    friend class ThreadLink;
    friend class AutoEnterRPCTransaction;

    class CxxStackFrame;
    class InterruptFrame;

    typedef mozilla::Monitor Monitor;

    static const int32_t kNoTimeout;

    typedef IPC::Message Message;
    typedef mozilla::ipc::Transport Transport;

    explicit MessageChannel(MessageListener *aListener);

    // "Open" from the perspective of the transport layer; the underlying
    // socketpair/pipe should already be created.
    // Returns true if the transport layer was successfully connected,
    // i.e., mChannelState == ChannelConnected.
    bool Open(Transport* aTransport, MessageLoop* aIOLoop=0, Side aSide=UnknownSide);

    // "Open" a connection to another thread in the same process.
    // Returns true if the transport layer was successfully connected,
    // i.e., mChannelState == ChannelConnected.
    // For more details on the process of opening a channel between
    // threads, see the extended comment on this function
    // in MessageChannel.cpp.
    bool Open(MessageChannel *aTargetChan, MessageLoop *aTargetLoop, Side aSide);

    // Close the underlying transport channel.
    void Close();

    // Force the channel to behave as if a channel error occurred. Valid
    // for process links only, not thread links.
    void CloseWithError();

    void SetAbortOnError(bool abort)
        mAbortOnError = true;

    // Misc. behavioral traits consumers can request for this channel
    enum ChannelFlags {
      REQUIRE_DEFAULT                         = 0,
      // Windows: if this channel operates on the UI thread, indicates
      // WindowsMessageLoop code should enable deferred native message
      // handling to prevent deadlocks. Should only be used for protocols
      // that manage child processes which might create native UI, like
      // plugins.
    void SetChannelFlags(ChannelFlags aFlags) { mFlags = aFlags; }
    ChannelFlags GetChannelFlags() { return mFlags; }

    void BlockScripts();

    bool ShouldBlockScripts() const
        return mBlockScripts;

    // Asynchronously send a message to the other side of the channel
    bool Send(Message* aMsg);

    // Asynchronously deliver a message back to this side of the
    // channel
    bool Echo(Message* aMsg);

    // Synchronously send |msg| (i.e., wait for |reply|)
    bool Send(Message* aMsg, Message* aReply);

    // Make an Interrupt call to the other side of the channel
    bool Call(Message* aMsg, Message* aReply);

    bool CanSend() const;

    void SetReplyTimeoutMs(int32_t aTimeoutMs);

    bool IsOnCxxStack() const {
        return !mCxxStackFrames.empty();

    void FlushPendingInterruptQueue();

    // Unsound_IsClosed and Unsound_NumQueuedMessages are safe to call from any
    // thread, but they make no guarantees about whether you'll get an
    // up-to-date value; the values are written on one thread and read without
    // locking, on potentially different threads.  Thus you should only use
    // them when you don't particularly care about getting a recent value (e.g.
    // in a memory report).
    bool Unsound_IsClosed() const {
        return mLink ? mLink->Unsound_IsClosed() : true;
    uint32_t Unsound_NumQueuedMessages() const {
        return mLink ? mLink->Unsound_NumQueuedMessages() : 0;

    static bool IsPumpingMessages() {
        return sIsPumpingMessages;
    static void SetIsPumpingMessages(bool aIsPumping) {
        sIsPumpingMessages = aIsPumping;

#ifdef OS_WIN
    struct MOZ_STACK_CLASS SyncStackFrame
        SyncStackFrame(MessageChannel* channel, bool interrupt);

        bool mInterrupt;
        bool mSpinNestedEvents;
        bool mListenerNotified;
        MessageChannel* mChannel;

        // The previous stack frame for this channel.
        SyncStackFrame* mPrev;

        // The previous stack frame on any channel.
        SyncStackFrame* mStaticPrev;
    friend struct MessageChannel::SyncStackFrame;

    static bool IsSpinLoopActive() {
        for (SyncStackFrame* frame = sStaticTopFrame; frame; frame = frame->mPrev) {
            if (frame->mSpinNestedEvents)
                return true;
        return false;

    // The deepest sync stack frame for this channel.
    SyncStackFrame* mTopFrame;

    bool mIsSyncWaitingOnNonMainThread;

    // The deepest sync stack frame on any channel.
    static SyncStackFrame* sStaticTopFrame;

    void ProcessNativeEventsInInterruptCall();
    static void NotifyGeckoEventDispatch();

    void SpinInternalEventLoop();

    void CommonThreadOpenInit(MessageChannel *aTargetChan, Side aSide);
    void OnOpenAsSlave(MessageChannel *aTargetChan, Side aSide);

    void PostErrorNotifyTask();
    void OnNotifyMaybeChannelError();
    void ReportConnectionError(const char* aChannelName) const;
    void ReportMessageRouteError(const char* channelName) const;
    bool MaybeHandleError(Result code, const Message& aMsg, const char* channelName);

    void Clear();

    // Send OnChannelConnected notification to listeners.
    void DispatchOnChannelConnected();

    // Any protocol that requires blocking until a reply arrives, will send its
    // outgoing message through this function. Currently, two protocols do this:
    //  sync, which can only initiate messages from child to parent.
    //  urgent, which can only initiate messages from parent to child.
    // SendAndWait() expects that the worker thread owns the monitor, and that
    // the message has been prepared to be sent over the link. It returns as
    // soon as a reply has been received, or an error has occurred.
    // Note that while the child is blocked waiting for a sync reply, it can wake
    // up to process urgent calls from the parent.
    bool SendAndWait(Message* aMsg, Message* aReply);

    bool RPCCall(Message* aMsg, Message* aReply);
    bool InterruptCall(Message* aMsg, Message* aReply);
    bool UrgentCall(Message* aMsg, Message* aReply);

    bool InterruptEventOccurred();

    bool ProcessPendingUrgentRequest();
    bool ProcessPendingRPCCall();

    void MaybeUndeferIncall();
    void EnqueuePendingMessages();

    // Executed on the worker thread. Dequeues one pending message.
    bool OnMaybeDequeueOne();
    bool DequeueOne(Message *recvd);

    // Dispatches an incoming message to its appropriate handler.
    void DispatchMessage(const Message &aMsg);

    // DispatchMessage will route to one of these functions depending on the
    // protocol type of the message.
    void DispatchSyncMessage(const Message &aMsg);
    void DispatchUrgentMessage(const Message &aMsg);
    void DispatchAsyncMessage(const Message &aMsg);
    void DispatchRPCMessage(const Message &aMsg);
    void DispatchInterruptMessage(const Message &aMsg, size_t aStackDepth);

    // Return true if the wait ended because a notification was received.
    // Return false if the time elapsed from when we started the process of
    // waiting until afterwards exceeded the currently allotted timeout.
    // That *DOES NOT* mean false => "no event" (== timeout); there are many
    // circumstances that could cause the measured elapsed time to exceed the
    // timeout EVEN WHEN we were notified.
    // So in sum: true is a meaningful return value; false isn't,
    // necessarily.
    bool WaitForSyncNotify();
    bool WaitForInterruptNotify();

    bool WaitResponse(bool aWaitTimedOut);

    bool ShouldContinueFromTimeout();

    // The "remote view of stack depth" can be different than the
    // actual stack depth when there are out-of-turn replies.  When we
    // receive one, our actual Interrupt stack depth doesn't decrease, but
    // the other side (that sent the reply) thinks it has.  So, the
    // "view" returned here is |stackDepth| minus the number of
    // out-of-turn replies.
    // Only called from the worker thread.
    size_t RemoteViewOfStackDepth(size_t stackDepth) const {
        return stackDepth - mOutOfTurnReplies.size();

    int32_t NextSeqno() {
        return (mSide == ChildSide) ? --mNextSeqno : ++mNextSeqno;

    // This helper class manages mCxxStackDepth on behalf of MessageChannel.
    // When the stack depth is incremented from zero to non-zero, it invokes
    // a callback, and similarly for when the depth goes from non-zero to zero.
    void EnteredCxxStack() {

    void ExitedCxxStack();

    void EnteredCall() {

    void ExitedCall() {

    MessageListener *Listener() const {
        return mListener.get();

    void DebugAbort(const char* file, int line, const char* cond,
                    const char* why,
                    bool reply=false) const;

    // This method is only safe to call on the worker thread, or in a
    // debugger with all threads paused.
    void DumpInterruptStack(const char* const pfx="") const;

    // Called from both threads
    size_t InterruptStackDepth() const {
        return mInterruptStack.size();

    // Returns true if we're blocking waiting for a reply.
    bool AwaitingSyncReply() const {
        return mPendingSyncReplies > 0;
    bool AwaitingUrgentReply() const {
        return mPendingUrgentReplies > 0;
    bool AwaitingRPCReply() const {
        return mPendingRPCReplies > 0;
    bool AwaitingInterruptReply() const {
        return !mInterruptStack.empty();

    // Returns true if we're dispatching a sync message's callback.
    bool DispatchingSyncMessage() const {
        return mDispatchingSyncMessage;

    // Returns true if we're dispatching an urgent message's callback.
    bool DispatchingUrgentMessage() const {
        return mDispatchingUrgentMessageCount > 0;

    bool Connected() const;

    // Executed on the IO thread.
    void NotifyWorkerThread();

    // Return true if |aMsg| is a special message targeted at the IO
    // thread, in which case it shouldn't be delivered to the worker.
    bool MaybeInterceptSpecialIOMessage(const Message& aMsg);

    void OnChannelConnected(int32_t peer_id);

    // Tell the IO thread to close the channel and wait for it to ACK.
    void SynchronouslyClose();

    void OnMessageReceivedFromLink(const Message& aMsg);
    void OnChannelErrorFromLink();

    // Run on the not current thread.
    void NotifyChannelClosed();
    void NotifyMaybeChannelError();

    // Can be run on either thread
    void AssertWorkerThread() const
        NS_ABORT_IF_FALSE(mWorkerLoopID == MessageLoop::current()->id(),
                          "not on worker thread!");

    // The "link" thread is either the I/O thread (ProcessLink) or the
    // other actor's work thread (ThreadLink).  In either case, it is
    // NOT our worker thread.
    void AssertLinkThread() const
        NS_ABORT_IF_FALSE(mWorkerLoopID != MessageLoop::current()->id(),
                          "on worker thread but should not be!");

    typedef IPC::Message::msgid_t msgid_t;
    typedef std::deque<Message> MessageQueue;
    typedef std::map<size_t, Message> MessageMap;

    // All dequeuing tasks require a single point of cancellation,
    // which is handled via a reference-counted task.
    class RefCountedTask
        explicit RefCountedTask(CancelableTask* aTask)
          : mTask(aTask)
        { }
        ~RefCountedTask() { delete mTask; }
        void Run() { mTask->Run(); }
        void Cancel() { mTask->Cancel(); }


        CancelableTask* mTask;

    // Wrap an existing task which can be cancelled at any time
    // without the wrapper's knowledge.
    class DequeueTask : public Task
        explicit DequeueTask(RefCountedTask* aTask)
          : mTask(aTask)
        { }
        void Run() { mTask->Run(); }

        nsRefPtr<RefCountedTask> mTask;

    mozilla::WeakPtr<MessageListener> mListener;
    ChannelState mChannelState;
    nsRefPtr<RefCountedMonitor> mMonitor;
    Side mSide;
    MessageLink* mLink;
    MessageLoop* mWorkerLoop;           // thread where work is done
    CancelableTask* mChannelErrorTask;  // NotifyMaybeChannelError runnable

    // id() of mWorkerLoop.  This persists even after mWorkerLoop is cleared
    // during channel shutdown.
    int mWorkerLoopID;

    // A task encapsulating dequeuing one pending message.
    nsRefPtr<RefCountedTask> mDequeueOneTask;

    // Timeout periods are broken up in two to prevent system suspension from
    // triggering an abort. This method (called by WaitForEvent with a 'did
    // timeout' flag) decides if we should wait again for half of mTimeoutMs
    // or give up.
    int32_t mTimeoutMs;
    bool mInTimeoutSecondHalf;

    // Worker-thread only; sequence numbers for messages that require
    // synchronous replies.
    int32_t mNextSeqno;

    static bool sIsPumpingMessages;

    class AutoEnterPendingReply {
        explicit AutoEnterPendingReply(size_t &replyVar)
          : mReplyVar(replyVar)
        ~AutoEnterPendingReply() {
        size_t& mReplyVar;

    // Worker-thread only; type we're expecting for the reply to a sync
    // out-message. This will never be greater than 1.
    size_t mPendingSyncReplies;

    // Worker-thread only; Number of urgent and rpc replies we're waiting on.
    // These are mutually exclusive since one channel cannot have outcalls of
    // both kinds.
    size_t mPendingUrgentReplies;
    size_t mPendingRPCReplies;

    // When we send an urgent request from the parent process, we could race
    // with an RPC message that was issued by the child beforehand. In this
    // case, if the parent were to wake up while waiting for the urgent reply,
    // and process the RPC, it could send an additional urgent message. The
    // child would wake up to process the urgent message (as it always will),
    // then send a reply, which could be received by the parent out-of-order
    // with respect to the first urgent reply.
    // To address this problem, urgent or RPC requests are associated with a
    // "transaction". Whenever one side of the channel wishes to start a
    // chain of RPC/urgent messages, it allocates a new transaction ID. Any
    // messages the parent receives, not apart of this transaction, are
    // deferred. When issuing RPC/urgent requests on top of a started
    // transaction, the initiating transaction ID is used.
    // To ensure IDs are unique, we use sequence numbers for transaction IDs,
    // which grow in opposite directions from child to parent.

    // The current transaction ID.
    int32_t mCurrentRPCTransaction;

    class AutoEnterRPCTransaction
       explicit AutoEnterRPCTransaction(MessageChannel *aChan)
        : mChan(aChan),
           if (mChan->mCurrentRPCTransaction == 0)
               mChan->mCurrentRPCTransaction = mChan->NextSeqno();
       AutoEnterRPCTransaction(MessageChannel *aChan, Message *message)
        : mChan(aChan),

           if (!message->is_rpc() && !message->is_urgent())

           MOZ_ASSERT_IF(mChan->mSide == ParentSide,
                         !mOldTransaction || mOldTransaction == message->transaction_id());
           mChan->mCurrentRPCTransaction = message->transaction_id();
       ~AutoEnterRPCTransaction() {
           mChan->mCurrentRPCTransaction = mOldTransaction;

       MessageChannel *mChan;
       int32_t mOldTransaction;

    // If waiting for the reply to a sync out-message, it will be saved here
    // on the I/O thread and then read and cleared by the worker thread.
    nsAutoPtr<Message> mRecvd;

    // Set while we are dispatching a synchronous message.
    bool mDispatchingSyncMessage;

    // Count of the recursion depth of dispatching urgent messages.
    size_t mDispatchingUrgentMessageCount;

    // Queue of all incoming messages, except for replies to sync and urgent
    // messages, which are delivered directly to mRecvd, and any pending urgent
    // incall, which is stored in mPendingUrgentRequest.
    // If both this side and the other side are functioning correctly, the queue
    // can only be in certain configurations.  Let
    //   |A<| be an async in-message,
    //   |S<| be a sync in-message,
    //   |C<| be an Interrupt in-call,
    //   |R<| be an Interrupt reply.
    // The queue can only match this configuration
    //  A<* (S< | C< | R< (?{mStack.size() == 1} A<* (S< | C<)))
    // The other side can send as many async messages |A<*| as it wants before
    // sending us a blocking message.
    // The first case is |S<|, a sync in-msg.  The other side must be blocked,
    // and thus can't send us any more messages until we process the sync
    // in-msg.
    // The second case is |C<|, an Interrupt in-call; the other side must be blocked.
    // (There's a subtlety here: this in-call might have raced with an
    // out-call, but we detect that with the mechanism below,
    // |mRemoteStackDepth|, and races don't matter to the queue.)
    // Final case, the other side replied to our most recent out-call |R<|.
    // If that was the *only* out-call on our stack, |?{mStack.size() == 1}|,
    // then other side "finished with us," and went back to its own business.
    // That business might have included sending any number of async message
    // |A<*| until sending a blocking message |(S< | C<)|.  If we had more than
    // one Interrupt call on our stack, the other side *better* not have sent us
    // another blocking message, because it's blocked on a reply from us.
    MessageQueue mPending;

    // Note that these two pointers are mutually exclusive. One channel cannot
    // send both urgent requests (parent -> child) and RPC calls (child->parent).
    // Also note that since initiating either requires blocking, they cannot
    // queue up on the other side. One message slot is enough.
    // Normally, all other message types are deferred into into mPending, and
    // only these two types have special treatment (since they wake up blocked
    // requests). However, when an RPC in-call races with an urgent out-call,
    // the RPC message will be put into mPending instead of its slot below.
    nsAutoPtr<Message> mPendingUrgentRequest;
    nsAutoPtr<Message> mPendingRPCCall;

    // Stack of all the out-calls on which this channel is awaiting responses.
    // Each stack refers to a different protocol and the stacks are mutually
    // exclusive: multiple outcalls of the same kind cannot be initiated while
    // another is active.
    std::stack<Message> mInterruptStack;

    // This is what we think the Interrupt stack depth is on the "other side" of this
    // Interrupt channel.  We maintain this variable so that we can detect racy Interrupt
    // calls.  With each Interrupt out-call sent, we send along what *we* think the
    // stack depth of the remote side is *before* it will receive the Interrupt call.
    // After sending the out-call, our stack depth is "incremented" by pushing
    // that pending message onto mPending.
    // Then when processing an in-call |c|, it must be true that
    //   mStack.size() == c.remoteDepth
    // I.e., my depth is actually the same as what the other side thought it
    // was when it sent in-call |c|.  If this fails to hold, we have detected
    // racy Interrupt calls.
    // We then increment mRemoteStackDepth *just before* processing the
    // in-call, since we know the other side is waiting on it, and decrement
    // it *just after* finishing processing that in-call, since our response
    // will pop the top of the other side's |mPending|.
    // One nice aspect of this race detection is that it is symmetric; if one
    // side detects a race, then the other side must also detect the same race.
    size_t mRemoteStackDepthGuess;

    // Approximation of code frames on the C++ stack. It can only be
    // interpreted as the implication:
    //  !mCxxStackFrames.empty() => MessageChannel code on C++ stack
    // This member is only accessed on the worker thread, and so is not
    // protected by mMonitor.  It is managed exclusively by the helper
    // |class CxxStackFrame|.
    mozilla::Vector<InterruptFrame> mCxxStackFrames;

    // Did we process an Interrupt out-call during this stack?  Only meaningful in
    // ExitedCxxStack(), from which this variable is reset.
    bool mSawInterruptOutMsg;

    // Map of replies received "out of turn", because of Interrupt
    // in-calls racing with replies to outstanding in-calls.  See
    // https://bugzilla.mozilla.org/show_bug.cgi?id=521929.
    MessageMap mOutOfTurnReplies;

    // Stack of Interrupt in-calls that were deferred because of race
    // conditions.
    std::stack<Message> mDeferred;

#ifdef OS_WIN
    HANDLE mEvent;

    // Should the channel abort the process from the I/O thread when
    // a channel error occurs?
    bool mAbortOnError;

    // Should we prevent scripts from running while dispatching urgent messages?
    bool mBlockScripts;

    // See SetChannelFlags
    ChannelFlags mFlags;

    // Task and state used to asynchronously notify channel has been connected
    // safely.  This is necessary to be able to cancel notification if we are
    // closed at the same time.
    nsRefPtr<RefCountedTask> mOnChannelConnectedTask;
    DebugOnly<bool> mPeerPidSet;
    int32_t mPeerPid;


} // namespace ipc
} // namespace mozilla

#endif  // ifndef ipc_glue_MessageChannel_h