Bug 1329309 - remove deprecated SkOpts_sse41 blits r=mchang a=lizzard FIREFOX_51_0b13_BUILD1 FIREFOX_51_0b13_RELEASE
authorLee Salzman <lsalzman@mozilla.com>
Fri, 06 Jan 2017 15:54:53 -0500
changeset 459156 ce55e4d276031458f0730d481acff05d7c797038
parent 459155 a82694b0700baba5cafb61e8b3cad4c9c6aed734
child 459157 3218ea763746c4ddef980b9095dc04ade8abe4b0
push id41141
push userfelipc@gmail.com
push dateWed, 11 Jan 2017 13:31:31 +0000
reviewersmchang, lizzard
bugs1329309
milestone51.0
Bug 1329309 - remove deprecated SkOpts_sse41 blits r=mchang a=lizzard
gfx/skia/skia/src/opts/SkOpts_sse41.cpp
--- a/gfx/skia/skia/src/opts/SkOpts_sse41.cpp
+++ b/gfx/skia/skia/src/opts/SkOpts_sse41.cpp
@@ -6,226 +6,16 @@
  */
 
 #include "SkOpts.h"
 
 #define SK_OPTS_NS sk_sse41
 #include "SkBlurImageFilter_opts.h"
 #include "SkBlitRow_opts.h"
 
-#ifndef SK_SUPPORT_LEGACY_X86_BLITS
-
-namespace sk_sse41_new {
-
-// An SSE register holding at most 64 bits of useful data in the low lanes.
-struct m64i {
-    __m128i v;
-    /*implicit*/ m64i(__m128i v) : v(v) {}
-    operator __m128i() const { return v; }
-};
-
-// Load 4, 2, or 1 constant pixels or coverages (4x replicated).
-static __m128i next4(uint32_t val) { return _mm_set1_epi32(val); }
-static m64i    next2(uint32_t val) { return _mm_set1_epi32(val); }
-static m64i    next1(uint32_t val) { return _mm_set1_epi32(val); }
-
-static __m128i next4(uint8_t val) { return _mm_set1_epi8(val); }
-static m64i    next2(uint8_t val) { return _mm_set1_epi8(val); }
-static m64i    next1(uint8_t val) { return _mm_set1_epi8(val); }
-
-// Load 4, 2, or 1 variable pixels or coverages (4x replicated),
-// incrementing the pointer past what we read.
-static __m128i next4(const uint32_t*& ptr) {
-    auto r = _mm_loadu_si128((const __m128i*)ptr);
-    ptr += 4;
-    return r;
-}
-static m64i next2(const uint32_t*& ptr) {
-    auto r = _mm_loadl_epi64((const __m128i*)ptr);
-    ptr += 2;
-    return r;
-}
-static m64i next1(const uint32_t*& ptr) {
-    auto r = _mm_cvtsi32_si128(*ptr);
-    ptr += 1;
-    return r;
-}
-
-// xyzw -> xxxx yyyy zzzz wwww
-static __m128i replicate_coverage(__m128i xyzw) {
-    return _mm_shuffle_epi8(xyzw, _mm_setr_epi8(0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3));
-}
-
-static __m128i next4(const uint8_t*& ptr) {
-    auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint32_t*)ptr));
-    ptr += 4;
-    return r;
-}
-static m64i next2(const uint8_t*& ptr) {
-    auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint16_t*)ptr));
-    ptr += 2;
-    return r;
-}
-static m64i next1(const uint8_t*& ptr) {
-    auto r = replicate_coverage(_mm_cvtsi32_si128(*ptr));
-    ptr += 1;
-    return r;
-}
-
-// For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays.
-template <typename Dst, typename Src, typename Cov, typename Fn>
-static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) {
-    // We don't want to muck with the callers' pointers, so we make them const and copy here.
-    Dst d = dst;
-    Src s = src;
-    Cov c = cov;
-
-    // Writing this as a single while-loop helps hoist loop invariants from fn.
-    while (n) {
-        if (n >= 4) {
-            _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c)));
-            t += 4;
-            n -= 4;
-            continue;
-        }
-        if (n & 2) {
-            _mm_storel_epi64((__m128i*)t, fn(next2(d), next2(s), next2(c)));
-            t += 2;
-        }
-        if (n & 1) {
-            *t = _mm_cvtsi128_si32(fn(next1(d), next1(s), next1(c)));
-        }
-        return;
-    }
-}
-
-//                                             packed
-// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
-//                                            unpacked
-
-// Everything on the packed side of the squiggly line deals with densely packed 8-bit data,
-// e.g. [BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage.
-//
-// Everything on the unpacked side of the squiggly line deals with unpacked 8-bit data,
-// e.g [B_G_ R_A_ b_g_ r_a_ ] for pixels or [ C_C_ C_C_ c_c_ c_c_ c_c_ ] for coverage,
-// where _ is a zero byte.
-//
-// Adapt<Fn> / adapt(fn) allow the two sides to interoperate,
-// by unpacking arguments, calling fn, then packing the results.
-//
-// This lets us write most of our code in terms of unpacked inputs (considerably simpler)
-// and all the packing and unpacking is handled automatically.
-
-template <typename Fn>
-struct Adapt {
-    Fn fn;
-
-    __m128i operator()(__m128i d, __m128i s, __m128i c) {
-        auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); };
-        auto hi = [](__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); };
-        return _mm_packus_epi16(fn(lo(d), lo(s), lo(c)),
-                                fn(hi(d), hi(s), hi(c)));
-    }
-
-    m64i operator()(const m64i& d, const m64i& s, const m64i& c) {
-        auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); };
-        auto r = fn(lo(d), lo(s), lo(c));
-        return _mm_packus_epi16(r, r);
-    }
-};
-
-template <typename Fn>
-static Adapt<Fn> adapt(Fn&& fn) { return { fn }; }
-
-// These helpers all work exclusively with unpacked 8-bit values,
-// except div255() with is 16-bit -> unpacked 8-bit, and mul255() which is the reverse.
-
-// Divide by 255 with rounding.
-// (x+127)/255 == ((x+128)*257)>>16.
-// Sometimes we can be more efficient by breaking this into two parts.
-static __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); }
-static __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); }
-static __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); }
-
-// (x*y+127)/255, a byte multiply.
-static __m128i scale(__m128i x, __m128i y) { return div255(_mm_mullo_epi16(x, y)); }
-
-// (255 * x).
-static __m128i mul255(__m128i x) { return _mm_sub_epi16(_mm_slli_epi16(x, 8), x); }
-
-// (255 - x).
-static __m128i inv(__m128i x) { return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); }
-
-// ARGB argb -> AAAA aaaa
-static __m128i alphas(__m128i px) {
-    const int a = 2 * (SK_A32_SHIFT/8);  // SK_A32_SHIFT is typically 24, so this is typically 6.
-    const int _ = ~0;
-    return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_));
-}
-
-// SrcOver, with a constant source and full coverage.
-static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) {
-    // We want to calculate s + (d * inv(alphas(s)) + 127)/255.
-    // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16.
-
-    // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16.
-    // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop.
-    __m128i s = _mm_unpacklo_epi8(_mm_set1_epi32(src), _mm_setzero_si128()),
-            s_255_128 = div255_part1(mul255(s)),
-            A = inv(alphas(s));
-
-    const uint8_t cov = 0xff;
-    loop(n, tgt, dst, src, cov, adapt([=](__m128i d, __m128i, __m128i) {
-        return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A)));
-    }));
-}
-
-// SrcOver, with a constant source and variable coverage.
-// If the source is opaque, SrcOver becomes Src.
-static void blit_mask_d32_a8(SkPMColor* dst,     size_t dstRB,
-                             const SkAlpha* cov, size_t covRB,
-                             SkColor color, int w, int h) {
-    if (SkColorGetA(color) == 0xFF) {
-        const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color);
-        while (h --> 0) {
-            loop(w, dst, (const SkPMColor*)dst, src, cov,
-                    adapt([](__m128i d, __m128i s, __m128i c) {
-                // Src blend mode: a simple lerp from d to s by c.
-                // TODO: try a pmaddubsw version?
-                return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d),
-                                            _mm_mullo_epi16(    c ,s)));
-            }));
-            dst += dstRB / sizeof(*dst);
-            cov += covRB / sizeof(*cov);
-        }
-    } else {
-        const SkPMColor src = SkPreMultiplyColor(color);
-        while (h --> 0) {
-            loop(w, dst, (const SkPMColor*)dst, src, cov,
-                    adapt([](__m128i d, __m128i s, __m128i c) {
-                // SrcOver blend mode, with coverage folded into source alpha.
-                __m128i sc = scale(s,c),
-                        AC = inv(alphas(sc));
-                return _mm_add_epi16(sc, scale(d,AC));
-            }));
-            dst += dstRB / sizeof(*dst);
-            cov += covRB / sizeof(*cov);
-        }
-    }
-}
-
-}  // namespace sk_sse41_new
-
-#endif
-
 namespace SkOpts {
     void Init_sse41() {
         box_blur_xx = sk_sse41::box_blur_xx;
         box_blur_xy = sk_sse41::box_blur_xy;
         box_blur_yx = sk_sse41::box_blur_yx;
-
-    #ifndef SK_SUPPORT_LEGACY_X86_BLITS
-        blit_row_color32 = sk_sse41_new::blit_row_color32;
-        blit_mask_d32_a8 = sk_sse41_new::blit_mask_d32_a8;
-    #endif
         blit_row_s32a_opaque = sk_sse41::blit_row_s32a_opaque;
     }
 }