--- a/lib/freebl/rijndael.c
+++ b/lib/freebl/rijndael.c
@@ -23,25 +23,20 @@
#ifdef USE_HW_AES
#include "intel-aes.h"
#endif
#ifdef INTEL_GCM
#include "intel-gcm.h"
#endif /* INTEL_GCM */
/*
- * There are currently five ways to build this code, varying in performance
+ * There are currently three ways to build this code, varying in performance
* and code size.
*
* RIJNDAEL_INCLUDE_TABLES Include all tables from rijndael32.tab
- * RIJNDAEL_GENERATE_TABLES Generate tables on first
- * encryption/decryption, then store them;
- * use the function gfm
- * RIJNDAEL_GENERATE_TABLES_MACRO Same as above, but use macros to do
- * the generation
* RIJNDAEL_GENERATE_VALUES Do not store tables, generate the table
* values "on-the-fly", using gfm
* RIJNDAEL_GENERATE_VALUES_MACRO Same as above, but use macros
*
* The default is RIJNDAEL_INCLUDE_TABLES.
*/
/*
@@ -103,18 +98,17 @@
/*
* The function xtime, used for Galois field multiplication
*/
#define XTIME(a) \
((a & 0x80) ? ((a << 1) ^ 0x1b) : (a << 1))
/* Choose GFM method (macros or function) */
-#if defined(RIJNDAEL_GENERATE_TABLES_MACRO) || \
- defined(RIJNDAEL_GENERATE_VALUES_MACRO)
+#if defined(RIJNDAEL_GENERATE_VALUES_MACRO)
/*
* Galois field GF(2**8) multipliers, in macro form
*/
#define GFM01(a) \
(a) /* a * 01 = a, the identity */
#define GFM02(a) \
(XTIME(a) & 0xff) /* a * 02 = xtime(a) */
@@ -128,17 +122,17 @@
(GFM01(a) ^ GFM08(a)) /* a * 09 = a * (01 + 08) */
#define GFM0B(a) \
(GFM01(a) ^ GFM02(a) ^ GFM08(a)) /* a * 0B = a * (01 + 02 + 08) */
#define GFM0D(a) \
(GFM01(a) ^ GFM04(a) ^ GFM08(a)) /* a * 0D = a * (01 + 04 + 08) */
#define GFM0E(a) \
(GFM02(a) ^ GFM04(a) ^ GFM08(a)) /* a * 0E = a * (02 + 04 + 08) */
-#else /* RIJNDAEL_GENERATE_TABLES or RIJNDAEL_GENERATE_VALUES */
+#else /* RIJNDAEL_GENERATE_VALUES */
/* GF_MULTIPLY
*
* multiply two bytes represented in GF(2**8), mod (x**4 + 1)
*/
PRUint8
gfm(PRUint8 a, PRUint8 b)
{
@@ -239,108 +233,34 @@ gen_TInvXi(PRUint8 tx, PRUint8 i)
#define TInv0(i) gen_TInvXi(0, i)
#define TInv1(i) gen_TInvXi(1, i)
#define TInv2(i) gen_TInvXi(2, i)
#define TInv3(i) gen_TInvXi(3, i)
#define IMXC0(b) G_IMXC0(b)
#define IMXC1(b) G_IMXC1(b)
#define IMXC2(b) G_IMXC2(b)
#define IMXC3(b) G_IMXC3(b)
-#elif defined(RIJNDAEL_GENERATE_VALUES_MACRO)
+#else /* RIJNDAEL_GENERATE_VALUES_MACRO */
/* generate values for the tables with macros */
#define T0(i) G_T0(i)
#define T1(i) G_T1(i)
#define T2(i) G_T2(i)
#define T3(i) G_T3(i)
#define TInv0(i) G_TInv0(i)
#define TInv1(i) G_TInv1(i)
#define TInv2(i) G_TInv2(i)
#define TInv3(i) G_TInv3(i)
#define IMXC0(b) G_IMXC0(b)
#define IMXC1(b) G_IMXC1(b)
#define IMXC2(b) G_IMXC2(b)
#define IMXC3(b) G_IMXC3(b)
-#else /* RIJNDAEL_GENERATE_TABLES or RIJNDAEL_GENERATE_TABLES_MACRO */
-/* Generate T and T**-1 table values and store, then index */
-/* The inverse mix column tables are still generated */
-#define T0(i) rijndaelTables->T0[i]
-#define T1(i) rijndaelTables->T1[i]
-#define T2(i) rijndaelTables->T2[i]
-#define T3(i) rijndaelTables->T3[i]
-#define TInv0(i) rijndaelTables->TInv0[i]
-#define TInv1(i) rijndaelTables->TInv1[i]
-#define TInv2(i) rijndaelTables->TInv2[i]
-#define TInv3(i) rijndaelTables->TInv3[i]
-#define IMXC0(b) G_IMXC0(b)
-#define IMXC1(b) G_IMXC1(b)
-#define IMXC2(b) G_IMXC2(b)
-#define IMXC3(b) G_IMXC3(b)
#endif /* choose T-table indexing method */
#endif /* not RIJNDAEL_INCLUDE_TABLES */
-#if defined(RIJNDAEL_GENERATE_TABLES) || \
- defined(RIJNDAEL_GENERATE_TABLES_MACRO)
-
-/* Code to generate and store the tables */
-
-struct rijndael_tables_str {
- PRUint32 T0[256];
- PRUint32 T1[256];
- PRUint32 T2[256];
- PRUint32 T3[256];
- PRUint32 TInv0[256];
- PRUint32 TInv1[256];
- PRUint32 TInv2[256];
- PRUint32 TInv3[256];
-};
-
-static struct rijndael_tables_str *rijndaelTables = NULL;
-static PRCallOnceType coRTInit = { 0, 0, 0 };
-static PRStatus
-init_rijndael_tables(void)
-{
- PRUint32 i;
- PRUint8 si01, si02, si03, si04, si08, si09, si0B, si0D, si0E;
- struct rijndael_tables_str *rts;
- rts = (struct rijndael_tables_str *)
- PORT_Alloc(sizeof(struct rijndael_tables_str));
- if (!rts)
- return PR_FAILURE;
- for (i = 0; i < 256; i++) {
- /* The forward values */
- si01 = SBOX(i);
- si02 = XTIME(si01);
- si03 = si02 ^ si01;
- rts->T0[i] = WORD4(si02, si01, si01, si03);
- rts->T1[i] = WORD4(si03, si02, si01, si01);
- rts->T2[i] = WORD4(si01, si03, si02, si01);
- rts->T3[i] = WORD4(si01, si01, si03, si02);
- /* The inverse values */
- si01 = SINV(i);
- si02 = XTIME(si01);
- si04 = XTIME(si02);
- si08 = XTIME(si04);
- si03 = si02 ^ si01;
- si09 = si08 ^ si01;
- si0B = si08 ^ si03;
- si0D = si09 ^ si04;
- si0E = si08 ^ si04 ^ si02;
- rts->TInv0[i] = WORD4(si0E, si09, si0D, si0B);
- rts->TInv1[i] = WORD4(si0B, si0E, si09, si0D);
- rts->TInv2[i] = WORD4(si0D, si0B, si0E, si09);
- rts->TInv3[i] = WORD4(si09, si0D, si0B, si0E);
- }
- /* wait until all the values are in to set */
- rijndaelTables = rts;
- return PR_SUCCESS;
-}
-
-#endif /* code to generate tables */
-
/**************************************************************************
*
* Stuff related to the Rijndael key schedule
*
*************************************************************************/
#define SUBBYTE(w) \
((((PRUint32)SBOX((w >> 24) & 0xff)) << 24) | \
@@ -1095,25 +1015,16 @@ aes_InitContext(AESContext *cx, const un
return SECFailure;
}
#ifdef USE_HW_AES
if (use_hw_aes) {
intel_aes_init(encrypt, keysize);
} else
#endif
{
-
-#if defined(RIJNDAEL_GENERATE_TABLES) || \
- defined(RIJNDAEL_GENERATE_TABLES_MACRO)
- if (rijndaelTables == NULL) {
- if (PR_CallOnce(&coRTInit, init_rijndael_tables) != PR_SUCCESS) {
- return SECFailure;
- }
- }
-#endif
/* Generate expanded key */
if (encrypt) {
if (use_hw_aes && (cx->mode == NSS_AES_GCM || cx->mode == NSS_AES ||
cx->mode == NSS_AES_CTR)) {
PORT_Assert(keysize == 16 || keysize == 24 || keysize == 32);
/* Prepare hardware key for normal AES parameters. */
native_key_expansion(cx, key, Nk);
} else {