third_party/aom/av1/encoder/av1_quantize.c
author Dan Minor <dminor@mozilla.com>
Thu, 21 Jun 2018 13:47:50 -0400
changeset 818888 0f16daade35d58c27e50980bb528a59504c7d3e4
parent 817548 e52191635ec33dafe40022480dcf9e9e58abd07d
child 823532 3c9776cc9cb5bc5a2a5b65217a74021b2919c98c
permissions -rw-r--r--
Bug 1445683 - Update aom to v1.0.0; r=jya Update aom to rev d14c5bb4f336ef1842046089849dee4a301fbbf0. MozReview-Commit-ID: YoPHbFHRq2

/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <math.h>

#include "config/aom_dsp_rtcd.h"

#include "aom_dsp/quantize.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"

#include "av1/common/idct.h"
#include "av1/common/quant_common.h"
#include "av1/common/scan.h"
#include "av1/common/seg_common.h"

#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/rd.h"

void av1_quantize_skip(intptr_t n_coeffs, tran_low_t *qcoeff_ptr,
                       tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr) {
  memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
  memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
  *eob_ptr = 0;
}

static void quantize_fp_helper_c(
    const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
    const int16_t *round_ptr, const int16_t *quant_ptr,
    const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
    tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
    const int16_t *scan, const int16_t *iscan, const qm_val_t *qm_ptr,
    const qm_val_t *iqm_ptr, int log_scale) {
  int i, eob = -1;
  // TODO(jingning) Decide the need of these arguments after the
  // quantization process is completed.
  (void)zbin_ptr;
  (void)quant_shift_ptr;

  memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
  memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));

  if (qm_ptr == NULL && iqm_ptr == NULL) {
    const int rounding0 = ROUND_POWER_OF_TWO(round_ptr[0], log_scale);
    {  // rc == 0
      const int coeff = coeff_ptr[0];
      const int coeff_sign = (coeff >> 31);
      int64_t abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
      if ((abs_coeff << (1 + log_scale)) >= (int32_t)(dequant_ptr[0])) {
        abs_coeff = clamp64(abs_coeff + rounding0, INT16_MIN, INT16_MAX);
        const int tmp32 = (int)((abs_coeff * quant_ptr[0]) >> (16 - log_scale));
        if (tmp32) {
          qcoeff_ptr[0] = (tmp32 ^ coeff_sign) - coeff_sign;
          const tran_low_t abs_dqcoeff = (tmp32 * dequant_ptr[0]) >> log_scale;
          dqcoeff_ptr[0] = (abs_dqcoeff ^ coeff_sign) - coeff_sign;
          eob = 0;
        }
      }
    }
    const int rounding1 = ROUND_POWER_OF_TWO(round_ptr[1], log_scale);
    const int32_t thresh1 = (int32_t)(dequant_ptr[1]);
    for (i = 1; i < n_coeffs; i++) {
      const int coeff = coeff_ptr[i];
      const int coeff_sign = (coeff >> 31);
      int64_t abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
      if ((abs_coeff << (1 + log_scale)) >= thresh1) {
        abs_coeff = clamp64(abs_coeff + rounding1, INT16_MIN, INT16_MAX);
        const int tmp32 = (int)((abs_coeff * quant_ptr[1]) >> (16 - log_scale));
        if (tmp32) {
          qcoeff_ptr[i] = (tmp32 ^ coeff_sign) - coeff_sign;
          const tran_low_t abs_dqcoeff = (tmp32 * dequant_ptr[1]) >> log_scale;
          dqcoeff_ptr[i] = (abs_dqcoeff ^ coeff_sign) - coeff_sign;
          eob = AOMMAX(iscan[i], eob);
        }
      }
    }
  } else {
    // Quantization pass: All coefficients with index >= zero_flag are
    // skippable. Note: zero_flag can be zero.
    for (i = 0; i < n_coeffs; i++) {
      const int rc = scan[i];
      const int coeff = coeff_ptr[rc];
      const qm_val_t wt = qm_ptr ? qm_ptr[rc] : (1 << AOM_QM_BITS);
      const qm_val_t iwt = iqm_ptr ? iqm_ptr[rc] : (1 << AOM_QM_BITS);
      const int dequant =
          (dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >>
          AOM_QM_BITS;
      const int coeff_sign = (coeff >> 31);
      int64_t abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
      int tmp32 = 0;
      if (abs_coeff * wt >=
          (dequant_ptr[rc != 0] << (AOM_QM_BITS - (1 + log_scale)))) {
        abs_coeff += ROUND_POWER_OF_TWO(round_ptr[rc != 0], log_scale);
        abs_coeff = clamp64(abs_coeff, INT16_MIN, INT16_MAX);
        tmp32 = (int)((abs_coeff * wt * quant_ptr[rc != 0]) >>
                      (16 - log_scale + AOM_QM_BITS));
        qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
        const tran_low_t abs_dqcoeff = (tmp32 * dequant) >> log_scale;
        dqcoeff_ptr[rc] = (abs_dqcoeff ^ coeff_sign) - coeff_sign;
      }

      if (tmp32) eob = i;
    }
  }
  *eob_ptr = eob + 1;
}

static void highbd_quantize_fp_helper_c(
    const tran_low_t *coeff_ptr, intptr_t count, const int16_t *zbin_ptr,
    const int16_t *round_ptr, const int16_t *quant_ptr,
    const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
    tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
    const int16_t *scan, const int16_t *iscan, const qm_val_t *qm_ptr,
    const qm_val_t *iqm_ptr, int log_scale) {
  int i;
  int eob = -1;
  const int shift = 16 - log_scale;
  // TODO(jingning) Decide the need of these arguments after the
  // quantization process is completed.
  (void)zbin_ptr;
  (void)quant_shift_ptr;
  (void)iscan;

  if (qm_ptr || iqm_ptr) {
    // Quantization pass: All coefficients with index >= zero_flag are
    // skippable. Note: zero_flag can be zero.
    for (i = 0; i < count; i++) {
      const int rc = scan[i];
      const int coeff = coeff_ptr[rc];
      const qm_val_t wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS);
      const qm_val_t iwt = iqm_ptr != NULL ? iqm_ptr[rc] : (1 << AOM_QM_BITS);
      const int dequant =
          (dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >>
          AOM_QM_BITS;
      const int coeff_sign = (coeff >> 31);
      const int64_t abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
      int abs_qcoeff = 0;
      if (abs_coeff * wt >=
          (dequant_ptr[rc != 0] << (AOM_QM_BITS - (1 + log_scale)))) {
        const int64_t tmp =
            abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], log_scale);
        abs_qcoeff =
            (int)((tmp * quant_ptr[rc != 0] * wt) >> (shift + AOM_QM_BITS));
        qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
        const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant) >> log_scale;
        dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
        if (abs_qcoeff) eob = i;
      } else {
        qcoeff_ptr[rc] = 0;
        dqcoeff_ptr[rc] = 0;
      }
    }
  } else {
    const int log_scaled_round_arr[2] = {
      ROUND_POWER_OF_TWO(round_ptr[0], log_scale),
      ROUND_POWER_OF_TWO(round_ptr[1], log_scale),
    };
    for (i = 0; i < count; i++) {
      const int rc = scan[i];
      const int coeff = coeff_ptr[rc];
      const int rc01 = (rc != 0);
      const int coeff_sign = (coeff >> 31);
      const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
      const int log_scaled_round = log_scaled_round_arr[rc01];
      if ((abs_coeff << (1 + log_scale)) >= dequant_ptr[rc01]) {
        const int quant = quant_ptr[rc01];
        const int dequant = dequant_ptr[rc01];
        const int64_t tmp = (int64_t)abs_coeff + log_scaled_round;
        const int abs_qcoeff = (int)((tmp * quant) >> shift);
        qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
        const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant) >> log_scale;
        if (abs_qcoeff) eob = i;
        dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
      } else {
        qcoeff_ptr[rc] = 0;
        dqcoeff_ptr[rc] = 0;
      }
    }
  }
  *eob_ptr = eob + 1;
}

void av1_quantize_fp_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
                       const int16_t *zbin_ptr, const int16_t *round_ptr,
                       const int16_t *quant_ptr, const int16_t *quant_shift_ptr,
                       tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
                       const int16_t *dequant_ptr, uint16_t *eob_ptr,
                       const int16_t *scan, const int16_t *iscan) {
  quantize_fp_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr,
                       quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
                       eob_ptr, scan, iscan, NULL, NULL, 0);
}

void av1_quantize_fp_32x32_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
                             const int16_t *zbin_ptr, const int16_t *round_ptr,
                             const int16_t *quant_ptr,
                             const int16_t *quant_shift_ptr,
                             tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
                             const int16_t *dequant_ptr, uint16_t *eob_ptr,
                             const int16_t *scan, const int16_t *iscan) {
  quantize_fp_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr,
                       quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
                       eob_ptr, scan, iscan, NULL, NULL, 1);
}

void av1_quantize_fp_64x64_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
                             const int16_t *zbin_ptr, const int16_t *round_ptr,
                             const int16_t *quant_ptr,
                             const int16_t *quant_shift_ptr,
                             tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
                             const int16_t *dequant_ptr, uint16_t *eob_ptr,
                             const int16_t *scan, const int16_t *iscan) {
  quantize_fp_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr,
                       quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
                       eob_ptr, scan, iscan, NULL, NULL, 2);
}

void av1_quantize_fp_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
                            const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr,
                            tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
                            const SCAN_ORDER *sc, const QUANT_PARAM *qparam) {
  const qm_val_t *qm_ptr = qparam->qmatrix;
  const qm_val_t *iqm_ptr = qparam->iqmatrix;
  if (qm_ptr != NULL && iqm_ptr != NULL) {
    quantize_fp_helper_c(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
                         p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
                         dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
                         sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
  } else {
    switch (qparam->log_scale) {
      case 0:
        if (n_coeffs < 16) {
          // TODO(jingning): Need SIMD implementation for smaller block size
          // quantization.
          quantize_fp_helper_c(
              coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
              p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr,
              p->dequant_QTX, eob_ptr, sc->scan, sc->iscan, NULL, NULL, 0);
        } else {
          av1_quantize_fp(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
                          p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
                          dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
                          sc->iscan);
        }
        break;
      case 1:
        av1_quantize_fp_32x32(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
                              p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
                              dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
                              sc->iscan);
        break;
      case 2:
        av1_quantize_fp_64x64(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
                              p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
                              dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
                              sc->iscan);
        break;
      default: assert(0);
    }
  }
}

void av1_quantize_b_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
                           const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr,
                           tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
                           const SCAN_ORDER *sc, const QUANT_PARAM *qparam) {
  // obsolete skip_block
  const int skip_block = 0;
  const qm_val_t *qm_ptr = qparam->qmatrix;
  const qm_val_t *iqm_ptr = qparam->iqmatrix;
  if (qm_ptr != NULL && iqm_ptr != NULL) {
    quantize_b_helper_c(coeff_ptr, n_coeffs, skip_block, p->zbin_QTX,
                        p->round_QTX, p->quant_QTX, p->quant_shift_QTX,
                        qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr,
                        sc->scan, sc->iscan, qm_ptr, iqm_ptr,
                        qparam->log_scale);
  } else {
    switch (qparam->log_scale) {
      case 0:
        aom_quantize_b(coeff_ptr, n_coeffs, skip_block, p->zbin_QTX,
                       p->round_QTX, p->quant_QTX, p->quant_shift_QTX,
                       qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr,
                       sc->scan, sc->iscan);
        break;
      case 1:
        aom_quantize_b_32x32(coeff_ptr, n_coeffs, skip_block, p->zbin_QTX,
                             p->round_QTX, p->quant_QTX, p->quant_shift_QTX,
                             qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr,
                             sc->scan, sc->iscan);
        break;
      case 2:
        aom_quantize_b_64x64(coeff_ptr, n_coeffs, skip_block, p->zbin_QTX,
                             p->round_QTX, p->quant_QTX, p->quant_shift_QTX,
                             qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr,
                             sc->scan, sc->iscan);
        break;
      default: assert(0);
    }
  }
}

static void quantize_dc(const tran_low_t *coeff_ptr, int n_coeffs,
                        int skip_block, const int16_t *round_ptr,
                        const int16_t quant, tran_low_t *qcoeff_ptr,
                        tran_low_t *dqcoeff_ptr, const int16_t dequant_ptr,
                        uint16_t *eob_ptr, const qm_val_t *qm_ptr,
                        const qm_val_t *iqm_ptr, const int log_scale) {
  const int rc = 0;
  const int coeff = coeff_ptr[rc];
  const int coeff_sign = (coeff >> 31);
  const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
  int64_t tmp;
  int eob = -1;
  int32_t tmp32;
  int dequant;

  memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
  memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));

  if (!skip_block) {
    const int wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS);
    const int iwt = iqm_ptr != NULL ? iqm_ptr[rc] : (1 << AOM_QM_BITS);
    tmp = clamp(abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], log_scale),
                INT16_MIN, INT16_MAX);
    tmp32 = (int32_t)((tmp * wt * quant) >> (16 - log_scale + AOM_QM_BITS));
    qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
    dequant = (dequant_ptr * iwt + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
    const tran_low_t abs_dqcoeff = (tmp32 * dequant) >> log_scale;
    dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
    if (tmp32) eob = 0;
  }
  *eob_ptr = eob + 1;
}

void av1_quantize_dc_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
                            const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr,
                            tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
                            const SCAN_ORDER *sc, const QUANT_PARAM *qparam) {
  // obsolete skip_block
  const int skip_block = 0;
  (void)sc;
  assert(qparam->log_scale >= 0 && qparam->log_scale < (3));
  const qm_val_t *qm_ptr = qparam->qmatrix;
  const qm_val_t *iqm_ptr = qparam->iqmatrix;
  quantize_dc(coeff_ptr, (int)n_coeffs, skip_block, p->round_QTX,
              p->quant_fp_QTX[0], qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX[0],
              eob_ptr, qm_ptr, iqm_ptr, qparam->log_scale);
}

void av1_highbd_quantize_fp_facade(const tran_low_t *coeff_ptr,
                                   intptr_t n_coeffs, const MACROBLOCK_PLANE *p,
                                   tran_low_t *qcoeff_ptr,
                                   tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
                                   const SCAN_ORDER *sc,
                                   const QUANT_PARAM *qparam) {
  const qm_val_t *qm_ptr = qparam->qmatrix;
  const qm_val_t *iqm_ptr = qparam->iqmatrix;
  if (qm_ptr != NULL && iqm_ptr != NULL) {
    highbd_quantize_fp_helper_c(
        coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX,
        p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr,
        sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
  } else {
    if (n_coeffs < 16) {
      // TODO(jingning): Need SIMD implementation for smaller block size
      // quantization.
      av1_highbd_quantize_fp_c(
          coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX,
          p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr,
          sc->scan, sc->iscan, qparam->log_scale);
      return;
    }
    av1_highbd_quantize_fp(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
                           p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
                           dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
                           sc->iscan, qparam->log_scale);
  }
}

void av1_highbd_quantize_b_facade(const tran_low_t *coeff_ptr,
                                  intptr_t n_coeffs, const MACROBLOCK_PLANE *p,
                                  tran_low_t *qcoeff_ptr,
                                  tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
                                  const SCAN_ORDER *sc,
                                  const QUANT_PARAM *qparam) {
  // obsolete skip_block
  const int skip_block = 0;
  const qm_val_t *qm_ptr = qparam->qmatrix;
  const qm_val_t *iqm_ptr = qparam->iqmatrix;
  if (qm_ptr != NULL && iqm_ptr != NULL) {
    highbd_quantize_b_helper_c(coeff_ptr, n_coeffs, skip_block, p->zbin_QTX,
                               p->round_QTX, p->quant_QTX, p->quant_shift_QTX,
                               qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr,
                               sc->scan, sc->iscan, qm_ptr, iqm_ptr,
                               qparam->log_scale);
  } else {
    switch (qparam->log_scale) {
      case 0:
        if (LIKELY(n_coeffs >= 8)) {
          aom_highbd_quantize_b(coeff_ptr, n_coeffs, skip_block, p->zbin_QTX,
                                p->round_QTX, p->quant_QTX, p->quant_shift_QTX,
                                qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
                                eob_ptr, sc->scan, sc->iscan);
        } else {
          // TODO(luoyi): Need SIMD (e.g. sse2) for smaller block size
          // quantization
          aom_highbd_quantize_b_c(coeff_ptr, n_coeffs, skip_block, p->zbin_QTX,
                                  p->round_QTX, p->quant_QTX,
                                  p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr,
                                  p->dequant_QTX, eob_ptr, sc->scan, sc->iscan);
        }
        break;
      case 1:
        aom_highbd_quantize_b_32x32(
            coeff_ptr, n_coeffs, skip_block, p->zbin_QTX, p->round_QTX,
            p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr,
            p->dequant_QTX, eob_ptr, sc->scan, sc->iscan);
        break;
      case 2:
        aom_highbd_quantize_b_64x64(
            coeff_ptr, n_coeffs, skip_block, p->zbin_QTX, p->round_QTX,
            p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr,
            p->dequant_QTX, eob_ptr, sc->scan, sc->iscan);
        break;
      default: assert(0);
    }
  }
}

static INLINE void highbd_quantize_dc(
    const tran_low_t *coeff_ptr, int n_coeffs, int skip_block,
    const int16_t *round_ptr, const int16_t quant, tran_low_t *qcoeff_ptr,
    tran_low_t *dqcoeff_ptr, const int16_t dequant_ptr, uint16_t *eob_ptr,
    const qm_val_t *qm_ptr, const qm_val_t *iqm_ptr, const int log_scale) {
  int eob = -1;

  memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
  memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));

  if (!skip_block) {
    const qm_val_t wt = qm_ptr != NULL ? qm_ptr[0] : (1 << AOM_QM_BITS);
    const qm_val_t iwt = iqm_ptr != NULL ? iqm_ptr[0] : (1 << AOM_QM_BITS);
    const int coeff = coeff_ptr[0];
    const int coeff_sign = (coeff >> 31);
    const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
    const int64_t tmp = abs_coeff + ROUND_POWER_OF_TWO(round_ptr[0], log_scale);
    const int64_t tmpw = tmp * wt;
    const int abs_qcoeff =
        (int)((tmpw * quant) >> (16 - log_scale + AOM_QM_BITS));
    qcoeff_ptr[0] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
    const int dequant =
        (dequant_ptr * iwt + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;

    const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant) >> log_scale;
    dqcoeff_ptr[0] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
    if (abs_qcoeff) eob = 0;
  }
  *eob_ptr = eob + 1;
}

void av1_highbd_quantize_dc_facade(const tran_low_t *coeff_ptr,
                                   intptr_t n_coeffs, const MACROBLOCK_PLANE *p,
                                   tran_low_t *qcoeff_ptr,
                                   tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
                                   const SCAN_ORDER *sc,
                                   const QUANT_PARAM *qparam) {
  // obsolete skip_block
  const int skip_block = 0;
  const qm_val_t *qm_ptr = qparam->qmatrix;
  const qm_val_t *iqm_ptr = qparam->iqmatrix;
  (void)sc;

  highbd_quantize_dc(coeff_ptr, (int)n_coeffs, skip_block, p->round_QTX,
                     p->quant_fp_QTX[0], qcoeff_ptr, dqcoeff_ptr,
                     p->dequant_QTX[0], eob_ptr, qm_ptr, iqm_ptr,
                     qparam->log_scale);
}

void av1_highbd_quantize_fp_c(const tran_low_t *coeff_ptr, intptr_t count,
                              const int16_t *zbin_ptr, const int16_t *round_ptr,
                              const int16_t *quant_ptr,
                              const int16_t *quant_shift_ptr,
                              tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
                              const int16_t *dequant_ptr, uint16_t *eob_ptr,
                              const int16_t *scan, const int16_t *iscan,
                              int log_scale) {
  highbd_quantize_fp_helper_c(coeff_ptr, count, zbin_ptr, round_ptr, quant_ptr,
                              quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr,
                              dequant_ptr, eob_ptr, scan, iscan, NULL, NULL,
                              log_scale);
}

static void invert_quant(int16_t *quant, int16_t *shift, int d) {
  uint32_t t;
  int l, m;
  t = d;
  for (l = 0; t > 1; l++) t >>= 1;
  m = 1 + (1 << (16 + l)) / d;
  *quant = (int16_t)(m - (1 << 16));
  *shift = 1 << (16 - l);
}

static int get_qzbin_factor(int q, aom_bit_depth_t bit_depth) {
  const int quant = av1_dc_quant_Q3(q, 0, bit_depth);
  switch (bit_depth) {
    case AOM_BITS_8: return q == 0 ? 64 : (quant < 148 ? 84 : 80);
    case AOM_BITS_10: return q == 0 ? 64 : (quant < 592 ? 84 : 80);
    case AOM_BITS_12: return q == 0 ? 64 : (quant < 2368 ? 84 : 80);
    default:
      assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
      return -1;
  }
}

void av1_build_quantizer(aom_bit_depth_t bit_depth, int y_dc_delta_q,
                         int u_dc_delta_q, int u_ac_delta_q, int v_dc_delta_q,
                         int v_ac_delta_q, QUANTS *const quants,
                         Dequants *const deq) {
  int i, q, quant_Q3, quant_QTX;

  for (q = 0; q < QINDEX_RANGE; q++) {
    const int qzbin_factor = get_qzbin_factor(q, bit_depth);
    const int qrounding_factor = q == 0 ? 64 : 48;

    for (i = 0; i < 2; ++i) {
      int qrounding_factor_fp = 64;
      // y quantizer setup with original coeff shift of Q3
      quant_Q3 = i == 0 ? av1_dc_quant_Q3(q, y_dc_delta_q, bit_depth)
                        : av1_ac_quant_Q3(q, 0, bit_depth);
      // y quantizer with TX scale
      quant_QTX = i == 0 ? av1_dc_quant_QTX(q, y_dc_delta_q, bit_depth)
                         : av1_ac_quant_QTX(q, 0, bit_depth);
      invert_quant(&quants->y_quant[q][i], &quants->y_quant_shift[q][i],
                   quant_QTX);
      quants->y_quant_fp[q][i] = (1 << 16) / quant_QTX;
      quants->y_round_fp[q][i] = (qrounding_factor_fp * quant_QTX) >> 7;
      quants->y_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant_QTX, 7);
      quants->y_round[q][i] = (qrounding_factor * quant_QTX) >> 7;
      deq->y_dequant_QTX[q][i] = quant_QTX;
      deq->y_dequant_Q3[q][i] = quant_Q3;

      // u quantizer setup with original coeff shift of Q3
      quant_Q3 = i == 0 ? av1_dc_quant_Q3(q, u_dc_delta_q, bit_depth)
                        : av1_ac_quant_Q3(q, u_ac_delta_q, bit_depth);
      // u quantizer with TX scale
      quant_QTX = i == 0 ? av1_dc_quant_QTX(q, u_dc_delta_q, bit_depth)
                         : av1_ac_quant_QTX(q, u_ac_delta_q, bit_depth);
      invert_quant(&quants->u_quant[q][i], &quants->u_quant_shift[q][i],
                   quant_QTX);
      quants->u_quant_fp[q][i] = (1 << 16) / quant_QTX;
      quants->u_round_fp[q][i] = (qrounding_factor_fp * quant_QTX) >> 7;
      quants->u_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant_QTX, 7);
      quants->u_round[q][i] = (qrounding_factor * quant_QTX) >> 7;
      deq->u_dequant_QTX[q][i] = quant_QTX;
      deq->u_dequant_Q3[q][i] = quant_Q3;

      // v quantizer setup with original coeff shift of Q3
      quant_Q3 = i == 0 ? av1_dc_quant_Q3(q, v_dc_delta_q, bit_depth)
                        : av1_ac_quant_Q3(q, v_ac_delta_q, bit_depth);
      // v quantizer with TX scale
      quant_QTX = i == 0 ? av1_dc_quant_QTX(q, v_dc_delta_q, bit_depth)
                         : av1_ac_quant_QTX(q, v_ac_delta_q, bit_depth);
      invert_quant(&quants->v_quant[q][i], &quants->v_quant_shift[q][i],
                   quant_QTX);
      quants->v_quant_fp[q][i] = (1 << 16) / quant_QTX;
      quants->v_round_fp[q][i] = (qrounding_factor_fp * quant_QTX) >> 7;
      quants->v_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant_QTX, 7);
      quants->v_round[q][i] = (qrounding_factor * quant_QTX) >> 7;
      deq->v_dequant_QTX[q][i] = quant_QTX;
      deq->v_dequant_Q3[q][i] = quant_Q3;
    }

    for (i = 2; i < 8; i++) {  // 8: SIMD width
      quants->y_quant[q][i] = quants->y_quant[q][1];
      quants->y_quant_fp[q][i] = quants->y_quant_fp[q][1];
      quants->y_round_fp[q][i] = quants->y_round_fp[q][1];
      quants->y_quant_shift[q][i] = quants->y_quant_shift[q][1];
      quants->y_zbin[q][i] = quants->y_zbin[q][1];
      quants->y_round[q][i] = quants->y_round[q][1];
      deq->y_dequant_QTX[q][i] = deq->y_dequant_QTX[q][1];
      deq->y_dequant_Q3[q][i] = deq->y_dequant_Q3[q][1];

      quants->u_quant[q][i] = quants->u_quant[q][1];
      quants->u_quant_fp[q][i] = quants->u_quant_fp[q][1];
      quants->u_round_fp[q][i] = quants->u_round_fp[q][1];
      quants->u_quant_shift[q][i] = quants->u_quant_shift[q][1];
      quants->u_zbin[q][i] = quants->u_zbin[q][1];
      quants->u_round[q][i] = quants->u_round[q][1];
      deq->u_dequant_QTX[q][i] = deq->u_dequant_QTX[q][1];
      deq->u_dequant_Q3[q][i] = deq->u_dequant_Q3[q][1];
      quants->v_quant[q][i] = quants->u_quant[q][1];
      quants->v_quant_fp[q][i] = quants->v_quant_fp[q][1];
      quants->v_round_fp[q][i] = quants->v_round_fp[q][1];
      quants->v_quant_shift[q][i] = quants->v_quant_shift[q][1];
      quants->v_zbin[q][i] = quants->v_zbin[q][1];
      quants->v_round[q][i] = quants->v_round[q][1];
      deq->v_dequant_QTX[q][i] = deq->v_dequant_QTX[q][1];
      deq->v_dequant_Q3[q][i] = deq->v_dequant_Q3[q][1];
    }
  }
}

void av1_init_quantizer(AV1_COMP *cpi) {
  AV1_COMMON *const cm = &cpi->common;
  QUANTS *const quants = &cpi->quants;
  Dequants *const dequants = &cpi->dequants;
  av1_build_quantizer(cm->bit_depth, cm->y_dc_delta_q, cm->u_dc_delta_q,
                      cm->u_ac_delta_q, cm->v_dc_delta_q, cm->v_ac_delta_q,
                      quants, dequants);
}

void av1_init_plane_quantizers(const AV1_COMP *cpi, MACROBLOCK *x,
                               int segment_id) {
  const AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &x->e_mbd;
  const QUANTS *const quants = &cpi->quants;

  int current_qindex = AOMMAX(
      0, AOMMIN(QINDEX_RANGE - 1, cpi->oxcf.deltaq_mode != NO_DELTA_Q
                                      ? cm->base_qindex + xd->delta_qindex
                                      : cm->base_qindex));
  const int qindex = av1_get_qindex(&cm->seg, segment_id, current_qindex);
  const int rdmult = av1_compute_rd_mult(cpi, qindex + cm->y_dc_delta_q);
  int qmlevel = (xd->lossless[segment_id] || cm->using_qmatrix == 0)
                    ? NUM_QM_LEVELS - 1
                    : cm->qm_y;

  // Y
  x->plane[0].quant_QTX = quants->y_quant[qindex];
  x->plane[0].quant_fp_QTX = quants->y_quant_fp[qindex];
  x->plane[0].round_fp_QTX = quants->y_round_fp[qindex];
  x->plane[0].quant_shift_QTX = quants->y_quant_shift[qindex];
  x->plane[0].zbin_QTX = quants->y_zbin[qindex];
  x->plane[0].round_QTX = quants->y_round[qindex];
  x->plane[0].dequant_QTX = cpi->dequants.y_dequant_QTX[qindex];
  memcpy(&xd->plane[0].seg_qmatrix[segment_id], cm->gqmatrix[qmlevel][0],
         sizeof(cm->gqmatrix[qmlevel][0]));
  memcpy(&xd->plane[0].seg_iqmatrix[segment_id], cm->giqmatrix[qmlevel][0],
         sizeof(cm->giqmatrix[qmlevel][0]));
  xd->plane[0].dequant_Q3 = cpi->dequants.y_dequant_Q3[qindex];

  // U
  qmlevel = (xd->lossless[segment_id] || cm->using_qmatrix == 0)
                ? NUM_QM_LEVELS - 1
                : cm->qm_u;
  {
    x->plane[1].quant_QTX = quants->u_quant[qindex];
    x->plane[1].quant_fp_QTX = quants->u_quant_fp[qindex];
    x->plane[1].round_fp_QTX = quants->u_round_fp[qindex];
    x->plane[1].quant_shift_QTX = quants->u_quant_shift[qindex];
    x->plane[1].zbin_QTX = quants->u_zbin[qindex];
    x->plane[1].round_QTX = quants->u_round[qindex];
    x->plane[1].dequant_QTX = cpi->dequants.u_dequant_QTX[qindex];
    memcpy(&xd->plane[1].seg_qmatrix[segment_id], cm->gqmatrix[qmlevel][1],
           sizeof(cm->gqmatrix[qmlevel][1]));
    memcpy(&xd->plane[1].seg_iqmatrix[segment_id], cm->giqmatrix[qmlevel][1],
           sizeof(cm->giqmatrix[qmlevel][1]));
    x->plane[1].dequant_QTX = cpi->dequants.u_dequant_QTX[qindex];
    xd->plane[1].dequant_Q3 = cpi->dequants.u_dequant_Q3[qindex];
  }
  // V
  qmlevel = (xd->lossless[segment_id] || cm->using_qmatrix == 0)
                ? NUM_QM_LEVELS - 1
                : cm->qm_v;
  {
    x->plane[2].quant_QTX = quants->v_quant[qindex];
    x->plane[2].quant_fp_QTX = quants->v_quant_fp[qindex];
    x->plane[2].round_fp_QTX = quants->v_round_fp[qindex];
    x->plane[2].quant_shift_QTX = quants->v_quant_shift[qindex];
    x->plane[2].zbin_QTX = quants->v_zbin[qindex];
    x->plane[2].round_QTX = quants->v_round[qindex];
    x->plane[2].dequant_QTX = cpi->dequants.v_dequant_QTX[qindex];
    memcpy(&xd->plane[2].seg_qmatrix[segment_id], cm->gqmatrix[qmlevel][2],
           sizeof(cm->gqmatrix[qmlevel][2]));
    memcpy(&xd->plane[2].seg_iqmatrix[segment_id], cm->giqmatrix[qmlevel][2],
           sizeof(cm->giqmatrix[qmlevel][2]));
    x->plane[2].dequant_QTX = cpi->dequants.v_dequant_QTX[qindex];
    xd->plane[2].dequant_Q3 = cpi->dequants.v_dequant_Q3[qindex];
  }
  x->skip_block = segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP);
  x->qindex = qindex;

  set_error_per_bit(x, rdmult);

  av1_initialize_me_consts(cpi, x, qindex);
}

void av1_frame_init_quantizer(AV1_COMP *cpi) {
  MACROBLOCK *const x = &cpi->td.mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id);
}

void av1_set_quantizer(AV1_COMMON *cm, int q) {
  // quantizer has to be reinitialized with av1_init_quantizer() if any
  // delta_q changes.
  cm->base_qindex = AOMMAX(cm->delta_q_present_flag, q);
  cm->y_dc_delta_q = 0;
  cm->u_dc_delta_q = 0;
  cm->u_ac_delta_q = 0;
  cm->v_dc_delta_q = 0;
  cm->v_ac_delta_q = 0;
  cm->qm_y = aom_get_qmlevel(cm->base_qindex, cm->min_qmlevel, cm->max_qmlevel);
  cm->qm_u = aom_get_qmlevel(cm->base_qindex + cm->u_ac_delta_q,
                             cm->min_qmlevel, cm->max_qmlevel);

  if (!cm->separate_uv_delta_q)
    cm->qm_v = cm->qm_u;
  else
    cm->qm_v = aom_get_qmlevel(cm->base_qindex + cm->v_ac_delta_q,
                               cm->min_qmlevel, cm->max_qmlevel);
}

// Table that converts 0-63 Q-range values passed in outside to the Qindex
// range used internally.
static const int quantizer_to_qindex[] = {
  0,   4,   8,   12,  16,  20,  24,  28,  32,  36,  40,  44,  48,
  52,  56,  60,  64,  68,  72,  76,  80,  84,  88,  92,  96,  100,
  104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152,
  156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204,
  208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 249, 255,
};

int av1_quantizer_to_qindex(int quantizer) {
  return quantizer_to_qindex[quantizer];
}

int av1_qindex_to_quantizer(int qindex) {
  int quantizer;

  for (quantizer = 0; quantizer < 64; ++quantizer)
    if (quantizer_to_qindex[quantizer] >= qindex) return quantizer;

  return 63;
}