author | Ralph Giles <giles@mozilla.com> |
Tue, 16 Jun 2015 15:51:00 -0700 | |
changeset 249265 | 758e4197540257606a0d817855a1d294d53316a0 |
parent 249264 | 8d802bb49f338f87e72117baa2f35d62dad736fe |
child 249266 | 5988e0ef6cef730019c7e6649865c031879b50da |
push id | 28923 |
push user | ryanvm@gmail.com |
push date | Wed, 17 Jun 2015 18:57:11 +0000 |
treeherder | mozilla-central@099d6cd6725e [default view] [failures only] |
perfherder | [talos] [build metrics] [platform microbench] (compared to previous push) |
reviewers | k17e |
bugs | 1175322 |
milestone | 41.0a1 |
first release with | nightly linux32
nightly linux64
nightly mac
nightly win32
nightly win64
|
last release without | nightly linux32
nightly linux64
nightly mac
nightly win32
nightly win64
|
--- a/media/libstagefright/binding/MP4Metadata.rs +++ b/media/libstagefright/binding/MP4Metadata.rs @@ -36,17 +36,17 @@ pub struct TrackHeaderBox { pub name: u32, pub size: u64, pub track_id: u32, pub duration: u64, pub width: u32, pub height: u32, } -extern crate byteorder; +mod byteorder; use byteorder::{BigEndian, ReadBytesExt}; use std::io::{Read, Result, Seek, SeekFrom, Take}; use std::io::Cursor; /// Parse a box out of a data buffer. pub fn read_box_header<T: ReadBytesExt>(src: &mut T) -> Result<BoxHeader> { let tmp_size = try!(src.read_u32::<BigEndian>()); let name = try!(src.read_u32::<BigEndian>());
new file mode 100644 --- /dev/null +++ b/media/libstagefright/binding/byteorder/mod.rs @@ -0,0 +1,698 @@ +/*! +This crate provides convenience methods for encoding and decoding numbers +in either big-endian or little-endian order. + +The organization of the crate is pretty simple. A trait, `ByteOrder`, specifies +byte conversion methods for each type of number in Rust (sans numbers that have +a platform dependent size like `usize` and `isize`). Two types, `BigEndian` +and `LittleEndian` implement these methods. Finally, `ReadBytesExt` and +`WriteBytesExt` provide convenience methods available to all types that +implement `Read` and `Write`. + +# Examples + +Read unsigned 16 bit big-endian integers from a `Read` type: + +```rust +use std::io::Cursor; +use byteorder::{BigEndian, ReadBytesExt}; + +let mut rdr = Cursor::new(vec![2, 5, 3, 0]); +// Note that we use type parameters to indicate which kind of byte order +// we want! +assert_eq!(517, rdr.read_u16::<BigEndian>().unwrap()); +assert_eq!(768, rdr.read_u16::<BigEndian>().unwrap()); +``` + +Write unsigned 16 bit little-endian integers to a `Write` type: + +```rust +use byteorder::{LittleEndian, WriteBytesExt}; + +let mut wtr = vec![]; +wtr.write_u16::<LittleEndian>(517).unwrap(); +wtr.write_u16::<LittleEndian>(768).unwrap(); +assert_eq!(wtr, vec![5, 2, 0, 3]); +``` +*/ + +#![crate_name = "byteorder"] +#![doc(html_root_url = "http://burntsushi.net/rustdoc/byteorder")] + +#![deny(missing_docs)] + +use std::mem::transmute; + +pub use byteorder::new::{ReadBytesExt, WriteBytesExt, Error, Result}; + +// Re-export new so gecko and build us as a mod intead of a crate. +pub mod new; + +fn extend_sign(val: u64, nbytes: usize) -> i64 { + let shift = (8 - nbytes) * 8; + (val << shift) as i64 >> shift +} + +/// ByteOrder describes types that can serialize integers as bytes. +/// +/// Note that `Self` does not appear anywhere in this trait's definition! +/// Therefore, in order to use it, you'll need to use syntax like +/// `T::read_u16(&[0, 1])` where `T` implements `ByteOrder`. +/// +/// This crate provides two types that implement `ByteOrder`: `BigEndian` +/// and `LittleEndian`. +/// +/// # Examples +/// +/// Write and read `u32` numbers in little endian order: +/// +/// ```rust +/// use byteorder::{ByteOrder, LittleEndian}; +/// +/// let mut buf = [0; 4]; +/// LittleEndian::write_u32(&mut buf, 1_000_000); +/// assert_eq!(1_000_000, LittleEndian::read_u32(&buf)); +/// ``` +/// +/// Write and read `i16` numbers in big endian order: +/// +/// ```rust +/// use byteorder::{ByteOrder, BigEndian}; +/// +/// let mut buf = [0; 2]; +/// BigEndian::write_i16(&mut buf, -50_000); +/// assert_eq!(-50_000, BigEndian::read_i16(&buf)); +/// ``` +pub trait ByteOrder { + /// Reads an unsigned 16 bit integer from `buf`. + /// + /// Panics when `buf.len() < 2`. + fn read_u16(buf: &[u8]) -> u16; + + /// Reads an unsigned 32 bit integer from `buf`. + /// + /// Panics when `buf.len() < 4`. + fn read_u32(buf: &[u8]) -> u32; + + /// Reads an unsigned 64 bit integer from `buf`. + /// + /// Panics when `buf.len() < 8`. + fn read_u64(buf: &[u8]) -> u64; + + /// Reads an unsigned n-bytes integer from `buf`. + /// + /// Panics when `nbytes < 1` or `nbytes > 8` or + /// `buf.len() < nbytes` + fn read_uint(buf: &[u8], nbytes: usize) -> u64; + + /// Writes an unsigned 16 bit integer `n` to `buf`. + /// + /// Panics when `buf.len() < 2`. + fn write_u16(buf: &mut [u8], n: u16); + + /// Writes an unsigned 32 bit integer `n` to `buf`. + /// + /// Panics when `buf.len() < 4`. + fn write_u32(buf: &mut [u8], n: u32); + + /// Writes an unsigned 64 bit integer `n` to `buf`. + /// + /// Panics when `buf.len() < 8`. + fn write_u64(buf: &mut [u8], n: u64); + + /// Reads a signed 16 bit integer from `buf`. + /// + /// Panics when `buf.len() < 2`. + fn read_i16(buf: &[u8]) -> i16 { + Self::read_u16(buf) as i16 + } + + /// Reads a signed 32 bit integer from `buf`. + /// + /// Panics when `buf.len() < 4`. + fn read_i32(buf: &[u8]) -> i32 { + Self::read_u32(buf) as i32 + } + + /// Reads a signed 64 bit integer from `buf`. + /// + /// Panics when `buf.len() < 8`. + fn read_i64(buf: &[u8]) -> i64 { + Self::read_u64(buf) as i64 + } + + /// Reads a signed n-bytes integer from `buf`. + /// + /// Panics when `nbytes < 1` or `nbytes > 8` or + /// `buf.len() < nbytes` + fn read_int(buf: &[u8], nbytes: usize) -> i64 { + extend_sign(Self::read_uint(buf, nbytes), nbytes) + } + + /// Reads a IEEE754 single-precision (4 bytes) floating point number. + /// + /// Panics when `buf.len() < 4`. + fn read_f32(buf: &[u8]) -> f32 { + unsafe { transmute(Self::read_u32(buf)) } + } + + /// Reads a IEEE754 double-precision (8 bytes) floating point number. + /// + /// Panics when `buf.len() < 8`. + fn read_f64(buf: &[u8]) -> f64 { + unsafe { transmute(Self::read_u64(buf)) } + } + + /// Writes a signed 16 bit integer `n` to `buf`. + /// + /// Panics when `buf.len() < 2`. + fn write_i16(buf: &mut [u8], n: i16) { + Self::write_u16(buf, n as u16) + } + + /// Writes a signed 32 bit integer `n` to `buf`. + /// + /// Panics when `buf.len() < 4`. + fn write_i32(buf: &mut [u8], n: i32) { + Self::write_u32(buf, n as u32) + } + + /// Writes a signed 64 bit integer `n` to `buf`. + /// + /// Panics when `buf.len() < 8`. + fn write_i64(buf: &mut [u8], n: i64) { + Self::write_u64(buf, n as u64) + } + + /// Writes a IEEE754 single-precision (4 bytes) floating point number. + /// + /// Panics when `buf.len() < 4`. + fn write_f32(buf: &mut [u8], n: f32) { + Self::write_u32(buf, unsafe { transmute(n) }) + } + + /// Writes a IEEE754 double-precision (8 bytes) floating point number. + /// + /// Panics when `buf.len() < 8`. + fn write_f64(buf: &mut [u8], n: f64) { + Self::write_u64(buf, unsafe { transmute(n) }) + } +} + +/// Defines big-endian serialization. +/// +/// Note that this type has no value constructor. It is used purely at the +/// type level. +#[allow(missing_copy_implementations)] pub enum BigEndian {} + +/// Defines little-endian serialization. +/// +/// Note that this type has no value constructor. It is used purely at the +/// type level. +#[allow(missing_copy_implementations)] pub enum LittleEndian {} + +/// Defines system native-endian serialization. +/// +/// Note that this type has no value constructor. It is used purely at the +/// type level. +#[cfg(target_endian = "little")] +pub type NativeEndian = LittleEndian; + +/// Defines system native-endian serialization. +/// +/// Note that this type has no value constructor. It is used purely at the +/// type level. +#[cfg(target_endian = "big")] +pub type NativeEndian = BigEndian; + +macro_rules! read_num_bytes { + ($ty:ty, $size:expr, $src:expr, $which:ident) => ({ + assert!($src.len() >= $size); // critical for memory safety! + unsafe { + (*($src.as_ptr() as *const $ty)).$which() + } + }); + ($ty:ty, $size:expr, le $bytes:expr, $src:expr, $which:ident) => ({ + use std::ptr::copy_nonoverlapping; + + assert!($bytes > 0 && $bytes < 9 && $bytes <= $src.len()); + let mut out = [0u8; $size]; + let ptr_out = out.as_mut_ptr(); + unsafe { + copy_nonoverlapping($src.as_ptr(), ptr_out, $bytes); + (*(ptr_out as *const $ty)).$which() + } + }); + ($ty:ty, $size:expr, be $bytes:expr, $src:expr, $which:ident) => ({ + use std::ptr::copy_nonoverlapping; + + assert!($bytes > 0 && $bytes < 9 && $bytes <= $src.len()); + let mut out = [0u8; $size]; + let ptr_out = out.as_mut_ptr(); + unsafe { + copy_nonoverlapping($src.as_ptr(), + ptr_out.offset((8 - $bytes) as isize), $bytes); + (*(ptr_out as *const $ty)).$which() + } + }); +} + +macro_rules! write_num_bytes { + ($ty:ty, $size:expr, $n:expr, $dst:expr, $which:ident) => ({ + use std::ptr::copy_nonoverlapping; + + assert!($dst.len() >= $size); // critical for memory safety! + unsafe { + // N.B. https://github.com/rust-lang/rust/issues/22776 + let bytes = transmute::<_, [u8; $size]>($n.$which()); + copy_nonoverlapping((&bytes).as_ptr(), $dst.as_mut_ptr(), $size); + } + }); +} + +impl ByteOrder for BigEndian { + fn read_u16(buf: &[u8]) -> u16 { + read_num_bytes!(u16, 2, buf, to_be) + } + + fn read_u32(buf: &[u8]) -> u32 { + read_num_bytes!(u32, 4, buf, to_be) + } + + fn read_u64(buf: &[u8]) -> u64 { + read_num_bytes!(u64, 8, buf, to_be) + } + + fn read_uint(buf: &[u8], nbytes: usize) -> u64 { + read_num_bytes!(u64, 8, be nbytes, buf, to_be) + } + + fn write_u16(buf: &mut [u8], n: u16) { + write_num_bytes!(u16, 2, n, buf, to_be); + } + + fn write_u32(buf: &mut [u8], n: u32) { + write_num_bytes!(u32, 4, n, buf, to_be); + } + + fn write_u64(buf: &mut [u8], n: u64) { + write_num_bytes!(u64, 8, n, buf, to_be); + } +} + +impl ByteOrder for LittleEndian { + fn read_u16(buf: &[u8]) -> u16 { + read_num_bytes!(u16, 2, buf, to_le) + } + + fn read_u32(buf: &[u8]) -> u32 { + read_num_bytes!(u32, 4, buf, to_le) + } + + fn read_u64(buf: &[u8]) -> u64 { + read_num_bytes!(u64, 8, buf, to_le) + } + + fn read_uint(buf: &[u8], nbytes: usize) -> u64 { + read_num_bytes!(u64, 8, le nbytes, buf, to_le) + } + + fn write_u16(buf: &mut [u8], n: u16) { + write_num_bytes!(u16, 2, n, buf, to_le); + } + + fn write_u32(buf: &mut [u8], n: u32) { + write_num_bytes!(u32, 4, n, buf, to_le); + } + + fn write_u64(buf: &mut [u8], n: u64) { + write_num_bytes!(u64, 8, n, buf, to_le); + } +} + +#[cfg(test)] +mod test { + extern crate quickcheck; + extern crate rand; + + use test::rand::thread_rng; + use test::quickcheck::{QuickCheck, StdGen, Testable}; + + const U64_MAX: u64 = ::std::u64::MAX; + const I64_MAX: u64 = ::std::i64::MAX as u64; + + fn qc_sized<A: Testable>(f: A, size: u64) { + QuickCheck::new() + .gen(StdGen::new(thread_rng(), size as usize)) + .tests(1_00) + .max_tests(10_000) + .quickcheck(f); + } + + macro_rules! qc_byte_order { + ($name:ident, $ty_int:ident, $max:expr, + $bytes:expr, $read:ident, $write:ident) => ( + mod $name { + use {BigEndian, ByteOrder, NativeEndian, LittleEndian}; + use super::qc_sized; + + #[test] + fn big_endian() { + let max = ($max - 1) >> (8 * (8 - $bytes)); + fn prop(n: $ty_int) -> bool { + let mut buf = [0; 8]; + BigEndian::$write(&mut buf, n); + n == BigEndian::$read(&mut buf[8 - $bytes..], $bytes) + } + qc_sized(prop as fn($ty_int) -> bool, max); + } + + #[test] + fn little_endian() { + let max = ($max - 1) >> (8 * (8 - $bytes)); + fn prop(n: $ty_int) -> bool { + let mut buf = [0; 8]; + LittleEndian::$write(&mut buf, n); + n == LittleEndian::$read(&mut buf[..$bytes], $bytes) + } + qc_sized(prop as fn($ty_int) -> bool, max); + } + + #[test] + fn native_endian() { + let max = ($max - 1) >> (8 * (8 - $bytes)); + fn prop(n: $ty_int) -> bool { + let mut buf = [0; 8]; + NativeEndian::$write(&mut buf, n); + n == NativeEndian::$read(&mut buf[..$bytes], $bytes) + } + qc_sized(prop as fn($ty_int) -> bool, max); + } + } + ); + ($name:ident, $ty_int:ident, $max:expr, + $read:ident, $write:ident) => ( + mod $name { + use std::mem::size_of; + use {BigEndian, ByteOrder, NativeEndian, LittleEndian}; + use super::qc_sized; + + #[test] + fn big_endian() { + fn prop(n: $ty_int) -> bool { + let bytes = size_of::<$ty_int>(); + let mut buf = [0; 8]; + BigEndian::$write(&mut buf[8 - bytes..], n); + n == BigEndian::$read(&mut buf[8 - bytes..]) + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + + #[test] + fn little_endian() { + fn prop(n: $ty_int) -> bool { + let bytes = size_of::<$ty_int>(); + let mut buf = [0; 8]; + LittleEndian::$write(&mut buf[..bytes], n); + n == LittleEndian::$read(&mut buf[..bytes]) + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + + #[test] + fn native_endian() { + fn prop(n: $ty_int) -> bool { + let bytes = size_of::<$ty_int>(); + let mut buf = [0; 8]; + NativeEndian::$write(&mut buf[..bytes], n); + n == NativeEndian::$read(&mut buf[..bytes]) + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + } + ); + } + + qc_byte_order!(prop_u16, u16, ::std::u16::MAX as u64, read_u16, write_u16); + qc_byte_order!(prop_i16, i16, ::std::i16::MAX as u64, read_i16, write_i16); + qc_byte_order!(prop_u32, u32, ::std::u32::MAX as u64, read_u32, write_u32); + qc_byte_order!(prop_i32, i32, ::std::i32::MAX as u64, read_i32, write_i32); + qc_byte_order!(prop_u64, u64, ::std::u64::MAX as u64, read_u64, write_u64); + qc_byte_order!(prop_i64, i64, ::std::i64::MAX as u64, read_i64, write_i64); + qc_byte_order!(prop_f32, f32, ::std::u64::MAX as u64, read_f32, write_f32); + qc_byte_order!(prop_f64, f64, ::std::i64::MAX as u64, read_f64, write_f64); + + qc_byte_order!(prop_uint_1, u64, super::U64_MAX, 1, read_uint, write_u64); + qc_byte_order!(prop_uint_2, u64, super::U64_MAX, 2, read_uint, write_u64); + qc_byte_order!(prop_uint_3, u64, super::U64_MAX, 3, read_uint, write_u64); + qc_byte_order!(prop_uint_4, u64, super::U64_MAX, 4, read_uint, write_u64); + qc_byte_order!(prop_uint_5, u64, super::U64_MAX, 5, read_uint, write_u64); + qc_byte_order!(prop_uint_6, u64, super::U64_MAX, 6, read_uint, write_u64); + qc_byte_order!(prop_uint_7, u64, super::U64_MAX, 7, read_uint, write_u64); + qc_byte_order!(prop_uint_8, u64, super::U64_MAX, 8, read_uint, write_u64); + + qc_byte_order!(prop_int_1, i64, super::I64_MAX, 1, read_int, write_i64); + qc_byte_order!(prop_int_2, i64, super::I64_MAX, 2, read_int, write_i64); + qc_byte_order!(prop_int_3, i64, super::I64_MAX, 3, read_int, write_i64); + qc_byte_order!(prop_int_4, i64, super::I64_MAX, 4, read_int, write_i64); + qc_byte_order!(prop_int_5, i64, super::I64_MAX, 5, read_int, write_i64); + qc_byte_order!(prop_int_6, i64, super::I64_MAX, 6, read_int, write_i64); + qc_byte_order!(prop_int_7, i64, super::I64_MAX, 7, read_int, write_i64); + qc_byte_order!(prop_int_8, i64, super::I64_MAX, 8, read_int, write_i64); + + macro_rules! qc_bytes_ext { + ($name:ident, $ty_int:ident, $max:expr, + $bytes:expr, $read:ident, $write:ident) => ( + mod $name { + use std::io::Cursor; + use { + ReadBytesExt, WriteBytesExt, + BigEndian, NativeEndian, LittleEndian, + }; + use super::qc_sized; + + #[test] + fn big_endian() { + let max = ($max - 1) >> (8 * (8 - $bytes)); + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<BigEndian>(n).unwrap(); + let mut rdr = Vec::new(); + rdr.extend(wtr[8 - $bytes..].iter().map(|&x|x)); + let mut rdr = Cursor::new(rdr); + n == rdr.$read::<BigEndian>($bytes).unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, max); + } + + #[test] + fn little_endian() { + let max = ($max - 1) >> (8 * (8 - $bytes)); + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<LittleEndian>(n).unwrap(); + let mut rdr = Cursor::new(wtr); + n == rdr.$read::<LittleEndian>($bytes).unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, max); + } + + #[test] + fn native_endian() { + let max = ($max - 1) >> (8 * (8 - $bytes)); + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<NativeEndian>(n).unwrap(); + let mut rdr = Cursor::new(wtr); + n == rdr.$read::<NativeEndian>($bytes).unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, max); + } + } + ); + ($name:ident, $ty_int:ident, $max:expr, $read:ident, $write:ident) => ( + mod $name { + use std::io::Cursor; + use { + ReadBytesExt, WriteBytesExt, + BigEndian, NativeEndian, LittleEndian, + }; + use super::qc_sized; + + #[test] + fn big_endian() { + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<BigEndian>(n).unwrap(); + let mut rdr = Cursor::new(wtr); + n == rdr.$read::<BigEndian>().unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + + #[test] + fn little_endian() { + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<LittleEndian>(n).unwrap(); + let mut rdr = Cursor::new(wtr); + n == rdr.$read::<LittleEndian>().unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + + #[test] + fn native_endian() { + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<NativeEndian>(n).unwrap(); + let mut rdr = Cursor::new(wtr); + n == rdr.$read::<NativeEndian>().unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + } + ); + } + + qc_bytes_ext!(prop_ext_u16, u16, ::std::u16::MAX as u64, read_u16, write_u16); + qc_bytes_ext!(prop_ext_i16, i16, ::std::i16::MAX as u64, read_i16, write_i16); + qc_bytes_ext!(prop_ext_u32, u32, ::std::u32::MAX as u64, read_u32, write_u32); + qc_bytes_ext!(prop_ext_i32, i32, ::std::i32::MAX as u64, read_i32, write_i32); + qc_bytes_ext!(prop_ext_u64, u64, ::std::u64::MAX as u64, read_u64, write_u64); + qc_bytes_ext!(prop_ext_i64, i64, ::std::i64::MAX as u64, read_i64, write_i64); + qc_bytes_ext!(prop_ext_f32, f32, ::std::u64::MAX as u64, read_f32, write_f32); + qc_bytes_ext!(prop_ext_f64, f64, ::std::i64::MAX as u64, read_f64, write_f64); + + qc_bytes_ext!(prop_ext_uint_1, u64, super::U64_MAX, 1, read_uint, write_u64); + qc_bytes_ext!(prop_ext_uint_2, u64, super::U64_MAX, 2, read_uint, write_u64); + qc_bytes_ext!(prop_ext_uint_3, u64, super::U64_MAX, 3, read_uint, write_u64); + qc_bytes_ext!(prop_ext_uint_4, u64, super::U64_MAX, 4, read_uint, write_u64); + qc_bytes_ext!(prop_ext_uint_5, u64, super::U64_MAX, 5, read_uint, write_u64); + qc_bytes_ext!(prop_ext_uint_6, u64, super::U64_MAX, 6, read_uint, write_u64); + qc_bytes_ext!(prop_ext_uint_7, u64, super::U64_MAX, 7, read_uint, write_u64); + qc_bytes_ext!(prop_ext_uint_8, u64, super::U64_MAX, 8, read_uint, write_u64); + + qc_bytes_ext!(prop_ext_int_1, i64, super::I64_MAX, 1, read_int, write_i64); + qc_bytes_ext!(prop_ext_int_2, i64, super::I64_MAX, 2, read_int, write_i64); + qc_bytes_ext!(prop_ext_int_3, i64, super::I64_MAX, 3, read_int, write_i64); + qc_bytes_ext!(prop_ext_int_4, i64, super::I64_MAX, 4, read_int, write_i64); + qc_bytes_ext!(prop_ext_int_5, i64, super::I64_MAX, 5, read_int, write_i64); + qc_bytes_ext!(prop_ext_int_6, i64, super::I64_MAX, 6, read_int, write_i64); + qc_bytes_ext!(prop_ext_int_7, i64, super::I64_MAX, 7, read_int, write_i64); + qc_bytes_ext!(prop_ext_int_8, i64, super::I64_MAX, 8, read_int, write_i64); + + // Test that all of the byte conversion functions panic when given a + // buffer that is too small. + // + // These tests are critical to ensure safety, otherwise we might end up + // with a buffer overflow. + macro_rules! too_small { + ($name:ident, $maximally_small:expr, $zero:expr, + $read:ident, $write:ident) => ( + mod $name { + use {BigEndian, ByteOrder, NativeEndian, LittleEndian}; + + #[test] + #[should_panic] + fn read_big_endian() { + let buf = [0; $maximally_small]; + BigEndian::$read(&buf); + } + + #[test] + #[should_panic] + fn read_little_endian() { + let buf = [0; $maximally_small]; + LittleEndian::$read(&buf); + } + + #[test] + #[should_panic] + fn read_native_endian() { + let buf = [0; $maximally_small]; + NativeEndian::$read(&buf); + } + + #[test] + #[should_panic] + fn write_big_endian() { + let mut buf = [0; $maximally_small]; + BigEndian::$write(&mut buf, $zero); + } + + #[test] + #[should_panic] + fn write_little_endian() { + let mut buf = [0; $maximally_small]; + LittleEndian::$write(&mut buf, $zero); + } + + #[test] + #[should_panic] + fn write_native_endian() { + let mut buf = [0; $maximally_small]; + NativeEndian::$write(&mut buf, $zero); + } + } + ); + ($name:ident, $maximally_small:expr, $read:ident) => ( + mod $name { + use {BigEndian, ByteOrder, NativeEndian, LittleEndian}; + + #[test] + #[should_panic] + fn read_big_endian() { + let buf = [0; $maximally_small]; + BigEndian::$read(&buf, $maximally_small + 1); + } + + #[test] + #[should_panic] + fn read_little_endian() { + let buf = [0; $maximally_small]; + LittleEndian::$read(&buf, $maximally_small + 1); + } + + #[test] + #[should_panic] + fn read_native_endian() { + let buf = [0; $maximally_small]; + NativeEndian::$read(&buf, $maximally_small + 1); + } + } + ); + } + + too_small!(small_u16, 1, 0, read_u16, write_u16); + too_small!(small_i16, 1, 0, read_i16, write_i16); + too_small!(small_u32, 3, 0, read_u32, write_u32); + too_small!(small_i32, 3, 0, read_i32, write_i32); + too_small!(small_u64, 7, 0, read_u64, write_u64); + too_small!(small_i64, 7, 0, read_i64, write_i64); + too_small!(small_f32, 3, 0.0, read_f32, write_f32); + too_small!(small_f64, 7, 0.0, read_f64, write_f64); + + too_small!(small_uint_1, 1, read_uint); + too_small!(small_uint_2, 2, read_uint); + too_small!(small_uint_3, 3, read_uint); + too_small!(small_uint_4, 4, read_uint); + too_small!(small_uint_5, 5, read_uint); + too_small!(small_uint_6, 6, read_uint); + too_small!(small_uint_7, 7, read_uint); + + too_small!(small_int_1, 1, read_int); + too_small!(small_int_2, 2, read_int); + too_small!(small_int_3, 3, read_int); + too_small!(small_int_4, 4, read_int); + too_small!(small_int_5, 5, read_int); + too_small!(small_int_6, 6, read_int); + too_small!(small_int_7, 7, read_int); + + #[test] + fn uint_bigger_buffer() { + use {ByteOrder, LittleEndian}; + let n = LittleEndian::read_uint(&[1, 2, 3, 4, 5, 6, 7, 8], 5); + assert_eq!(n, 0x0504030201); + } +}
new file mode 100644 --- /dev/null +++ b/media/libstagefright/binding/byteorder/new.rs @@ -0,0 +1,297 @@ +use std::error; +use std::fmt; +use std::io; +use std::result; + +use byteorder::ByteOrder; + +/// A short-hand for `result::Result<T, byteorder::Error>`. +pub type Result<T> = result::Result<T, Error>; + +/// An error type for reading bytes. +/// +/// This is a thin wrapper over the standard `io::Error` type. Namely, it +/// adds one additional error case: an unexpected EOF. +/// +/// Note that this error is also used for the `write` methods to keep things +/// consistent. +#[derive(Debug)] +pub enum Error { + /// An unexpected EOF. + /// + /// This occurs when a call to the underlying reader returns `0` bytes, + /// but more bytes are required to decode a meaningful value. + UnexpectedEOF, + /// Any underlying IO error that occurs while reading bytes. + Io(io::Error), +} + +impl From<io::Error> for Error { + fn from(err: io::Error) -> Error { Error::Io(err) } +} + +impl From<Error> for io::Error { + fn from(err: Error) -> io::Error { + match err { + Error::Io(err) => err, + Error::UnexpectedEOF => io::Error::new(io::ErrorKind::Other, + "unexpected EOF") + } + } +} + +impl fmt::Display for Error { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + match *self { + Error::UnexpectedEOF => write!(f, "Unexpected end of file."), + Error::Io(ref err) => err.fmt(f), + } + } +} + +impl error::Error for Error { + fn description(&self) -> &str { + match *self { + Error::UnexpectedEOF => "Unexpected end of file.", + Error::Io(ref err) => error::Error::description(err), + } + } + + fn cause(&self) -> Option<&error::Error> { + match *self { + Error::UnexpectedEOF => None, + Error::Io(ref err) => err.cause(), + } + } +} + +/// Extends `Read` with methods for reading numbers. (For `std::io`.) +/// +/// Most of the methods defined here have an unconstrained type parameter that +/// must be explicitly instantiated. Typically, it is instantiated with either +/// the `BigEndian` or `LittleEndian` types defined in this crate. +/// +/// # Examples +/// +/// Read unsigned 16 bit big-endian integers from a `Read`: +/// +/// ```rust +/// use std::io::Cursor; +/// use byteorder::{BigEndian, ReadBytesExt}; +/// +/// let mut rdr = Cursor::new(vec![2, 5, 3, 0]); +/// assert_eq!(517, rdr.read_u16::<BigEndian>().unwrap()); +/// assert_eq!(768, rdr.read_u16::<BigEndian>().unwrap()); +/// ``` +pub trait ReadBytesExt: io::Read { + /// Reads an unsigned 8 bit integer from the underlying reader. + /// + /// Note that since this reads a single byte, no byte order conversions + /// are used. It is included for completeness. + fn read_u8(&mut self) -> Result<u8> { + let mut buf = [0; 1]; + try!(read_full(self, &mut buf)); + Ok(buf[0]) + } + + /// Reads a signed 8 bit integer from the underlying reader. + /// + /// Note that since this reads a single byte, no byte order conversions + /// are used. It is included for completeness. + fn read_i8(&mut self) -> Result<i8> { + let mut buf = [0; 1]; + try!(read_full(self, &mut buf)); + Ok(buf[0] as i8) + } + + /// Reads an unsigned 16 bit integer from the underlying reader. + fn read_u16<T: ByteOrder>(&mut self) -> Result<u16> { + let mut buf = [0; 2]; + try!(read_full(self, &mut buf)); + Ok(T::read_u16(&buf)) + } + + /// Reads a signed 16 bit integer from the underlying reader. + fn read_i16<T: ByteOrder>(&mut self) -> Result<i16> { + let mut buf = [0; 2]; + try!(read_full(self, &mut buf)); + Ok(T::read_i16(&buf)) + } + + /// Reads an unsigned 32 bit integer from the underlying reader. + fn read_u32<T: ByteOrder>(&mut self) -> Result<u32> { + let mut buf = [0; 4]; + try!(read_full(self, &mut buf)); + Ok(T::read_u32(&buf)) + } + + /// Reads a signed 32 bit integer from the underlying reader. + fn read_i32<T: ByteOrder>(&mut self) -> Result<i32> { + let mut buf = [0; 4]; + try!(read_full(self, &mut buf)); + Ok(T::read_i32(&buf)) + } + + /// Reads an unsigned 64 bit integer from the underlying reader. + fn read_u64<T: ByteOrder>(&mut self) -> Result<u64> { + let mut buf = [0; 8]; + try!(read_full(self, &mut buf)); + Ok(T::read_u64(&buf)) + } + + /// Reads a signed 64 bit integer from the underlying reader. + fn read_i64<T: ByteOrder>(&mut self) -> Result<i64> { + let mut buf = [0; 8]; + try!(read_full(self, &mut buf)); + Ok(T::read_i64(&buf)) + } + + /// Reads an unsigned n-bytes integer from the underlying reader. + fn read_uint<T: ByteOrder>(&mut self, nbytes: usize) -> Result<u64> { + let mut buf = [0; 8]; + try!(read_full(self, &mut buf[..nbytes])); + Ok(T::read_uint(&buf[..nbytes], nbytes)) + } + + /// Reads a signed n-bytes integer from the underlying reader. + fn read_int<T: ByteOrder>(&mut self, nbytes: usize) -> Result<i64> { + let mut buf = [0; 8]; + try!(read_full(self, &mut buf[..nbytes])); + Ok(T::read_int(&buf[..nbytes], nbytes)) + } + + /// Reads a IEEE754 single-precision (4 bytes) floating point number from + /// the underlying reader. + fn read_f32<T: ByteOrder>(&mut self) -> Result<f32> { + let mut buf = [0; 4]; + try!(read_full(self, &mut buf)); + Ok(T::read_f32(&buf)) + } + + /// Reads a IEEE754 double-precision (8 bytes) floating point number from + /// the underlying reader. + fn read_f64<T: ByteOrder>(&mut self) -> Result<f64> { + let mut buf = [0; 8]; + try!(read_full(self, &mut buf)); + Ok(T::read_f64(&buf)) + } +} + +/// All types that implement `Read` get methods defined in `ReadBytesExt` +/// for free. +impl<R: io::Read + ?Sized> ReadBytesExt for R {} + +fn read_full<R: io::Read + ?Sized>(rdr: &mut R, buf: &mut [u8]) -> Result<()> { + let mut nread = 0usize; + while nread < buf.len() { + match rdr.read(&mut buf[nread..]) { + Ok(0) => return Err(Error::UnexpectedEOF), + Ok(n) => nread += n, + Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}, + Err(e) => return Err(From::from(e)) + } + } + Ok(()) +} + +fn write_all<W: io::Write + ?Sized>(wtr: &mut W, buf: &[u8]) -> Result<()> { + wtr.write_all(buf).map_err(From::from) +} + +/// Extends `Write` with methods for writing numbers. (For `std::io`.) +/// +/// Most of the methods defined here have an unconstrained type parameter that +/// must be explicitly instantiated. Typically, it is instantiated with either +/// the `BigEndian` or `LittleEndian` types defined in this crate. +/// +/// # Examples +/// +/// Write unsigned 16 bit big-endian integers to a `Write`: +/// +/// ```rust +/// use byteorder::{BigEndian, WriteBytesExt}; +/// +/// let mut wtr = vec![]; +/// wtr.write_u16::<BigEndian>(517).unwrap(); +/// wtr.write_u16::<BigEndian>(768).unwrap(); +/// assert_eq!(wtr, vec![2, 5, 3, 0]); +/// ``` +pub trait WriteBytesExt: io::Write { + /// Writes an unsigned 8 bit integer to the underlying writer. + /// + /// Note that since this writes a single byte, no byte order conversions + /// are used. It is included for completeness. + fn write_u8(&mut self, n: u8) -> Result<()> { + write_all(self, &[n]) + } + + /// Writes a signed 8 bit integer to the underlying writer. + /// + /// Note that since this writes a single byte, no byte order conversions + /// are used. It is included for completeness. + fn write_i8(&mut self, n: i8) -> Result<()> { + write_all(self, &[n as u8]) + } + + /// Writes an unsigned 16 bit integer to the underlying writer. + fn write_u16<T: ByteOrder>(&mut self, n: u16) -> Result<()> { + let mut buf = [0; 2]; + T::write_u16(&mut buf, n); + write_all(self, &buf) + } + + /// Writes a signed 16 bit integer to the underlying writer. + fn write_i16<T: ByteOrder>(&mut self, n: i16) -> Result<()> { + let mut buf = [0; 2]; + T::write_i16(&mut buf, n); + write_all(self, &buf) + } + + /// Writes an unsigned 32 bit integer to the underlying writer. + fn write_u32<T: ByteOrder>(&mut self, n: u32) -> Result<()> { + let mut buf = [0; 4]; + T::write_u32(&mut buf, n); + write_all(self, &buf) + } + + /// Writes a signed 32 bit integer to the underlying writer. + fn write_i32<T: ByteOrder>(&mut self, n: i32) -> Result<()> { + let mut buf = [0; 4]; + T::write_i32(&mut buf, n); + write_all(self, &buf) + } + + /// Writes an unsigned 64 bit integer to the underlying writer. + fn write_u64<T: ByteOrder>(&mut self, n: u64) -> Result<()> { + let mut buf = [0; 8]; + T::write_u64(&mut buf, n); + write_all(self, &buf) + } + + /// Writes a signed 64 bit integer to the underlying writer. + fn write_i64<T: ByteOrder>(&mut self, n: i64) -> Result<()> { + let mut buf = [0; 8]; + T::write_i64(&mut buf, n); + write_all(self, &buf) + } + + /// Writes a IEEE754 single-precision (4 bytes) floating point number to + /// the underlying writer. + fn write_f32<T: ByteOrder>(&mut self, n: f32) -> Result<()> { + let mut buf = [0; 4]; + T::write_f32(&mut buf, n); + write_all(self, &buf) + } + + /// Writes a IEEE754 double-precision (8 bytes) floating point number to + /// the underlying writer. + fn write_f64<T: ByteOrder>(&mut self, n: f64) -> Result<()> { + let mut buf = [0; 8]; + T::write_f64(&mut buf, n); + write_all(self, &buf) + } +} + +/// All types that implement `Write` get methods defined in `WriteBytesExt` +/// for free. +impl<W: io::Write + ?Sized> WriteBytesExt for W {}