third_party/aom/av1/encoder/corner_match.c
author Dan Minor <dminor@mozilla.com>
Thu, 21 Jun 2018 13:47:50 -0400
changeset 818888 0f16daade35d58c27e50980bb528a59504c7d3e4
parent 817548 e52191635ec33dafe40022480dcf9e9e58abd07d
permissions -rw-r--r--
Bug 1445683 - Update aom to v1.0.0; r=jya Update aom to rev d14c5bb4f336ef1842046089849dee4a301fbbf0. MozReview-Commit-ID: YoPHbFHRq2

/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <stdlib.h>
#include <memory.h>
#include <math.h>

#include "config/av1_rtcd.h"

#include "av1/encoder/corner_match.h"

#define SEARCH_SZ 9
#define SEARCH_SZ_BY2 ((SEARCH_SZ - 1) / 2)

#define THRESHOLD_NCC 0.75

/* Compute var(im) * MATCH_SZ_SQ over a MATCH_SZ by MATCH_SZ window of im,
   centered at (x, y).
*/
static double compute_variance(unsigned char *im, int stride, int x, int y) {
  int sum = 0;
  int sumsq = 0;
  int var;
  int i, j;
  for (i = 0; i < MATCH_SZ; ++i)
    for (j = 0; j < MATCH_SZ; ++j) {
      sum += im[(i + y - MATCH_SZ_BY2) * stride + (j + x - MATCH_SZ_BY2)];
      sumsq += im[(i + y - MATCH_SZ_BY2) * stride + (j + x - MATCH_SZ_BY2)] *
               im[(i + y - MATCH_SZ_BY2) * stride + (j + x - MATCH_SZ_BY2)];
    }
  var = sumsq * MATCH_SZ_SQ - sum * sum;
  return (double)var;
}

/* Compute corr(im1, im2) * MATCH_SZ * stddev(im1), where the
   correlation/standard deviation are taken over MATCH_SZ by MATCH_SZ windows
   of each image, centered at (x1, y1) and (x2, y2) respectively.
*/
double compute_cross_correlation_c(unsigned char *im1, int stride1, int x1,
                                   int y1, unsigned char *im2, int stride2,
                                   int x2, int y2) {
  int v1, v2;
  int sum1 = 0;
  int sum2 = 0;
  int sumsq2 = 0;
  int cross = 0;
  int var2, cov;
  int i, j;
  for (i = 0; i < MATCH_SZ; ++i)
    for (j = 0; j < MATCH_SZ; ++j) {
      v1 = im1[(i + y1 - MATCH_SZ_BY2) * stride1 + (j + x1 - MATCH_SZ_BY2)];
      v2 = im2[(i + y2 - MATCH_SZ_BY2) * stride2 + (j + x2 - MATCH_SZ_BY2)];
      sum1 += v1;
      sum2 += v2;
      sumsq2 += v2 * v2;
      cross += v1 * v2;
    }
  var2 = sumsq2 * MATCH_SZ_SQ - sum2 * sum2;
  cov = cross * MATCH_SZ_SQ - sum1 * sum2;
  return cov / sqrt((double)var2);
}

static int is_eligible_point(int pointx, int pointy, int width, int height) {
  return (pointx >= MATCH_SZ_BY2 && pointy >= MATCH_SZ_BY2 &&
          pointx + MATCH_SZ_BY2 < width && pointy + MATCH_SZ_BY2 < height);
}

static int is_eligible_distance(int point1x, int point1y, int point2x,
                                int point2y, int width, int height) {
  const int thresh = (width < height ? height : width) >> 4;
  return ((point1x - point2x) * (point1x - point2x) +
          (point1y - point2y) * (point1y - point2y)) <= thresh * thresh;
}

static void improve_correspondence(unsigned char *frm, unsigned char *ref,
                                   int width, int height, int frm_stride,
                                   int ref_stride,
                                   Correspondence *correspondences,
                                   int num_correspondences) {
  int i;
  for (i = 0; i < num_correspondences; ++i) {
    int x, y, best_x = 0, best_y = 0;
    double best_match_ncc = 0.0;
    for (y = -SEARCH_SZ_BY2; y <= SEARCH_SZ_BY2; ++y) {
      for (x = -SEARCH_SZ_BY2; x <= SEARCH_SZ_BY2; ++x) {
        double match_ncc;
        if (!is_eligible_point(correspondences[i].rx + x,
                               correspondences[i].ry + y, width, height))
          continue;
        if (!is_eligible_distance(correspondences[i].x, correspondences[i].y,
                                  correspondences[i].rx + x,
                                  correspondences[i].ry + y, width, height))
          continue;
        match_ncc = compute_cross_correlation(
            frm, frm_stride, correspondences[i].x, correspondences[i].y, ref,
            ref_stride, correspondences[i].rx + x, correspondences[i].ry + y);
        if (match_ncc > best_match_ncc) {
          best_match_ncc = match_ncc;
          best_y = y;
          best_x = x;
        }
      }
    }
    correspondences[i].rx += best_x;
    correspondences[i].ry += best_y;
  }
  for (i = 0; i < num_correspondences; ++i) {
    int x, y, best_x = 0, best_y = 0;
    double best_match_ncc = 0.0;
    for (y = -SEARCH_SZ_BY2; y <= SEARCH_SZ_BY2; ++y)
      for (x = -SEARCH_SZ_BY2; x <= SEARCH_SZ_BY2; ++x) {
        double match_ncc;
        if (!is_eligible_point(correspondences[i].x + x,
                               correspondences[i].y + y, width, height))
          continue;
        if (!is_eligible_distance(
                correspondences[i].x + x, correspondences[i].y + y,
                correspondences[i].rx, correspondences[i].ry, width, height))
          continue;
        match_ncc = compute_cross_correlation(
            ref, ref_stride, correspondences[i].rx, correspondences[i].ry, frm,
            frm_stride, correspondences[i].x + x, correspondences[i].y + y);
        if (match_ncc > best_match_ncc) {
          best_match_ncc = match_ncc;
          best_y = y;
          best_x = x;
        }
      }
    correspondences[i].x += best_x;
    correspondences[i].y += best_y;
  }
}

int determine_correspondence(unsigned char *frm, int *frm_corners,
                             int num_frm_corners, unsigned char *ref,
                             int *ref_corners, int num_ref_corners, int width,
                             int height, int frm_stride, int ref_stride,
                             int *correspondence_pts) {
  // TODO(sarahparker) Improve this to include 2-way match
  int i, j;
  Correspondence *correspondences = (Correspondence *)correspondence_pts;
  int num_correspondences = 0;
  for (i = 0; i < num_frm_corners; ++i) {
    double best_match_ncc = 0.0;
    double template_norm;
    int best_match_j = -1;
    if (!is_eligible_point(frm_corners[2 * i], frm_corners[2 * i + 1], width,
                           height))
      continue;
    for (j = 0; j < num_ref_corners; ++j) {
      double match_ncc;
      if (!is_eligible_point(ref_corners[2 * j], ref_corners[2 * j + 1], width,
                             height))
        continue;
      if (!is_eligible_distance(frm_corners[2 * i], frm_corners[2 * i + 1],
                                ref_corners[2 * j], ref_corners[2 * j + 1],
                                width, height))
        continue;
      match_ncc = compute_cross_correlation(
          frm, frm_stride, frm_corners[2 * i], frm_corners[2 * i + 1], ref,
          ref_stride, ref_corners[2 * j], ref_corners[2 * j + 1]);
      if (match_ncc > best_match_ncc) {
        best_match_ncc = match_ncc;
        best_match_j = j;
      }
    }
    // Note: We want to test if the best correlation is >= THRESHOLD_NCC,
    // but need to account for the normalization in compute_cross_correlation.
    template_norm = compute_variance(frm, frm_stride, frm_corners[2 * i],
                                     frm_corners[2 * i + 1]);
    if (best_match_ncc > THRESHOLD_NCC * sqrt(template_norm)) {
      correspondences[num_correspondences].x = frm_corners[2 * i];
      correspondences[num_correspondences].y = frm_corners[2 * i + 1];
      correspondences[num_correspondences].rx = ref_corners[2 * best_match_j];
      correspondences[num_correspondences].ry =
          ref_corners[2 * best_match_j + 1];
      num_correspondences++;
    }
  }
  improve_correspondence(frm, ref, width, height, frm_stride, ref_stride,
                         correspondences, num_correspondences);
  return num_correspondences;
}