lib/freebl/dh.c
author J.C. Jones <jjones@mozilla.com>
Wed, 01 Apr 2020 16:11:59 -0700
changeset 15558 bb48cca7ef8f7789a0a43511df83296dde031e59
parent 15174 dabfe1160c682b4d1d19c5a7a13ab3828bb9d37f
permissions -rw-r--r--
Bug 1620799 - Clang-format fixup, r=bustage

/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/*
 * Diffie-Hellman parameter generation, key generation, and secret derivation.
 * KEA secret generation and verification.
 */
#ifdef FREEBL_NO_DEPEND
#include "stubs.h"
#endif

#include "prerr.h"
#include "secerr.h"

#include "blapi.h"
#include "blapii.h"
#include "secitem.h"
#include "mpi.h"
#include "secmpi.h"

#define KEA_DERIVED_SECRET_LEN 128

/* Lengths are in bytes. */
static unsigned int
dh_GetSecretKeyLen(unsigned int primeLen)
{
    /* Based on Table 2 in NIST SP 800-57. */
    if (primeLen >= 1920) { /* 15360 bits */
        return 64;          /* 512 bits */
    }
    if (primeLen >= 960) { /* 7680 bits */
        return 48;         /* 384 bits */
    }
    if (primeLen >= 384) { /* 3072 bits */
        return 32;         /* 256 bits */
    }
    if (primeLen >= 256) { /* 2048 bits */
        return 28;         /* 224 bits */
    }
    return 20; /* 160 bits */
}

SECStatus
DH_GenParam(int primeLen, DHParams **params)
{
    PLArenaPool *arena;
    DHParams *dhparams;
    unsigned char *ab = NULL;
    mp_int p, q, a, h, psub1, test;
    mp_err err = MP_OKAY;
    SECStatus rv = SECSuccess;
    if (!params || primeLen < 0) {
        PORT_SetError(SEC_ERROR_INVALID_ARGS);
        return SECFailure;
    }
    arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
    if (!arena) {
        PORT_SetError(SEC_ERROR_NO_MEMORY);
        return SECFailure;
    }
    dhparams = (DHParams *)PORT_ArenaZAlloc(arena, sizeof(DHParams));
    if (!dhparams) {
        PORT_SetError(SEC_ERROR_NO_MEMORY);
        PORT_FreeArena(arena, PR_TRUE);
        return SECFailure;
    }
    dhparams->arena = arena;
    MP_DIGITS(&p) = 0;
    MP_DIGITS(&q) = 0;
    MP_DIGITS(&a) = 0;
    MP_DIGITS(&h) = 0;
    MP_DIGITS(&psub1) = 0;
    MP_DIGITS(&test) = 0;
    CHECK_MPI_OK(mp_init(&p));
    CHECK_MPI_OK(mp_init(&q));
    CHECK_MPI_OK(mp_init(&a));
    CHECK_MPI_OK(mp_init(&h));
    CHECK_MPI_OK(mp_init(&psub1));
    CHECK_MPI_OK(mp_init(&test));
    /* generate prime with MPI, uses Miller-Rabin to generate strong prime. */
    CHECK_SEC_OK(generate_prime(&p, primeLen));
    /* construct Sophie-Germain prime q = (p-1)/2. */
    CHECK_MPI_OK(mp_sub_d(&p, 1, &psub1));
    CHECK_MPI_OK(mp_div_2(&psub1, &q));
    /* construct a generator from the prime. */
    ab = PORT_Alloc(primeLen);
    if (!ab) {
        PORT_SetError(SEC_ERROR_NO_MEMORY);
        rv = SECFailure;
        goto cleanup;
    }
    /* generate a candidate number a in p's field */
    CHECK_SEC_OK(RNG_GenerateGlobalRandomBytes(ab, primeLen));
    CHECK_MPI_OK(mp_read_unsigned_octets(&a, ab, primeLen));
    /* force a < p (note that quot(a/p) <= 1) */
    if (mp_cmp(&a, &p) > 0)
        CHECK_MPI_OK(mp_sub(&a, &p, &a));
    do {
        /* check that a is in the range [2..p-1] */
        if (mp_cmp_d(&a, 2) < 0 || mp_cmp(&a, &psub1) >= 0) {
            /* a is outside of the allowed range.  Set a=3 and keep going. */
            mp_set(&a, 3);
        }
        /* if a**q mod p != 1 then a is a generator */
        CHECK_MPI_OK(mp_exptmod(&a, &q, &p, &test));
        if (mp_cmp_d(&test, 1) != 0)
            break;
        /* increment the candidate and try again. */
        CHECK_MPI_OK(mp_add_d(&a, 1, &a));
    } while (PR_TRUE);
    MPINT_TO_SECITEM(&p, &dhparams->prime, arena);
    MPINT_TO_SECITEM(&a, &dhparams->base, arena);
    *params = dhparams;
cleanup:
    mp_clear(&p);
    mp_clear(&q);
    mp_clear(&a);
    mp_clear(&h);
    mp_clear(&psub1);
    mp_clear(&test);
    if (ab) {
        PORT_ZFree(ab, primeLen);
    }
    if (err) {
        MP_TO_SEC_ERROR(err);
        rv = SECFailure;
    }
    if (rv != SECSuccess) {
        PORT_FreeArena(arena, PR_TRUE);
    }
    return rv;
}

SECStatus
DH_NewKey(DHParams *params, DHPrivateKey **privKey)
{
    PLArenaPool *arena;
    DHPrivateKey *key;
    mp_int g, xa, p, Ya;
    mp_err err = MP_OKAY;
    SECStatus rv = SECSuccess;
    if (!params || !privKey) {
        PORT_SetError(SEC_ERROR_INVALID_ARGS);
        return SECFailure;
    }
    arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
    if (!arena) {
        PORT_SetError(SEC_ERROR_NO_MEMORY);
        return SECFailure;
    }
    key = (DHPrivateKey *)PORT_ArenaZAlloc(arena, sizeof(DHPrivateKey));
    if (!key) {
        PORT_SetError(SEC_ERROR_NO_MEMORY);
        PORT_FreeArena(arena, PR_TRUE);
        return SECFailure;
    }
    key->arena = arena;
    MP_DIGITS(&g) = 0;
    MP_DIGITS(&xa) = 0;
    MP_DIGITS(&p) = 0;
    MP_DIGITS(&Ya) = 0;
    CHECK_MPI_OK(mp_init(&g));
    CHECK_MPI_OK(mp_init(&xa));
    CHECK_MPI_OK(mp_init(&p));
    CHECK_MPI_OK(mp_init(&Ya));
    /* Set private key's p */
    CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->prime, &params->prime));
    SECITEM_TO_MPINT(key->prime, &p);
    /* Set private key's g */
    CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->base, &params->base));
    SECITEM_TO_MPINT(key->base, &g);
    /* Generate private key xa */
    SECITEM_AllocItem(arena, &key->privateValue,
                      dh_GetSecretKeyLen(params->prime.len));
    CHECK_SEC_OK(RNG_GenerateGlobalRandomBytes(key->privateValue.data,
                                               key->privateValue.len));
    SECITEM_TO_MPINT(key->privateValue, &xa);
    /* xa < p */
    CHECK_MPI_OK(mp_mod(&xa, &p, &xa));
    /* Compute public key Ya = g ** xa mod p */
    CHECK_MPI_OK(mp_exptmod(&g, &xa, &p, &Ya));
    MPINT_TO_SECITEM(&Ya, &key->publicValue, key->arena);
    *privKey = key;
cleanup:
    mp_clear(&g);
    mp_clear(&xa);
    mp_clear(&p);
    mp_clear(&Ya);
    if (err) {
        MP_TO_SEC_ERROR(err);
        rv = SECFailure;
    }
    if (rv) {
        *privKey = NULL;
        PORT_FreeArena(arena, PR_TRUE);
    }
    return rv;
}

SECStatus
DH_Derive(SECItem *publicValue,
          SECItem *prime,
          SECItem *privateValue,
          SECItem *derivedSecret,
          unsigned int outBytes)
{
    mp_int p, Xa, Yb, ZZ, psub1;
    mp_err err = MP_OKAY;
    unsigned int len = 0;
    unsigned int nb;
    unsigned char *secret = NULL;
    if (!publicValue || !publicValue->len || !prime || !prime->len ||
        !privateValue || !privateValue->len || !derivedSecret) {
        PORT_SetError(SEC_ERROR_INVALID_ARGS);
        return SECFailure;
    }
    memset(derivedSecret, 0, sizeof *derivedSecret);
    MP_DIGITS(&p) = 0;
    MP_DIGITS(&Xa) = 0;
    MP_DIGITS(&Yb) = 0;
    MP_DIGITS(&ZZ) = 0;
    MP_DIGITS(&psub1) = 0;
    CHECK_MPI_OK(mp_init(&p));
    CHECK_MPI_OK(mp_init(&Xa));
    CHECK_MPI_OK(mp_init(&Yb));
    CHECK_MPI_OK(mp_init(&ZZ));
    CHECK_MPI_OK(mp_init(&psub1));
    SECITEM_TO_MPINT(*publicValue, &Yb);
    SECITEM_TO_MPINT(*privateValue, &Xa);
    SECITEM_TO_MPINT(*prime, &p);
    CHECK_MPI_OK(mp_sub_d(&p, 1, &psub1));

    /* We assume that the modulus, p, is a safe prime. That is, p = 2q+1 where
     * q is also a prime. Thus the orders of the subgroups are factors of 2q:
     * namely 1, 2, q and 2q.
     *
     * We check that the peer's public value isn't zero (which isn't in the
     * group), one (subgroup of order one) or p-1 (subgroup of order 2). We
     * also check that the public value is less than p, to avoid being fooled
     * by values like p+1 or 2*p-1.
     *
     * Thus we must be operating in the subgroup of size q or 2q. */
    if (mp_cmp_d(&Yb, 1) <= 0 ||
        mp_cmp(&Yb, &psub1) >= 0) {
        err = MP_BADARG;
        goto cleanup;
    }

    /* ZZ = (Yb)**Xa mod p */
    CHECK_MPI_OK(mp_exptmod(&Yb, &Xa, &p, &ZZ));
    /* number of bytes in the derived secret */
    len = mp_unsigned_octet_size(&ZZ);
    if (len <= 0) {
        err = MP_BADARG;
        goto cleanup;
    }

    /*
     * We check to make sure that ZZ is not equal to 1 or -1 mod p.
     * This helps guard against small subgroup attacks, since an attacker
     * using a subgroup of size N will produce 1 or -1 with probability 1/N.
     * When the protocol is executed within a properly large subgroup, the
     * probability of this result will be negligibly small.  For example,
     * with a strong prime of the form 2p+1, the probability will be 1/p.
     *
     * We return MP_BADARG because this is probably the result of a bad
     * public value or a bad prime having been provided.
     */
    if (mp_cmp_d(&ZZ, 1) == 0 ||
        mp_cmp(&ZZ, &psub1) == 0) {
        err = MP_BADARG;
        goto cleanup;
    }

    /* allocate a buffer which can hold the entire derived secret. */
    secret = PORT_Alloc(len);
    if (secret == NULL) {
        err = MP_MEM;
        goto cleanup;
    }
    /* grab the derived secret */
    err = mp_to_unsigned_octets(&ZZ, secret, len);
    if (err >= 0)
        err = MP_OKAY;
    /*
    ** if outBytes is 0 take all of the bytes from the derived secret.
    ** if outBytes is not 0 take exactly outBytes from the derived secret, zero
    ** pad at the beginning if necessary, and truncate beginning bytes
    ** if necessary.
    */
    if (outBytes > 0)
        nb = outBytes;
    else
        nb = len;
    if (SECITEM_AllocItem(NULL, derivedSecret, nb) == NULL) {
        err = MP_MEM;
        goto cleanup;
    }
    if (len < nb) {
        unsigned int offset = nb - len;
        memset(derivedSecret->data, 0, offset);
        memcpy(derivedSecret->data + offset, secret, len);
    } else {
        memcpy(derivedSecret->data, secret + len - nb, nb);
    }
cleanup:
    mp_clear(&p);
    mp_clear(&Xa);
    mp_clear(&Yb);
    mp_clear(&ZZ);
    mp_clear(&psub1);
    if (secret) {
        /* free the buffer allocated for the full secret. */
        PORT_ZFree(secret, len);
    }
    if (err) {
        MP_TO_SEC_ERROR(err);
        if (derivedSecret->data)
            PORT_ZFree(derivedSecret->data, derivedSecret->len);
        return SECFailure;
    }
    return SECSuccess;
}

SECStatus
KEA_Derive(SECItem *prime,
           SECItem *public1,
           SECItem *public2,
           SECItem *private1,
           SECItem *private2,
           SECItem *derivedSecret)
{
    mp_int p, Y, R, r, x, t, u, w;
    mp_err err;
    unsigned char *secret = NULL;
    unsigned int len = 0, offset;
    if (!prime || !public1 || !public2 || !private1 || !private2 ||
        !derivedSecret) {
        PORT_SetError(SEC_ERROR_INVALID_ARGS);
        return SECFailure;
    }
    memset(derivedSecret, 0, sizeof *derivedSecret);
    MP_DIGITS(&p) = 0;
    MP_DIGITS(&Y) = 0;
    MP_DIGITS(&R) = 0;
    MP_DIGITS(&r) = 0;
    MP_DIGITS(&x) = 0;
    MP_DIGITS(&t) = 0;
    MP_DIGITS(&u) = 0;
    MP_DIGITS(&w) = 0;
    CHECK_MPI_OK(mp_init(&p));
    CHECK_MPI_OK(mp_init(&Y));
    CHECK_MPI_OK(mp_init(&R));
    CHECK_MPI_OK(mp_init(&r));
    CHECK_MPI_OK(mp_init(&x));
    CHECK_MPI_OK(mp_init(&t));
    CHECK_MPI_OK(mp_init(&u));
    CHECK_MPI_OK(mp_init(&w));
    SECITEM_TO_MPINT(*prime, &p);
    SECITEM_TO_MPINT(*public1, &Y);
    SECITEM_TO_MPINT(*public2, &R);
    SECITEM_TO_MPINT(*private1, &r);
    SECITEM_TO_MPINT(*private2, &x);
    /* t = DH(Y, r, p) = Y ** r mod p */
    CHECK_MPI_OK(mp_exptmod(&Y, &r, &p, &t));
    /* u = DH(R, x, p) = R ** x mod p */
    CHECK_MPI_OK(mp_exptmod(&R, &x, &p, &u));
    /* w = (t + u) mod p */
    CHECK_MPI_OK(mp_addmod(&t, &u, &p, &w));
    /* allocate a buffer for the full derived secret */
    len = mp_unsigned_octet_size(&w);
    secret = PORT_Alloc(len);
    if (secret == NULL) {
        err = MP_MEM;
        goto cleanup;
    }
    /* grab the secret */
    err = mp_to_unsigned_octets(&w, secret, len);
    if (err > 0)
        err = MP_OKAY;
    /* allocate output buffer */
    if (SECITEM_AllocItem(NULL, derivedSecret, KEA_DERIVED_SECRET_LEN) == NULL) {
        err = MP_MEM;
        goto cleanup;
    }
    memset(derivedSecret->data, 0, derivedSecret->len);
    /* copy in the 128 lsb of the secret */
    if (len >= KEA_DERIVED_SECRET_LEN) {
        memcpy(derivedSecret->data, secret + (len - KEA_DERIVED_SECRET_LEN),
               KEA_DERIVED_SECRET_LEN);
    } else {
        offset = KEA_DERIVED_SECRET_LEN - len;
        memcpy(derivedSecret->data + offset, secret, len);
    }
cleanup:
    mp_clear(&p);
    mp_clear(&Y);
    mp_clear(&R);
    mp_clear(&r);
    mp_clear(&x);
    mp_clear(&t);
    mp_clear(&u);
    mp_clear(&w);
    if (secret)
        PORT_ZFree(secret, len);
    if (err) {
        MP_TO_SEC_ERROR(err);
        if (derivedSecret->data)
            PORT_ZFree(derivedSecret->data, derivedSecret->len);
        return SECFailure;
    }
    return SECSuccess;
}

PRBool
KEA_Verify(SECItem *Y, SECItem *prime, SECItem *subPrime)
{
    mp_int p, q, y, r;
    mp_err err;
    int cmp = 1; /* default is false */
    if (!Y || !prime || !subPrime) {
        PORT_SetError(SEC_ERROR_INVALID_ARGS);
        return SECFailure;
    }
    MP_DIGITS(&p) = 0;
    MP_DIGITS(&q) = 0;
    MP_DIGITS(&y) = 0;
    MP_DIGITS(&r) = 0;
    CHECK_MPI_OK(mp_init(&p));
    CHECK_MPI_OK(mp_init(&q));
    CHECK_MPI_OK(mp_init(&y));
    CHECK_MPI_OK(mp_init(&r));
    SECITEM_TO_MPINT(*prime, &p);
    SECITEM_TO_MPINT(*subPrime, &q);
    SECITEM_TO_MPINT(*Y, &y);
    /* compute r = y**q mod p */
    CHECK_MPI_OK(mp_exptmod(&y, &q, &p, &r));
    /* compare to 1 */
    cmp = mp_cmp_d(&r, 1);
cleanup:
    mp_clear(&p);
    mp_clear(&q);
    mp_clear(&y);
    mp_clear(&r);
    if (err) {
        MP_TO_SEC_ERROR(err);
        return PR_FALSE;
    }
    return (cmp == 0) ? PR_TRUE : PR_FALSE;
}