new file mode 100644
--- /dev/null
+++ b/js/src/dtoa.c
@@ -0,0 +1,3332 @@
+/****************************************************************
+ *
+ * The author of this software is David M. Gay.
+ *
+ * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose without fee is hereby granted, provided that this entire notice
+ * is included in all copies of any software which is or includes a copy
+ * or modification of this software and in all copies of the supporting
+ * documentation for such software.
+ *
+ * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
+ * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
+ * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
+ * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
+ *
+ ***************************************************************/
+
+/* Please send bug reports to David M. Gay (dmg at acm dot org,
+ * with " at " changed at "@" and " dot " changed to "."). */
+
+/* On a machine with IEEE extended-precision registers, it is
+ * necessary to specify double-precision (53-bit) rounding precision
+ * before invoking strtod or dtoa. If the machine uses (the equivalent
+ * of) Intel 80x87 arithmetic, the call
+ * _control87(PC_53, MCW_PC);
+ * does this with many compilers. Whether this or another call is
+ * appropriate depends on the compiler; for this to work, it may be
+ * necessary to #include "float.h" or another system-dependent header
+ * file.
+ */
+
+/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
+ *
+ * This strtod returns a nearest machine number to the input decimal
+ * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
+ * broken by the IEEE round-even rule. Otherwise ties are broken by
+ * biased rounding (add half and chop).
+ *
+ * Inspired loosely by William D. Clinger's paper "How to Read Floating
+ * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
+ *
+ * Modifications:
+ *
+ * 1. We only require IEEE, IBM, or VAX double-precision
+ * arithmetic (not IEEE double-extended).
+ * 2. We get by with floating-point arithmetic in a case that
+ * Clinger missed -- when we're computing d * 10^n
+ * for a small integer d and the integer n is not too
+ * much larger than 22 (the maximum integer k for which
+ * we can represent 10^k exactly), we may be able to
+ * compute (d*10^k) * 10^(e-k) with just one roundoff.
+ * 3. Rather than a bit-at-a-time adjustment of the binary
+ * result in the hard case, we use floating-point
+ * arithmetic to determine the adjustment to within
+ * one bit; only in really hard cases do we need to
+ * compute a second residual.
+ * 4. Because of 3., we don't need a large table of powers of 10
+ * for ten-to-e (just some small tables, e.g. of 10^k
+ * for 0 <= k <= 22).
+ */
+
+/*
+ * #define IEEE_8087 for IEEE-arithmetic machines where the least
+ * significant byte has the lowest address.
+ * #define IEEE_MC68k for IEEE-arithmetic machines where the most
+ * significant byte has the lowest address.
+ * #define Long int on machines with 32-bit ints and 64-bit longs.
+ * #define IBM for IBM mainframe-style floating-point arithmetic.
+ * #define VAX for VAX-style floating-point arithmetic (D_floating).
+ * #define No_leftright to omit left-right logic in fast floating-point
+ * computation of dtoa.
+ * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
+ * and strtod and dtoa should round accordingly.
+ * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
+ * and Honor_FLT_ROUNDS is not #defined.
+ * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
+ * that use extended-precision instructions to compute rounded
+ * products and quotients) with IBM.
+ * #define ROUND_BIASED for IEEE-format with biased rounding.
+ * #define Inaccurate_Divide for IEEE-format with correctly rounded
+ * products but inaccurate quotients, e.g., for Intel i860.
+ * #define NO_LONG_LONG on machines that do not have a "long long"
+ * integer type (of >= 64 bits). On such machines, you can
+ * #define Just_16 to store 16 bits per 32-bit Long when doing
+ * high-precision integer arithmetic. Whether this speeds things
+ * up or slows things down depends on the machine and the number
+ * being converted. If long long is available and the name is
+ * something other than "long long", #define Llong to be the name,
+ * and if "unsigned Llong" does not work as an unsigned version of
+ * Llong, #define #ULLong to be the corresponding unsigned type.
+ * #define KR_headers for old-style C function headers.
+ * #define Bad_float_h if your system lacks a float.h or if it does not
+ * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
+ * FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
+ * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
+ * if memory is available and otherwise does something you deem
+ * appropriate. If MALLOC is undefined, malloc will be invoked
+ * directly -- and assumed always to succeed.
+ * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
+ * memory allocations from a private pool of memory when possible.
+ * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes,
+ * unless #defined to be a different length. This default length
+ * suffices to get rid of MALLOC calls except for unusual cases,
+ * such as decimal-to-binary conversion of a very long string of
+ * digits. The longest string dtoa can return is about 751 bytes
+ * long. For conversions by strtod of strings of 800 digits and
+ * all dtoa conversions in single-threaded executions with 8-byte
+ * pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
+ * pointers, PRIVATE_MEM >= 7112 appears adequate.
+ * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
+ * #defined automatically on IEEE systems. On such systems,
+ * when INFNAN_CHECK is #defined, strtod checks
+ * for Infinity and NaN (case insensitively). On some systems
+ * (e.g., some HP systems), it may be necessary to #define NAN_WORD0
+ * appropriately -- to the most significant word of a quiet NaN.
+ * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
+ * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
+ * strtod also accepts (case insensitively) strings of the form
+ * NaN(x), where x is a string of hexadecimal digits and spaces;
+ * if there is only one string of hexadecimal digits, it is taken
+ * for the 52 fraction bits of the resulting NaN; if there are two
+ * or more strings of hex digits, the first is for the high 20 bits,
+ * the second and subsequent for the low 32 bits, with intervening
+ * white space ignored; but if this results in none of the 52
+ * fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
+ * and NAN_WORD1 are used instead.
+ * #define MULTIPLE_THREADS if the system offers preemptively scheduled
+ * multiple threads. In this case, you must provide (or suitably
+ * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
+ * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed
+ * in pow5mult, ensures lazy evaluation of only one copy of high
+ * powers of 5; omitting this lock would introduce a small
+ * probability of wasting memory, but would otherwise be harmless.)
+ * You must also invoke freedtoa(s) to free the value s returned by
+ * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
+ * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
+ * avoids underflows on inputs whose result does not underflow.
+ * If you #define NO_IEEE_Scale on a machine that uses IEEE-format
+ * floating-point numbers and flushes underflows to zero rather
+ * than implementing gradual underflow, then you must also #define
+ * Sudden_Underflow.
+ * #define YES_ALIAS to permit aliasing certain double values with
+ * arrays of ULongs. This leads to slightly better code with
+ * some compilers and was always used prior to 19990916, but it
+ * is not strictly legal and can cause trouble with aggressively
+ * optimizing compilers (e.g., gcc 2.95.1 under -O2).
+ * #define USE_LOCALE to use the current locale's decimal_point value.
+ * #define SET_INEXACT if IEEE arithmetic is being used and extra
+ * computation should be done to set the inexact flag when the
+ * result is inexact and avoid setting inexact when the result
+ * is exact. In this case, dtoa.c must be compiled in
+ * an environment, perhaps provided by #include "dtoa.c" in a
+ * suitable wrapper, that defines two functions,
+ * int get_inexact(void);
+ * void clear_inexact(void);
+ * such that get_inexact() returns a nonzero value if the
+ * inexact bit is already set, and clear_inexact() sets the
+ * inexact bit to 0. When SET_INEXACT is #defined, strtod
+ * also does extra computations to set the underflow and overflow
+ * flags when appropriate (i.e., when the result is tiny and
+ * inexact or when it is a numeric value rounded to +-infinity).
+ * #define NO_ERRNO if strtod should not assign errno = ERANGE when
+ * the result overflows to +-Infinity or underflows to 0.
+ */
+
+#ifndef Long
+#define Long long
+#endif
+#ifndef ULong
+typedef unsigned Long ULong;
+#endif
+
+#ifdef DEBUG
+#include "stdio.h"
+#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
+#endif
+
+#include "stdlib.h"
+#include "string.h"
+
+#ifdef USE_LOCALE
+#include "locale.h"
+#endif
+
+#ifdef MALLOC
+#ifdef KR_headers
+extern char *MALLOC();
+#else
+extern void *MALLOC(size_t);
+#endif
+#else
+#define MALLOC malloc
+#endif
+
+#ifndef Omit_Private_Memory
+#ifndef PRIVATE_MEM
+#define PRIVATE_MEM 2304
+#endif
+#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
+static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
+#endif
+
+#undef IEEE_Arith
+#undef Avoid_Underflow
+#ifdef IEEE_MC68k
+#define IEEE_Arith
+#endif
+#ifdef IEEE_8087
+#define IEEE_Arith
+#endif
+
+#ifdef IEEE_Arith
+#ifndef NO_INFNAN_CHECK
+#undef INFNAN_CHECK
+#define INFNAN_CHECK
+#endif
+#else
+#undef INFNAN_CHECK
+#endif
+
+#include "errno.h"
+
+#ifdef Bad_float_h
+
+#ifdef IEEE_Arith
+#define DBL_DIG 15
+#define DBL_MAX_10_EXP 308
+#define DBL_MAX_EXP 1024
+#define FLT_RADIX 2
+#endif /*IEEE_Arith*/
+
+#ifdef IBM
+#define DBL_DIG 16
+#define DBL_MAX_10_EXP 75
+#define DBL_MAX_EXP 63
+#define FLT_RADIX 16
+#define DBL_MAX 7.2370055773322621e+75
+#endif
+
+#ifdef VAX
+#define DBL_DIG 16
+#define DBL_MAX_10_EXP 38
+#define DBL_MAX_EXP 127
+#define FLT_RADIX 2
+#define DBL_MAX 1.7014118346046923e+38
+#endif
+
+#ifndef LONG_MAX
+#define LONG_MAX 2147483647
+#endif
+
+#else /* ifndef Bad_float_h */
+#include "float.h"
+#endif /* Bad_float_h */
+
+#ifndef __MATH_H__
+#include "math.h"
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#ifndef CONST
+#ifdef KR_headers
+#define CONST /* blank */
+#else
+#define CONST const
+#endif
+#endif
+
+#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
+Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
+#endif
+
+typedef union { double d; ULong L[2]; } U;
+
+#ifdef YES_ALIAS
+#define dval(x) x
+#ifdef IEEE_8087
+#define word0(x) ((ULong *)&x)[1]
+#define word1(x) ((ULong *)&x)[0]
+#else
+#define word0(x) ((ULong *)&x)[0]
+#define word1(x) ((ULong *)&x)[1]
+#endif
+#else
+#ifdef IEEE_8087
+#define word0(x) ((U*)&x)->L[1]
+#define word1(x) ((U*)&x)->L[0]
+#else
+#define word0(x) ((U*)&x)->L[0]
+#define word1(x) ((U*)&x)->L[1]
+#endif
+#define dval(x) ((U*)&x)->d
+#endif
+
+/* The following definition of Storeinc is appropriate for MIPS processors.
+ * An alternative that might be better on some machines is
+ * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
+ */
+#if defined(IEEE_8087) + defined(VAX)
+#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
+((unsigned short *)a)[0] = (unsigned short)c, a++)
+#else
+#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
+((unsigned short *)a)[1] = (unsigned short)c, a++)
+#endif
+
+/* #define P DBL_MANT_DIG */
+/* Ten_pmax = floor(P*log(2)/log(5)) */
+/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
+/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
+/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
+
+#ifdef IEEE_Arith
+#define Exp_shift 20
+#define Exp_shift1 20
+#define Exp_msk1 0x100000
+#define Exp_msk11 0x100000
+#define Exp_mask 0x7ff00000
+#define P 53
+#define Bias 1023
+#define Emin (-1022)
+#define Exp_1 0x3ff00000
+#define Exp_11 0x3ff00000
+#define Ebits 11
+#define Frac_mask 0xfffff
+#define Frac_mask1 0xfffff
+#define Ten_pmax 22
+#define Bletch 0x10
+#define Bndry_mask 0xfffff
+#define Bndry_mask1 0xfffff
+#define LSB 1
+#define Sign_bit 0x80000000
+#define Log2P 1
+#define Tiny0 0
+#define Tiny1 1
+#define Quick_max 14
+#define Int_max 14
+#ifndef NO_IEEE_Scale
+#define Avoid_Underflow
+#ifdef Flush_Denorm /* debugging option */
+#undef Sudden_Underflow
+#endif
+#endif
+
+#ifndef Flt_Rounds
+#ifdef FLT_ROUNDS
+#define Flt_Rounds FLT_ROUNDS
+#else
+#define Flt_Rounds 1
+#endif
+#endif /*Flt_Rounds*/
+
+#ifdef Honor_FLT_ROUNDS
+#define Rounding rounding
+#undef Check_FLT_ROUNDS
+#define Check_FLT_ROUNDS
+#else
+#define Rounding Flt_Rounds
+#endif
+
+#else /* ifndef IEEE_Arith */
+#undef Check_FLT_ROUNDS
+#undef Honor_FLT_ROUNDS
+#undef SET_INEXACT
+#undef Sudden_Underflow
+#define Sudden_Underflow
+#ifdef IBM
+#undef Flt_Rounds
+#define Flt_Rounds 0
+#define Exp_shift 24
+#define Exp_shift1 24
+#define Exp_msk1 0x1000000
+#define Exp_msk11 0x1000000
+#define Exp_mask 0x7f000000
+#define P 14
+#define Bias 65
+#define Exp_1 0x41000000
+#define Exp_11 0x41000000
+#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
+#define Frac_mask 0xffffff
+#define Frac_mask1 0xffffff
+#define Bletch 4
+#define Ten_pmax 22
+#define Bndry_mask 0xefffff
+#define Bndry_mask1 0xffffff
+#define LSB 1
+#define Sign_bit 0x80000000
+#define Log2P 4
+#define Tiny0 0x100000
+#define Tiny1 0
+#define Quick_max 14
+#define Int_max 15
+#else /* VAX */
+#undef Flt_Rounds
+#define Flt_Rounds 1
+#define Exp_shift 23
+#define Exp_shift1 7
+#define Exp_msk1 0x80
+#define Exp_msk11 0x800000
+#define Exp_mask 0x7f80
+#define P 56
+#define Bias 129
+#define Exp_1 0x40800000
+#define Exp_11 0x4080
+#define Ebits 8
+#define Frac_mask 0x7fffff
+#define Frac_mask1 0xffff007f
+#define Ten_pmax 24
+#define Bletch 2
+#define Bndry_mask 0xffff007f
+#define Bndry_mask1 0xffff007f
+#define LSB 0x10000
+#define Sign_bit 0x8000
+#define Log2P 1
+#define Tiny0 0x80
+#define Tiny1 0
+#define Quick_max 15
+#define Int_max 15
+#endif /* IBM, VAX */
+#endif /* IEEE_Arith */
+
+#ifndef IEEE_Arith
+#define ROUND_BIASED
+#endif
+
+#ifdef RND_PRODQUOT
+#define rounded_product(a,b) a = rnd_prod(a, b)
+#define rounded_quotient(a,b) a = rnd_quot(a, b)
+#ifdef KR_headers
+extern double rnd_prod(), rnd_quot();
+#else
+extern double rnd_prod(double, double), rnd_quot(double, double);
+#endif
+#else
+#define rounded_product(a,b) a *= b
+#define rounded_quotient(a,b) a /= b
+#endif
+
+#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
+#define Big1 0xffffffff
+
+#ifndef Pack_32
+#define Pack_32
+#endif
+
+#ifdef KR_headers
+#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff)
+#else
+#define FFFFFFFF 0xffffffffUL
+#endif
+
+#ifdef NO_LONG_LONG
+#undef ULLong
+#ifdef Just_16
+#undef Pack_32
+/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
+ * This makes some inner loops simpler and sometimes saves work
+ * during multiplications, but it often seems to make things slightly
+ * slower. Hence the default is now to store 32 bits per Long.
+ */
+#endif
+#else /* long long available */
+#ifndef Llong
+#define Llong long long
+#endif
+#ifndef ULLong
+#define ULLong unsigned Llong
+#endif
+#endif /* NO_LONG_LONG */
+
+#ifndef MULTIPLE_THREADS
+#define ACQUIRE_DTOA_LOCK(n) /*nothing*/
+#define FREE_DTOA_LOCK(n) /*nothing*/
+#endif
+
+#define Kmax 15
+
+ struct
+Bigint {
+ struct Bigint *next;
+ int k, maxwds, sign, wds;
+ ULong x[1];
+ };
+
+ typedef struct Bigint Bigint;
+
+ static Bigint *freelist[Kmax+1];
+
+ static Bigint *
+Balloc
+#ifdef KR_headers
+ (k) int k;
+#else
+ (int k)
+#endif
+{
+ int x;
+ Bigint *rv;
+#ifndef Omit_Private_Memory
+ size_t len;
+#endif
+
+ ACQUIRE_DTOA_LOCK(0);
+ if ((rv = freelist[k])) {
+ freelist[k] = rv->next;
+ }
+ else {
+ x = 1 << k;
+#ifdef Omit_Private_Memory
+ rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
+#else
+ len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
+ /sizeof(double);
+ if (pmem_next - private_mem + len <= PRIVATE_mem) {
+ rv = (Bigint*)pmem_next;
+ pmem_next += len;
+ }
+ else
+ rv = (Bigint*)MALLOC(len*sizeof(double));
+#endif
+ rv->k = k;
+ rv->maxwds = x;
+ }
+ FREE_DTOA_LOCK(0);
+ rv->sign = rv->wds = 0;
+ return rv;
+ }
+
+ static void
+Bfree
+#ifdef KR_headers
+ (v) Bigint *v;
+#else
+ (Bigint *v)
+#endif
+{
+ if (v) {
+ ACQUIRE_DTOA_LOCK(0);
+ v->next = freelist[v->k];
+ freelist[v->k] = v;
+ FREE_DTOA_LOCK(0);
+ }
+ }
+
+#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
+y->wds*sizeof(Long) + 2*sizeof(int))
+
+ static Bigint *
+multadd
+#ifdef KR_headers
+ (b, m, a) Bigint *b; int m, a;
+#else
+ (Bigint *b, int m, int a) /* multiply by m and add a */
+#endif
+{
+ int i, wds;
+#ifdef ULLong
+ ULong *x;
+ ULLong carry, y;
+#else
+ ULong carry, *x, y;
+#ifdef Pack_32
+ ULong xi, z;
+#endif
+#endif
+ Bigint *b1;
+
+ wds = b->wds;
+ x = b->x;
+ i = 0;
+ carry = a;
+ do {
+#ifdef ULLong
+ y = *x * (ULLong)m + carry;
+ carry = y >> 32;
+ *x++ = (ULong) y & FFFFFFFF;
+#else
+#ifdef Pack_32
+ xi = *x;
+ y = (xi & 0xffff) * m + carry;
+ z = (xi >> 16) * m + (y >> 16);
+ carry = z >> 16;
+ *x++ = (z << 16) + (y & 0xffff);
+#else
+ y = *x * m + carry;
+ carry = y >> 16;
+ *x++ = y & 0xffff;
+#endif
+#endif
+ }
+ while(++i < wds);
+ if (carry) {
+ if (wds >= b->maxwds) {
+ b1 = Balloc(b->k+1);
+ Bcopy(b1, b);
+ Bfree(b);
+ b = b1;
+ }
+ b->x[wds++] = (ULong) carry;
+ b->wds = wds;
+ }
+ return b;
+ }
+
+ static Bigint *
+s2b
+#ifdef KR_headers
+ (s, nd0, nd, y9) CONST char *s; int nd0, nd; ULong y9;
+#else
+ (CONST char *s, int nd0, int nd, ULong y9)
+#endif
+{
+ Bigint *b;
+ int i, k;
+ Long x, y;
+
+ x = (nd + 8) / 9;
+ for(k = 0, y = 1; x > y; y <<= 1, k++) ;
+#ifdef Pack_32
+ b = Balloc(k);
+ b->x[0] = y9;
+ b->wds = 1;
+#else
+ b = Balloc(k+1);
+ b->x[0] = y9 & 0xffff;
+ b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
+#endif
+
+ i = 9;
+ if (9 < nd0) {
+ s += 9;
+ do b = multadd(b, 10, *s++ - '0');
+ while(++i < nd0);
+ s++;
+ }
+ else
+ s += 10;
+ for(; i < nd; i++)
+ b = multadd(b, 10, *s++ - '0');
+ return b;
+ }
+
+ static int
+hi0bits
+#ifdef KR_headers
+ (x) register ULong x;
+#else
+ (register ULong x)
+#endif
+{
+ register int k = 0;
+
+ if (!(x & 0xffff0000)) {
+ k = 16;
+ x <<= 16;
+ }
+ if (!(x & 0xff000000)) {
+ k += 8;
+ x <<= 8;
+ }
+ if (!(x & 0xf0000000)) {
+ k += 4;
+ x <<= 4;
+ }
+ if (!(x & 0xc0000000)) {
+ k += 2;
+ x <<= 2;
+ }
+ if (!(x & 0x80000000)) {
+ k++;
+ if (!(x & 0x40000000))
+ return 32;
+ }
+ return k;
+ }
+
+ static int
+lo0bits
+#ifdef KR_headers
+ (y) ULong *y;
+#else
+ (ULong *y)
+#endif
+{
+ register int k;
+ register ULong x = *y;
+
+ if (x & 7) {
+ if (x & 1)
+ return 0;
+ if (x & 2) {
+ *y = x >> 1;
+ return 1;
+ }
+ *y = x >> 2;
+ return 2;
+ }
+ k = 0;
+ if (!(x & 0xffff)) {
+ k = 16;
+ x >>= 16;
+ }
+ if (!(x & 0xff)) {
+ k += 8;
+ x >>= 8;
+ }
+ if (!(x & 0xf)) {
+ k += 4;
+ x >>= 4;
+ }
+ if (!(x & 0x3)) {
+ k += 2;
+ x >>= 2;
+ }
+ if (!(x & 1)) {
+ k++;
+ x >>= 1;
+ if (!x)
+ return 32;
+ }
+ *y = x;
+ return k;
+ }
+
+ static Bigint *
+i2b
+#ifdef KR_headers
+ (i) int i;
+#else
+ (int i)
+#endif
+{
+ Bigint *b;
+
+ b = Balloc(1);
+ b->x[0] = i;
+ b->wds = 1;
+ return b;
+ }
+
+ static Bigint *
+mult
+#ifdef KR_headers
+ (a, b) Bigint *a, *b;
+#else
+ (Bigint *a, Bigint *b)
+#endif
+{
+ Bigint *c;
+ int k, wa, wb, wc;
+ ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
+ ULong y;
+#ifdef ULLong
+ ULLong carry, z;
+#else
+ ULong carry, z;
+#ifdef Pack_32
+ ULong z2;
+#endif
+#endif
+
+ if (a->wds < b->wds) {
+ c = a;
+ a = b;
+ b = c;
+ }
+ k = a->k;
+ wa = a->wds;
+ wb = b->wds;
+ wc = wa + wb;
+ if (wc > a->maxwds)
+ k++;
+ c = Balloc(k);
+ for(x = c->x, xa = x + wc; x < xa; x++)
+ *x = 0;
+ xa = a->x;
+ xae = xa + wa;
+ xb = b->x;
+ xbe = xb + wb;
+ xc0 = c->x;
+#ifdef ULLong
+ for(; xb < xbe; xc0++) {
+ if ((y = *xb++)) {
+ x = xa;
+ xc = xc0;
+ carry = 0;
+ do {
+ z = *x++ * (ULLong)y + *xc + carry;
+ carry = z >> 32;
+ *xc++ = (ULong) z & FFFFFFFF;
+ }
+ while(x < xae);
+ *xc = (ULong) carry;
+ }
+ }
+#else
+#ifdef Pack_32
+ for(; xb < xbe; xb++, xc0++) {
+ if (y = *xb & 0xffff) {
+ x = xa;
+ xc = xc0;
+ carry = 0;
+ do {
+ z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
+ carry = z >> 16;
+ z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
+ carry = z2 >> 16;
+ Storeinc(xc, z2, z);
+ }
+ while(x < xae);
+ *xc = carry;
+ }
+ if (y = *xb >> 16) {
+ x = xa;
+ xc = xc0;
+ carry = 0;
+ z2 = *xc;
+ do {
+ z = (*x & 0xffff) * y + (*xc >> 16) + carry;
+ carry = z >> 16;
+ Storeinc(xc, z, z2);
+ z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
+ carry = z2 >> 16;
+ }
+ while(x < xae);
+ *xc = z2;
+ }
+ }
+#else
+ for(; xb < xbe; xc0++) {
+ if (y = *xb++) {
+ x = xa;
+ xc = xc0;
+ carry = 0;
+ do {
+ z = *x++ * y + *xc + carry;
+ carry = z >> 16;
+ *xc++ = z & 0xffff;
+ }
+ while(x < xae);
+ *xc = carry;
+ }
+ }
+#endif
+#endif
+ for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
+ c->wds = wc;
+ return c;
+ }
+
+ static Bigint *p5s;
+
+ static Bigint *
+pow5mult
+#ifdef KR_headers
+ (b, k) Bigint *b; int k;
+#else
+ (Bigint *b, int k)
+#endif
+{
+ Bigint *b1, *p5, *p51;
+ int i;
+ static int p05[3] = { 5, 25, 125 };
+
+ if ((i = k & 3))
+ b = multadd(b, p05[i-1], 0);
+
+ if (!(k >>= 2))
+ return b;
+ if (!(p5 = p5s)) {
+ /* first time */
+#ifdef MULTIPLE_THREADS
+ ACQUIRE_DTOA_LOCK(1);
+ if (!(p5 = p5s)) {
+ p5 = p5s = i2b(625);
+ p5->next = 0;
+ }
+ FREE_DTOA_LOCK(1);
+#else
+ p5 = p5s = i2b(625);
+ p5->next = 0;
+#endif
+ }
+ for(;;) {
+ if (k & 1) {
+ b1 = mult(b, p5);
+ Bfree(b);
+ b = b1;
+ }
+ if (!(k >>= 1))
+ break;
+ if (!(p51 = p5->next)) {
+#ifdef MULTIPLE_THREADS
+ ACQUIRE_DTOA_LOCK(1);
+ if (!(p51 = p5->next)) {
+ p51 = p5->next = mult(p5,p5);
+ p51->next = 0;
+ }
+ FREE_DTOA_LOCK(1);
+#else
+ p51 = p5->next = mult(p5,p5);
+ p51->next = 0;
+#endif
+ }
+ p5 = p51;
+ }
+ return b;
+ }
+
+ static Bigint *
+lshift
+#ifdef KR_headers
+ (b, k) Bigint *b; int k;
+#else
+ (Bigint *b, int k)
+#endif
+{
+ int i, k1, n, n1;
+ Bigint *b1;
+ ULong *x, *x1, *xe, z;
+
+#ifdef Pack_32
+ n = k >> 5;
+#else
+ n = k >> 4;
+#endif
+ k1 = b->k;
+ n1 = n + b->wds + 1;
+ for(i = b->maxwds; n1 > i; i <<= 1)
+ k1++;
+ b1 = Balloc(k1);
+ x1 = b1->x;
+ for(i = 0; i < n; i++)
+ *x1++ = 0;
+ x = b->x;
+ xe = x + b->wds;
+#ifdef Pack_32
+ if (k &= 0x1f) {
+ k1 = 32 - k;
+ z = 0;
+ do {
+ *x1++ = *x << k | z;
+ z = *x++ >> k1;
+ }
+ while(x < xe);
+ if ((*x1 = z))
+ ++n1;
+ }
+#else
+ if (k &= 0xf) {
+ k1 = 16 - k;
+ z = 0;
+ do {
+ *x1++ = *x << k & 0xffff | z;
+ z = *x++ >> k1;
+ }
+ while(x < xe);
+ if (*x1 = z)
+ ++n1;
+ }
+#endif
+ else do
+ *x1++ = *x++;
+ while(x < xe);
+ b1->wds = n1 - 1;
+ Bfree(b);
+ return b1;
+ }
+
+ static int
+cmp
+#ifdef KR_headers
+ (a, b) Bigint *a, *b;
+#else
+ (Bigint *a, Bigint *b)
+#endif
+{
+ ULong *xa, *xa0, *xb, *xb0;
+ int i, j;
+
+ i = a->wds;
+ j = b->wds;
+#ifdef DEBUG
+ if (i > 1 && !a->x[i-1])
+ Bug("cmp called with a->x[a->wds-1] == 0");
+ if (j > 1 && !b->x[j-1])
+ Bug("cmp called with b->x[b->wds-1] == 0");
+#endif
+ if (i -= j)
+ return i;
+ xa0 = a->x;
+ xa = xa0 + j;
+ xb0 = b->x;
+ xb = xb0 + j;
+ for(;;) {
+ if (*--xa != *--xb)
+ return *xa < *xb ? -1 : 1;
+ if (xa <= xa0)
+ break;
+ }
+ return 0;
+ }
+
+ static Bigint *
+diff
+#ifdef KR_headers
+ (a, b) Bigint *a, *b;
+#else
+ (Bigint *a, Bigint *b)
+#endif
+{
+ Bigint *c;
+ int i, wa, wb;
+ ULong *xa, *xae, *xb, *xbe, *xc;
+#ifdef ULLong
+ ULLong borrow, y;
+#else
+ ULong borrow, y;
+#ifdef Pack_32
+ ULong z;
+#endif
+#endif
+
+ i = cmp(a,b);
+ if (!i) {
+ c = Balloc(0);
+ c->wds = 1;
+ c->x[0] = 0;
+ return c;
+ }
+ if (i < 0) {
+ c = a;
+ a = b;
+ b = c;
+ i = 1;
+ }
+ else
+ i = 0;
+ c = Balloc(a->k);
+ c->sign = i;
+ wa = a->wds;
+ xa = a->x;
+ xae = xa + wa;
+ wb = b->wds;
+ xb = b->x;
+ xbe = xb + wb;
+ xc = c->x;
+ borrow = 0;
+#ifdef ULLong
+ do {
+ y = (ULLong)*xa++ - *xb++ - borrow;
+ borrow = y >> 32 & (ULong)1;
+ *xc++ = (ULong) y & FFFFFFFF;
+ }
+ while(xb < xbe);
+ while(xa < xae) {
+ y = *xa++ - borrow;
+ borrow = y >> 32 & (ULong)1;
+ *xc++ = (ULong) y & FFFFFFFF;
+ }
+#else
+#ifdef Pack_32
+ do {
+ y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
+ borrow = (y & 0x10000) >> 16;
+ z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
+ borrow = (z & 0x10000) >> 16;
+ Storeinc(xc, z, y);
+ }
+ while(xb < xbe);
+ while(xa < xae) {
+ y = (*xa & 0xffff) - borrow;
+ borrow = (y & 0x10000) >> 16;
+ z = (*xa++ >> 16) - borrow;
+ borrow = (z & 0x10000) >> 16;
+ Storeinc(xc, z, y);
+ }
+#else
+ do {
+ y = *xa++ - *xb++ - borrow;
+ borrow = (y & 0x10000) >> 16;
+ *xc++ = y & 0xffff;
+ }
+ while(xb < xbe);
+ while(xa < xae) {
+ y = *xa++ - borrow;
+ borrow = (y & 0x10000) >> 16;
+ *xc++ = y & 0xffff;
+ }
+#endif
+#endif
+ while(!*--xc)
+ wa--;
+ c->wds = wa;
+ return c;
+ }
+
+ static double
+ulp
+#ifdef KR_headers
+ (x) double x;
+#else
+ (double x)
+#endif
+{
+ register Long L;
+ double a;
+
+ L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
+#ifndef Avoid_Underflow
+#ifndef Sudden_Underflow
+ if (L > 0) {
+#endif
+#endif
+#ifdef IBM
+ L |= Exp_msk1 >> 4;
+#endif
+ word0(a) = L;
+ word1(a) = 0;
+#ifndef Avoid_Underflow
+#ifndef Sudden_Underflow
+ }
+ else {
+ L = -L >> Exp_shift;
+ if (L < Exp_shift) {
+ word0(a) = 0x80000 >> L;
+ word1(a) = 0;
+ }
+ else {
+ word0(a) = 0;
+ L -= Exp_shift;
+ word1(a) = L >= 31 ? 1 : 1 << 31 - L;
+ }
+ }
+#endif
+#endif
+ return dval(a);
+ }
+
+ static double
+b2d
+#ifdef KR_headers
+ (a, e) Bigint *a; int *e;
+#else
+ (Bigint *a, int *e)
+#endif
+{
+ ULong *xa, *xa0, w, y, z;
+ int k;
+ double d;
+#ifdef VAX
+ ULong d0, d1;
+#else
+#define d0 word0(d)
+#define d1 word1(d)
+#endif
+
+ xa0 = a->x;
+ xa = xa0 + a->wds;
+ y = *--xa;
+#ifdef DEBUG
+ if (!y) Bug("zero y in b2d");
+#endif
+ k = hi0bits(y);
+ *e = 32 - k;
+#ifdef Pack_32
+ if (k < Ebits) {
+ d0 = Exp_1 | y >> (Ebits - k);
+ w = xa > xa0 ? *--xa : 0;
+ d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
+ goto ret_d;
+ }
+ z = xa > xa0 ? *--xa : 0;
+ if (k -= Ebits) {
+ d0 = Exp_1 | y << k | z >> (32 - k);
+ y = xa > xa0 ? *--xa : 0;
+ d1 = z << k | y >> (32 - k);
+ }
+ else {
+ d0 = Exp_1 | y;
+ d1 = z;
+ }
+#else
+ if (k < Ebits + 16) {
+ z = xa > xa0 ? *--xa : 0;
+ d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
+ w = xa > xa0 ? *--xa : 0;
+ y = xa > xa0 ? *--xa : 0;
+ d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
+ goto ret_d;
+ }
+ z = xa > xa0 ? *--xa : 0;
+ w = xa > xa0 ? *--xa : 0;
+ k -= Ebits + 16;
+ d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
+ y = xa > xa0 ? *--xa : 0;
+ d1 = w << k + 16 | y << k;
+#endif
+ ret_d:
+#ifdef VAX
+ word0(d) = d0 >> 16 | d0 << 16;
+ word1(d) = d1 >> 16 | d1 << 16;
+#else
+#undef d0
+#undef d1
+#endif
+ return dval(d);
+ }
+
+ static Bigint *
+d2b
+#ifdef KR_headers
+ (d, e, bits) double d; int *e, *bits;
+#else
+ (double d, int *e, int *bits)
+#endif
+{
+ Bigint *b;
+ int de, k;
+ ULong *x, y, z;
+#ifndef Sudden_Underflow
+ int i;
+#endif
+#ifdef VAX
+ ULong d0, d1;
+ d0 = word0(d) >> 16 | word0(d) << 16;
+ d1 = word1(d) >> 16 | word1(d) << 16;
+#else
+#define d0 word0(d)
+#define d1 word1(d)
+#endif
+
+#ifdef Pack_32
+ b = Balloc(1);
+#else
+ b = Balloc(2);
+#endif
+ x = b->x;
+
+ z = d0 & Frac_mask;
+ d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
+#ifdef Sudden_Underflow
+ de = (int)(d0 >> Exp_shift);
+#ifndef IBM
+ z |= Exp_msk11;
+#endif
+#else
+ if ((de = (int)(d0 >> Exp_shift)))
+ z |= Exp_msk1;
+#endif
+#ifdef Pack_32
+ if ((y = d1)) {
+ if ((k = lo0bits(&y))) {
+ x[0] = y | z << (32 - k);
+ z >>= k;
+ }
+ else
+ x[0] = y;
+#ifndef Sudden_Underflow
+ i =
+#endif
+ b->wds = (x[1] = z) ? 2 : 1;
+ }
+ else {
+#ifdef DEBUG
+ if (!z)
+ Bug("Zero passed to d2b");
+#endif
+ k = lo0bits(&z);
+ x[0] = z;
+#ifndef Sudden_Underflow
+ i =
+#endif
+ b->wds = 1;
+ k += 32;
+ }
+#else
+ if (y = d1) {
+ if (k = lo0bits(&y))
+ if (k >= 16) {
+ x[0] = y | z << 32 - k & 0xffff;
+ x[1] = z >> k - 16 & 0xffff;
+ x[2] = z >> k;
+ i = 2;
+ }
+ else {
+ x[0] = y & 0xffff;
+ x[1] = y >> 16 | z << 16 - k & 0xffff;
+ x[2] = z >> k & 0xffff;
+ x[3] = z >> k+16;
+ i = 3;
+ }
+ else {
+ x[0] = y & 0xffff;
+ x[1] = y >> 16;
+ x[2] = z & 0xffff;
+ x[3] = z >> 16;
+ i = 3;
+ }
+ }
+ else {
+#ifdef DEBUG
+ if (!z)
+ Bug("Zero passed to d2b");
+#endif
+ k = lo0bits(&z);
+ if (k >= 16) {
+ x[0] = z;
+ i = 0;
+ }
+ else {
+ x[0] = z & 0xffff;
+ x[1] = z >> 16;
+ i = 1;
+ }
+ k += 32;
+ }
+ while(!x[i])
+ --i;
+ b->wds = i + 1;
+#endif
+#ifndef Sudden_Underflow
+ if (de) {
+#endif
+#ifdef IBM
+ *e = (de - Bias - (P-1) << 2) + k;
+ *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
+#else
+ *e = de - Bias - (P-1) + k;
+ *bits = P - k;
+#endif
+#ifndef Sudden_Underflow
+ }
+ else {
+ *e = de - Bias - (P-1) + 1 + k;
+#ifdef Pack_32
+ *bits = 32*i - hi0bits(x[i-1]);
+#else
+ *bits = (i+2)*16 - hi0bits(x[i]);
+#endif
+ }
+#endif
+ return b;
+ }
+#undef d0
+#undef d1
+
+ static double
+ratio
+#ifdef KR_headers
+ (a, b) Bigint *a, *b;
+#else
+ (Bigint *a, Bigint *b)
+#endif
+{
+ double da, db;
+ int k, ka, kb;
+
+ dval(da) = b2d(a, &ka);
+ dval(db) = b2d(b, &kb);
+#ifdef Pack_32
+ k = ka - kb + 32*(a->wds - b->wds);
+#else
+ k = ka - kb + 16*(a->wds - b->wds);
+#endif
+#ifdef IBM
+ if (k > 0) {
+ word0(da) += (k >> 2)*Exp_msk1;
+ if (k &= 3)
+ dval(da) *= 1 << k;
+ }
+ else {
+ k = -k;
+ word0(db) += (k >> 2)*Exp_msk1;
+ if (k &= 3)
+ dval(db) *= 1 << k;
+ }
+#else
+ if (k > 0)
+ word0(da) += k*Exp_msk1;
+ else {
+ k = -k;
+ word0(db) += k*Exp_msk1;
+ }
+#endif
+ return dval(da) / dval(db);
+ }
+
+ static CONST double
+tens[] = {
+ 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
+ 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
+ 1e20, 1e21, 1e22
+#ifdef VAX
+ , 1e23, 1e24
+#endif
+ };
+
+ static CONST double
+#ifdef IEEE_Arith
+bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
+static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
+#ifdef Avoid_Underflow
+ 9007199254740992.*9007199254740992.e-256
+ /* = 2^106 * 1e-53 */
+#else
+ 1e-256
+#endif
+ };
+/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
+/* flag unnecessarily. It leads to a song and dance at the end of strtod. */
+#define Scale_Bit 0x10
+#define n_bigtens 5
+#else
+#ifdef IBM
+bigtens[] = { 1e16, 1e32, 1e64 };
+static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
+#define n_bigtens 3
+#else
+bigtens[] = { 1e16, 1e32 };
+static CONST double tinytens[] = { 1e-16, 1e-32 };
+#define n_bigtens 2
+#endif
+#endif
+
+#ifdef INFNAN_CHECK
+
+#ifndef NAN_WORD0
+#define NAN_WORD0 0x7ff80000
+#endif
+
+#ifndef NAN_WORD1
+#define NAN_WORD1 0
+#endif
+
+ static int
+match
+#ifdef KR_headers
+ (sp, t) char **sp, *t;
+#else
+ (CONST char **sp, CONST char *t)
+#endif
+{
+ int c, d;
+ CONST char *s = *sp;
+
+ while((d = *t++)) {
+ if ((c = *++s) >= 'A' && c <= 'Z')
+ c += 'a' - 'A';
+ if (c != d)
+ return 0;
+ }
+ *sp = s + 1;
+ return 1;
+ }
+
+#ifndef No_Hex_NaN
+ static void
+hexnan
+#ifdef KR_headers
+ (rvp, sp) double *rvp; CONST char **sp;
+#else
+ (double *rvp, CONST char **sp)
+#endif
+{
+ ULong c, x[2];
+ CONST char *s;
+ int havedig, udx0, xshift;
+
+ x[0] = x[1] = 0;
+ havedig = xshift = 0;
+ udx0 = 1;
+ s = *sp;
+ /* allow optional initial 0x or 0X */
+ while((c = *(CONST unsigned char*)(s+1)) && c <= ' ')
+ ++s;
+ if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X'))
+ s += 2;
+ while((c = *(CONST unsigned char*)++s)) {
+ if (c >= '0' && c <= '9')
+ c -= '0';
+ else if (c >= 'a' && c <= 'f')
+ c += 10 - 'a';
+ else if (c >= 'A' && c <= 'F')
+ c += 10 - 'A';
+ else if (c <= ' ') {
+ if (udx0 && havedig) {
+ udx0 = 0;
+ xshift = 1;
+ }
+ continue;
+ }
+#ifdef GDTOA_NON_PEDANTIC_NANCHECK
+ else if (/*(*/ c == ')' && havedig) {
+ *sp = s + 1;
+ break;
+ }
+ else
+ return; /* invalid form: don't change *sp */
+#else
+ else {
+ do {
+ if (/*(*/ c == ')') {
+ *sp = s + 1;
+ break;
+ }
+ } while((c = *++s));
+ break;
+ }
+#endif
+ havedig = 1;
+ if (xshift) {
+ xshift = 0;
+ x[0] = x[1];
+ x[1] = 0;
+ }
+ if (udx0)
+ x[0] = (x[0] << 4) | (x[1] >> 28);
+ x[1] = (x[1] << 4) | c;
+ }
+ if ((x[0] &= 0xfffff) || x[1]) {
+ word0(*rvp) = Exp_mask | x[0];
+ word1(*rvp) = x[1];
+ }
+ }
+#endif /*No_Hex_NaN*/
+#endif /* INFNAN_CHECK */
+
+ static double
+_strtod
+#ifdef KR_headers
+ (s00, se) CONST char *s00; char **se;
+#else
+ (CONST char *s00, char **se)
+#endif
+{
+#ifdef Avoid_Underflow
+ int scale;
+#endif
+ int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
+ e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
+ CONST char *s, *s0, *s1;
+ double aadj, aadj1, adj, rv, rv0;
+ Long L;
+ ULong y, z;
+ Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
+#ifdef SET_INEXACT
+ int inexact, oldinexact;
+#endif
+#ifdef Honor_FLT_ROUNDS
+ int rounding;
+#endif
+#ifdef USE_LOCALE
+ CONST char *s2;
+#endif
+
+#ifdef __GNUC__
+ delta = bb = bd = bs = 0;
+#endif
+
+ sign = nz0 = nz = 0;
+ dval(rv) = 0.;
+ for(s = s00;;s++) switch(*s) {
+ case '-':
+ sign = 1;
+ /* no break */
+ case '+':
+ if (*++s)
+ goto break2;
+ /* no break */
+ case 0:
+ goto ret0;
+ case '\t':
+ case '\n':
+ case '\v':
+ case '\f':
+ case '\r':
+ case ' ':
+ continue;
+ default:
+ goto break2;
+ }
+ break2:
+ if (*s == '0') {
+ nz0 = 1;
+ while(*++s == '0') ;
+ if (!*s)
+ goto ret;
+ }
+ s0 = s;
+ y = z = 0;
+ for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
+ if (nd < 9)
+ y = 10*y + c - '0';
+ else if (nd < 16)
+ z = 10*z + c - '0';
+ nd0 = nd;
+#ifdef USE_LOCALE
+ s1 = localeconv()->decimal_point;
+ if (c == *s1) {
+ c = '.';
+ if (*++s1) {
+ s2 = s;
+ for(;;) {
+ if (*++s2 != *s1) {
+ c = 0;
+ break;
+ }
+ if (!*++s1) {
+ s = s2;
+ break;
+ }
+ }
+ }
+ }
+#endif
+ if (c == '.') {
+ c = *++s;
+ if (!nd) {
+ for(; c == '0'; c = *++s)
+ nz++;
+ if (c > '0' && c <= '9') {
+ s0 = s;
+ nf += nz;
+ nz = 0;
+ goto have_dig;
+ }
+ goto dig_done;
+ }
+ for(; c >= '0' && c <= '9'; c = *++s) {
+ have_dig:
+ nz++;
+ if (c -= '0') {
+ nf += nz;
+ for(i = 1; i < nz; i++)
+ if (nd++ < 9)
+ y *= 10;
+ else if (nd <= DBL_DIG + 1)
+ z *= 10;
+ if (nd++ < 9)
+ y = 10*y + c;
+ else if (nd <= DBL_DIG + 1)
+ z = 10*z + c;
+ nz = 0;
+ }
+ }
+ }
+ dig_done:
+ e = 0;
+ if (c == 'e' || c == 'E') {
+ if (!nd && !nz && !nz0) {
+ goto ret0;
+ }
+ s00 = s;
+ esign = 0;
+ switch(c = *++s) {
+ case '-':
+ esign = 1;
+ case '+':
+ c = *++s;
+ }
+ if (c >= '0' && c <= '9') {
+ while(c == '0')
+ c = *++s;
+ if (c > '0' && c <= '9') {
+ L = c - '0';
+ s1 = s;
+ while((c = *++s) >= '0' && c <= '9')
+ L = 10*L + c - '0';
+ if (s - s1 > 8 || L > 19999)
+ /* Avoid confusion from exponents
+ * so large that e might overflow.
+ */
+ e = 19999; /* safe for 16 bit ints */
+ else
+ e = (int)L;
+ if (esign)
+ e = -e;
+ }
+ else
+ e = 0;
+ }
+ else
+ s = s00;
+ }
+ if (!nd) {
+ if (!nz && !nz0) {
+#ifdef INFNAN_CHECK
+ /* Check for Nan and Infinity */
+ switch(c) {
+ case 'i':
+ case 'I':
+ if (match(&s,"nf")) {
+ --s;
+ if (!match(&s,"inity"))
+ ++s;
+ word0(rv) = 0x7ff00000;
+ word1(rv) = 0;
+ goto ret;
+ }
+ break;
+ case 'n':
+ case 'N':
+ if (match(&s, "an")) {
+ word0(rv) = NAN_WORD0;
+ word1(rv) = NAN_WORD1;
+#ifndef No_Hex_NaN
+ if (*s == '(') /*)*/
+ hexnan(&rv, &s);
+#endif
+ goto ret;
+ }
+ }
+#endif /* INFNAN_CHECK */
+ ret0:
+ s = s00;
+ sign = 0;
+ }
+ goto ret;
+ }
+ e1 = e -= nf;
+
+ /* Now we have nd0 digits, starting at s0, followed by a
+ * decimal point, followed by nd-nd0 digits. The number we're
+ * after is the integer represented by those digits times
+ * 10**e */
+
+ if (!nd0)
+ nd0 = nd;
+ k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
+ dval(rv) = y;
+ if (k > 9) {
+#ifdef SET_INEXACT
+ if (k > DBL_DIG)
+ oldinexact = get_inexact();
+#endif
+ dval(rv) = tens[k - 9] * dval(rv) + z;
+ }
+ bd0 = 0;
+ if (nd <= DBL_DIG
+#ifndef RND_PRODQUOT
+#ifndef Honor_FLT_ROUNDS
+ && Flt_Rounds == 1
+#endif
+#endif
+ ) {
+ if (!e)
+ goto ret;
+ if (e > 0) {
+ if (e <= Ten_pmax) {
+#ifdef VAX
+ goto vax_ovfl_check;
+#else
+#ifdef Honor_FLT_ROUNDS
+ /* round correctly FLT_ROUNDS = 2 or 3 */
+ if (sign) {
+ rv = -rv;
+ sign = 0;
+ }
+#endif
+ /* rv = */ rounded_product(dval(rv), tens[e]);
+ goto ret;
+#endif
+ }
+ i = DBL_DIG - nd;
+ if (e <= Ten_pmax + i) {
+ /* A fancier test would sometimes let us do
+ * this for larger i values.
+ */
+#ifdef Honor_FLT_ROUNDS
+ /* round correctly FLT_ROUNDS = 2 or 3 */
+ if (sign) {
+ rv = -rv;
+ sign = 0;
+ }
+#endif
+ e -= i;
+ dval(rv) *= tens[i];
+#ifdef VAX
+ /* VAX exponent range is so narrow we must
+ * worry about overflow here...
+ */
+ vax_ovfl_check:
+ word0(rv) -= P*Exp_msk1;
+ /* rv = */ rounded_product(dval(rv), tens[e]);
+ if ((word0(rv) & Exp_mask)
+ > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
+ goto ovfl;
+ word0(rv) += P*Exp_msk1;
+#else
+ /* rv = */ rounded_product(dval(rv), tens[e]);
+#endif
+ goto ret;
+ }
+ }
+#ifndef Inaccurate_Divide
+ else if (e >= -Ten_pmax) {
+#ifdef Honor_FLT_ROUNDS
+ /* round correctly FLT_ROUNDS = 2 or 3 */
+ if (sign) {
+ rv = -rv;
+ sign = 0;
+ }
+#endif
+ /* rv = */ rounded_quotient(dval(rv), tens[-e]);
+ goto ret;
+ }
+#endif
+ }
+ e1 += nd - k;
+
+#ifdef IEEE_Arith
+#ifdef SET_INEXACT
+ inexact = 1;
+ if (k <= DBL_DIG)
+ oldinexact = get_inexact();
+#endif
+#ifdef Avoid_Underflow
+ scale = 0;
+#endif
+#ifdef Honor_FLT_ROUNDS
+ if ((rounding = Flt_Rounds) >= 2) {
+ if (sign)
+ rounding = rounding == 2 ? 0 : 2;
+ else
+ if (rounding != 2)
+ rounding = 0;
+ }
+#endif
+#endif /*IEEE_Arith*/
+
+ /* Get starting approximation = rv * 10**e1 */
+
+ if (e1 > 0) {
+ if ((i = e1 & 15))
+ dval(rv) *= tens[i];
+ if (e1 &= ~15) {
+ if (e1 > DBL_MAX_10_EXP) {
+ ovfl:
+#ifndef NO_ERRNO
+ errno = ERANGE;
+#endif
+ /* Can't trust HUGE_VAL */
+#ifdef IEEE_Arith
+#ifdef Honor_FLT_ROUNDS
+ switch(rounding) {
+ case 0: /* toward 0 */
+ case 3: /* toward -infinity */
+ word0(rv) = Big0;
+ word1(rv) = Big1;
+ break;
+ default:
+ word0(rv) = Exp_mask;
+ word1(rv) = 0;
+ }
+#else /*Honor_FLT_ROUNDS*/
+ word0(rv) = Exp_mask;
+ word1(rv) = 0;
+#endif /*Honor_FLT_ROUNDS*/
+#ifdef SET_INEXACT
+ /* set overflow bit */
+ dval(rv0) = 1e300;
+ dval(rv0) *= dval(rv0);
+#endif
+#else /*IEEE_Arith*/
+ word0(rv) = Big0;
+ word1(rv) = Big1;
+#endif /*IEEE_Arith*/
+ if (bd0)
+ goto retfree;
+ goto ret;
+ }
+ e1 >>= 4;
+ for(j = 0; e1 > 1; j++, e1 >>= 1)
+ if (e1 & 1)
+ dval(rv) *= bigtens[j];
+ /* The last multiplication could overflow. */
+ word0(rv) -= P*Exp_msk1;
+ dval(rv) *= bigtens[j];
+ if ((z = word0(rv) & Exp_mask)
+ > Exp_msk1*(DBL_MAX_EXP+Bias-P))
+ goto ovfl;
+ if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
+ /* set to largest number */
+ /* (Can't trust DBL_MAX) */
+ word0(rv) = Big0;
+ word1(rv) = Big1;
+ }
+ else
+ word0(rv) += P*Exp_msk1;
+ }
+ }
+ else if (e1 < 0) {
+ e1 = -e1;
+ if ((i = e1 & 15))
+ dval(rv) /= tens[i];
+ if (e1 >>= 4) {
+ if (e1 >= 1 << n_bigtens)
+ goto undfl;
+#ifdef Avoid_Underflow
+ if (e1 & Scale_Bit)
+ scale = 2*P;
+ for(j = 0; e1 > 0; j++, e1 >>= 1)
+ if (e1 & 1)
+ dval(rv) *= tinytens[j];
+ if (scale && (j = 2*P + 1 - ((word0(rv) & Exp_mask)
+ >> Exp_shift)) > 0) {
+ /* scaled rv is denormal; zap j low bits */
+ if (j >= 32) {
+ word1(rv) = 0;
+ if (j >= 53)
+ word0(rv) = (P+2)*Exp_msk1;
+ else
+ word0(rv) &= 0xffffffff << (j-32);
+ }
+ else
+ word1(rv) &= 0xffffffff << j;
+ }
+#else
+ for(j = 0; e1 > 1; j++, e1 >>= 1)
+ if (e1 & 1)
+ dval(rv) *= tinytens[j];
+ /* The last multiplication could underflow. */
+ dval(rv0) = dval(rv);
+ dval(rv) *= tinytens[j];
+ if (!dval(rv)) {
+ dval(rv) = 2.*dval(rv0);
+ dval(rv) *= tinytens[j];
+#endif
+ if (!dval(rv)) {
+ undfl:
+ dval(rv) = 0.;
+#ifndef NO_ERRNO
+ errno = ERANGE;
+#endif
+ if (bd0)
+ goto retfree;
+ goto ret;
+ }
+#ifndef Avoid_Underflow
+ word0(rv) = Tiny0;
+ word1(rv) = Tiny1;
+ /* The refinement below will clean
+ * this approximation up.
+ */
+ }
+#endif
+ }
+ }
+
+ /* Now the hard part -- adjusting rv to the correct value.*/
+
+ /* Put digits into bd: true value = bd * 10^e */
+
+ bd0 = s2b(s0, nd0, nd, y);
+
+ for(;;) {
+ bd = Balloc(bd0->k);
+ Bcopy(bd, bd0);
+ bb = d2b(dval(rv), &bbe, &bbbits); /* rv = bb * 2^bbe */
+ bs = i2b(1);
+
+ if (e >= 0) {
+ bb2 = bb5 = 0;
+ bd2 = bd5 = e;
+ }
+ else {
+ bb2 = bb5 = -e;
+ bd2 = bd5 = 0;
+ }
+ if (bbe >= 0)
+ bb2 += bbe;
+ else
+ bd2 -= bbe;
+ bs2 = bb2;
+#ifdef Honor_FLT_ROUNDS
+ if (rounding != 1)
+ bs2++;
+#endif
+#ifdef Avoid_Underflow
+ j = bbe - scale;
+ i = j + bbbits - 1; /* logb(rv) */
+ if (i < Emin) /* denormal */
+ j += P - Emin;
+ else
+ j = P + 1 - bbbits;
+#else /*Avoid_Underflow*/
+#ifdef Sudden_Underflow
+#ifdef IBM
+ j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
+#else
+ j = P + 1 - bbbits;
+#endif
+#else /*Sudden_Underflow*/
+ j = bbe;
+ i = j + bbbits - 1; /* logb(rv) */
+ if (i < Emin) /* denormal */
+ j += P - Emin;
+ else
+ j = P + 1 - bbbits;
+#endif /*Sudden_Underflow*/
+#endif /*Avoid_Underflow*/
+ bb2 += j;
+ bd2 += j;
+#ifdef Avoid_Underflow
+ bd2 += scale;
+#endif
+ i = bb2 < bd2 ? bb2 : bd2;
+ if (i > bs2)
+ i = bs2;
+ if (i > 0) {
+ bb2 -= i;
+ bd2 -= i;
+ bs2 -= i;
+ }
+ if (bb5 > 0) {
+ bs = pow5mult(bs, bb5);
+ bb1 = mult(bs, bb);
+ Bfree(bb);
+ bb = bb1;
+ }
+ if (bb2 > 0)
+ bb = lshift(bb, bb2);
+ if (bd5 > 0)
+ bd = pow5mult(bd, bd5);
+ if (bd2 > 0)
+ bd = lshift(bd, bd2);
+ if (bs2 > 0)
+ bs = lshift(bs, bs2);
+ delta = diff(bb, bd);
+ dsign = delta->sign;
+ delta->sign = 0;
+ i = cmp(delta, bs);
+#ifdef Honor_FLT_ROUNDS
+ if (rounding != 1) {
+ if (i < 0) {
+ /* Error is less than an ulp */
+ if (!delta->x[0] && delta->wds <= 1) {
+ /* exact */
+#ifdef SET_INEXACT
+ inexact = 0;
+#endif
+ break;
+ }
+ if (rounding) {
+ if (dsign) {
+ adj = 1.;
+ goto apply_adj;
+ }
+ }
+ else if (!dsign) {
+ adj = -1.;
+ if (!word1(rv)
+ && !(word0(rv) & Frac_mask)) {
+ y = word0(rv) & Exp_mask;
+#ifdef Avoid_Underflow
+ if (!scale || y > 2*P*Exp_msk1)
+#else
+ if (y)
+#endif
+ {
+ delta = lshift(delta,Log2P);
+ if (cmp(delta, bs) <= 0)
+ adj = -0.5;
+ }
+ }
+ apply_adj:
+#ifdef Avoid_Underflow
+ if (scale && (y = word0(rv) & Exp_mask)
+ <= 2*P*Exp_msk1)
+ word0(adj) += (2*P+1)*Exp_msk1 - y;
+#else
+#ifdef Sudden_Underflow
+ if ((word0(rv) & Exp_mask) <=
+ P*Exp_msk1) {
+ word0(rv) += P*Exp_msk1;
+ dval(rv) += adj*ulp(dval(rv));
+ word0(rv) -= P*Exp_msk1;
+ }
+ else
+#endif /*Sudden_Underflow*/
+#endif /*Avoid_Underflow*/
+ dval(rv) += adj*ulp(dval(rv));
+ }
+ break;
+ }
+ adj = ratio(delta, bs);
+ if (adj < 1.)
+ adj = 1.;
+ if (adj <= 0x7ffffffe) {
+ /* adj = rounding ? ceil(adj) : floor(adj); */
+ y = adj;
+ if (y != adj) {
+ if (!((rounding>>1) ^ dsign))
+ y++;
+ adj = y;
+ }
+ }
+#ifdef Avoid_Underflow
+ if (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1)
+ word0(adj) += (2*P+1)*Exp_msk1 - y;
+#else
+#ifdef Sudden_Underflow
+ if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
+ word0(rv) += P*Exp_msk1;
+ adj *= ulp(dval(rv));
+ if (dsign)
+ dval(rv) += adj;
+ else
+ dval(rv) -= adj;
+ word0(rv) -= P*Exp_msk1;
+ goto cont;
+ }
+#endif /*Sudden_Underflow*/
+#endif /*Avoid_Underflow*/
+ adj *= ulp(dval(rv));
+ if (dsign)
+ dval(rv) += adj;
+ else
+ dval(rv) -= adj;
+ goto cont;
+ }
+#endif /*Honor_FLT_ROUNDS*/
+
+ if (i < 0) {
+ /* Error is less than half an ulp -- check for
+ * special case of mantissa a power of two.
+ */
+ if (dsign || word1(rv) || word0(rv) & Bndry_mask
+#ifdef IEEE_Arith
+#ifdef Avoid_Underflow
+ || (word0(rv) & Exp_mask) <= (2*P+1)*Exp_msk1
+#else
+ || (word0(rv) & Exp_mask) <= Exp_msk1
+#endif
+#endif
+ ) {
+#ifdef SET_INEXACT
+ if (!delta->x[0] && delta->wds <= 1)
+ inexact = 0;
+#endif
+ break;
+ }
+ if (!delta->x[0] && delta->wds <= 1) {
+ /* exact result */
+#ifdef SET_INEXACT
+ inexact = 0;
+#endif
+ break;
+ }
+ delta = lshift(delta,Log2P);
+ if (cmp(delta, bs) > 0)
+ goto drop_down;
+ break;
+ }
+ if (i == 0) {
+ /* exactly half-way between */
+ if (dsign) {
+ if ((word0(rv) & Bndry_mask1) == Bndry_mask1
+ && word1(rv) == (
+#ifdef Avoid_Underflow
+ (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1)
+ ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
+#endif
+ 0xffffffff)) {
+ /*boundary case -- increment exponent*/
+ word0(rv) = (word0(rv) & Exp_mask)
+ + Exp_msk1
+#ifdef IBM
+ | Exp_msk1 >> 4
+#endif
+ ;
+ word1(rv) = 0;
+#ifdef Avoid_Underflow
+ dsign = 0;
+#endif
+ break;
+ }
+ }
+ else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
+ drop_down:
+ /* boundary case -- decrement exponent */
+#ifdef Sudden_Underflow /*{{*/
+ L = word0(rv) & Exp_mask;
+#ifdef IBM
+ if (L < Exp_msk1)
+#else
+#ifdef Avoid_Underflow
+ if (L <= (scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
+#else
+ if (L <= Exp_msk1)
+#endif /*Avoid_Underflow*/
+#endif /*IBM*/
+ goto undfl;
+ L -= Exp_msk1;
+#else /*Sudden_Underflow}{*/
+#ifdef Avoid_Underflow
+ if (scale) {
+ L = word0(rv) & Exp_mask;
+ if (L <= (2*P+1)*Exp_msk1) {
+ if (L > (P+2)*Exp_msk1)
+ /* round even ==> */
+ /* accept rv */
+ break;
+ /* rv = smallest denormal */
+ goto undfl;
+ }
+ }
+#endif /*Avoid_Underflow*/
+ L = (word0(rv) & Exp_mask) - Exp_msk1;
+#endif /*Sudden_Underflow}}*/
+ word0(rv) = L | Bndry_mask1;
+ word1(rv) = 0xffffffff;
+#ifdef IBM
+ goto cont;
+#else
+ break;
+#endif
+ }
+#ifndef ROUND_BIASED
+ if (!(word1(rv) & LSB))
+ break;
+#endif
+ if (dsign)
+ dval(rv) += ulp(dval(rv));
+#ifndef ROUND_BIASED
+ else {
+ dval(rv) -= ulp(dval(rv));
+#ifndef Sudden_Underflow
+ if (!dval(rv))
+ goto undfl;
+#endif
+ }
+#ifdef Avoid_Underflow
+ dsign = 1 - dsign;
+#endif
+#endif
+ break;
+ }
+ if ((aadj = ratio(delta, bs)) <= 2.) {
+ if (dsign)
+ aadj = aadj1 = 1.;
+ else if (word1(rv) || word0(rv) & Bndry_mask) {
+#ifndef Sudden_Underflow
+ if (word1(rv) == Tiny1 && !word0(rv))
+ goto undfl;
+#endif
+ aadj = 1.;
+ aadj1 = -1.;
+ }
+ else {
+ /* special case -- power of FLT_RADIX to be */
+ /* rounded down... */
+
+ if (aadj < 2./FLT_RADIX)
+ aadj = 1./FLT_RADIX;
+ else
+ aadj *= 0.5;
+ aadj1 = -aadj;
+ }
+ }
+ else {
+ aadj *= 0.5;
+ aadj1 = dsign ? aadj : -aadj;
+#ifdef Check_FLT_ROUNDS
+ switch(Rounding) {
+ case 2: /* towards +infinity */
+ aadj1 -= 0.5;
+ break;
+ case 0: /* towards 0 */
+ case 3: /* towards -infinity */
+ aadj1 += 0.5;
+ }
+#else
+ if (Flt_Rounds == 0)
+ aadj1 += 0.5;
+#endif /*Check_FLT_ROUNDS*/
+ }
+ y = word0(rv) & Exp_mask;
+
+ /* Check for overflow */
+
+ if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
+ dval(rv0) = dval(rv);
+ word0(rv) -= P*Exp_msk1;
+ adj = aadj1 * ulp(dval(rv));
+ dval(rv) += adj;
+ if ((word0(rv) & Exp_mask) >=
+ Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
+ if (word0(rv0) == Big0 && word1(rv0) == Big1)
+ goto ovfl;
+ word0(rv) = Big0;
+ word1(rv) = Big1;
+ goto cont;
+ }
+ else
+ word0(rv) += P*Exp_msk1;
+ }
+ else {
+#ifdef Avoid_Underflow
+ if (scale && y <= 2*P*Exp_msk1) {
+ if (aadj <= 0x7fffffff) {
+ if ((z = (ULong) aadj) <= 0)
+ z = 1;
+ aadj = z;
+ aadj1 = dsign ? aadj : -aadj;
+ }
+ word0(aadj1) += (2*P+1)*Exp_msk1 - y;
+ }
+ adj = aadj1 * ulp(dval(rv));
+ dval(rv) += adj;
+#else
+#ifdef Sudden_Underflow
+ if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
+ dval(rv0) = dval(rv);
+ word0(rv) += P*Exp_msk1;
+ adj = aadj1 * ulp(dval(rv));
+ dval(rv) += adj;
+#ifdef IBM
+ if ((word0(rv) & Exp_mask) < P*Exp_msk1)
+#else
+ if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
+#endif
+ {
+ if (word0(rv0) == Tiny0
+ && word1(rv0) == Tiny1)
+ goto undfl;
+ word0(rv) = Tiny0;
+ word1(rv) = Tiny1;
+ goto cont;
+ }
+ else
+ word0(rv) -= P*Exp_msk1;
+ }
+ else {
+ adj = aadj1 * ulp(dval(rv));
+ dval(rv) += adj;
+ }
+#else /*Sudden_Underflow*/
+ /* Compute adj so that the IEEE rounding rules will
+ * correctly round rv + adj in some half-way cases.
+ * If rv * ulp(rv) is denormalized (i.e.,
+ * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
+ * trouble from bits lost to denormalization;
+ * example: 1.2e-307 .
+ */
+ if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
+ aadj1 = (double)(int)(aadj + 0.5);
+ if (!dsign)
+ aadj1 = -aadj1;
+ }
+ adj = aadj1 * ulp(dval(rv));
+ dval(rv) += adj;
+#endif /*Sudden_Underflow*/
+#endif /*Avoid_Underflow*/
+ }
+ z = word0(rv) & Exp_mask;
+#ifndef SET_INEXACT
+#ifdef Avoid_Underflow
+ if (!scale)
+#endif
+ if (y == z) {
+ /* Can we stop now? */
+ L = (Long)aadj;
+ aadj -= L;
+ /* The tolerances below are conservative. */
+ if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
+ if (aadj < .4999999 || aadj > .5000001)
+ break;
+ }
+ else if (aadj < .4999999/FLT_RADIX)
+ break;
+ }
+#endif
+ cont:
+ Bfree(bb);
+ Bfree(bd);
+ Bfree(bs);
+ Bfree(delta);
+ }
+#ifdef SET_INEXACT
+ if (inexact) {
+ if (!oldinexact) {
+ word0(rv0) = Exp_1 + (70 << Exp_shift);
+ word1(rv0) = 0;
+ dval(rv0) += 1.;
+ }
+ }
+ else if (!oldinexact)
+ clear_inexact();
+#endif
+#ifdef Avoid_Underflow
+ if (scale) {
+ word0(rv0) = Exp_1 - 2*P*Exp_msk1;
+ word1(rv0) = 0;
+ dval(rv) *= dval(rv0);
+#ifndef NO_ERRNO
+ /* try to avoid the bug of testing an 8087 register value */
+ if (word0(rv) == 0 && word1(rv) == 0)
+ errno = ERANGE;
+#endif
+ }
+#endif /* Avoid_Underflow */
+#ifdef SET_INEXACT
+ if (inexact && !(word0(rv) & Exp_mask)) {
+ /* set underflow bit */
+ dval(rv0) = 1e-300;
+ dval(rv0) *= dval(rv0);
+ }
+#endif
+ retfree:
+ Bfree(bb);
+ Bfree(bd);
+ Bfree(bs);
+ Bfree(bd0);
+ Bfree(delta);
+ ret:
+ if (se)
+ *se = (char *)s;
+ return sign ? -dval(rv) : dval(rv);
+ }
+
+ static int
+quorem
+#ifdef KR_headers
+ (b, S) Bigint *b, *S;
+#else
+ (Bigint *b, Bigint *S)
+#endif
+{
+ int n;
+ ULong *bx, *bxe, q, *sx, *sxe;
+#ifdef ULLong
+ ULLong borrow, carry, y, ys;
+#else
+ ULong borrow, carry, y, ys;
+#ifdef Pack_32
+ ULong si, z, zs;
+#endif
+#endif
+
+ n = S->wds;
+#ifdef DEBUG
+ /*debug*/ if (b->wds > n)
+ /*debug*/ Bug("oversize b in quorem");
+#endif
+ if (b->wds < n)
+ return 0;
+ sx = S->x;
+ sxe = sx + --n;
+ bx = b->x;
+ bxe = bx + n;
+ q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
+#ifdef DEBUG
+ /*debug*/ if (q > 9)
+ /*debug*/ Bug("oversized quotient in quorem");
+#endif
+ if (q) {
+ borrow = 0;
+ carry = 0;
+ do {
+#ifdef ULLong
+ ys = *sx++ * (ULLong)q + carry;
+ carry = ys >> 32;
+ y = *bx - (ys & FFFFFFFF) - borrow;
+ borrow = y >> 32 & (ULong)1;
+ *bx++ = (ULong) y & FFFFFFFF;
+#else
+#ifdef Pack_32
+ si = *sx++;
+ ys = (si & 0xffff) * q + carry;
+ zs = (si >> 16) * q + (ys >> 16);
+ carry = zs >> 16;
+ y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
+ borrow = (y & 0x10000) >> 16;
+ z = (*bx >> 16) - (zs & 0xffff) - borrow;
+ borrow = (z & 0x10000) >> 16;
+ Storeinc(bx, z, y);
+#else
+ ys = *sx++ * q + carry;
+ carry = ys >> 16;
+ y = *bx - (ys & 0xffff) - borrow;
+ borrow = (y & 0x10000) >> 16;
+ *bx++ = y & 0xffff;
+#endif
+#endif
+ }
+ while(sx <= sxe);
+ if (!*bxe) {
+ bx = b->x;
+ while(--bxe > bx && !*bxe)
+ --n;
+ b->wds = n;
+ }
+ }
+ if (cmp(b, S) >= 0) {
+ q++;
+ borrow = 0;
+ carry = 0;
+ bx = b->x;
+ sx = S->x;
+ do {
+#ifdef ULLong
+ ys = *sx++ + carry;
+ carry = ys >> 32;
+ y = *bx - (ys & FFFFFFFF) - borrow;
+ borrow = y >> 32 & (ULong)1;
+ *bx++ = (ULong) y & FFFFFFFF;
+#else
+#ifdef Pack_32
+ si = *sx++;
+ ys = (si & 0xffff) + carry;
+ zs = (si >> 16) + (ys >> 16);
+ carry = zs >> 16;
+ y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
+ borrow = (y & 0x10000) >> 16;
+ z = (*bx >> 16) - (zs & 0xffff) - borrow;
+ borrow = (z & 0x10000) >> 16;
+ Storeinc(bx, z, y);
+#else
+ ys = *sx++ + carry;
+ carry = ys >> 16;
+ y = *bx - (ys & 0xffff) - borrow;
+ borrow = (y & 0x10000) >> 16;
+ *bx++ = y & 0xffff;
+#endif
+#endif
+ }
+ while(sx <= sxe);
+ bx = b->x;
+ bxe = bx + n;
+ if (!*bxe) {
+ while(--bxe > bx && !*bxe)
+ --n;
+ b->wds = n;
+ }
+ }
+ return q;
+ }
+
+#ifndef MULTIPLE_THREADS
+ static char *dtoa_result;
+#endif
+
+ static char *
+#ifdef KR_headers
+rv_alloc(i) int i;
+#else
+rv_alloc(int i)
+#endif
+{
+ int j, k, *r;
+
+ j = sizeof(ULong);
+ for(k = 0;
+ sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= sizeof(i);
+ j <<= 1)
+ k++;
+ r = (int*)Balloc(k);
+ *r = k;
+ return
+#ifndef MULTIPLE_THREADS
+ dtoa_result =
+#endif
+ (char *)(r+1);
+ }
+
+ static char *
+#ifdef KR_headers
+nrv_alloc(s, rve, n) char *s, **rve; int n;
+#else
+nrv_alloc(CONST char *s, char **rve, int n)
+#endif
+{
+ char *rv, *t;
+
+ t = rv = rv_alloc(n);
+ while((*t = *s++)) t++;
+ if (rve)
+ *rve = t;
+ return rv;
+ }
+
+/* freedtoa(s) must be used to free values s returned by dtoa
+ * when MULTIPLE_THREADS is #defined. It should be used in all cases,
+ * but for consistency with earlier versions of dtoa, it is optional
+ * when MULTIPLE_THREADS is not defined.
+ */
+
+ void
+#ifdef KR_headers
+freedtoa(s) char *s;
+#else
+freedtoa(char *s)
+#endif
+{
+ Bigint *b = (Bigint *)((int *)s - 1);
+ b->maxwds = 1 << (b->k = *(int*)b);
+ Bfree(b);
+#ifndef MULTIPLE_THREADS
+ if (s == dtoa_result)
+ dtoa_result = 0;
+#endif
+ }
+
+/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
+ *
+ * Inspired by "How to Print Floating-Point Numbers Accurately" by
+ * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
+ *
+ * Modifications:
+ * 1. Rather than iterating, we use a simple numeric overestimate
+ * to determine k = floor(log10(d)). We scale relevant
+ * quantities using O(log2(k)) rather than O(k) multiplications.
+ * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
+ * try to generate digits strictly left to right. Instead, we
+ * compute with fewer bits and propagate the carry if necessary
+ * when rounding the final digit up. This is often faster.
+ * 3. Under the assumption that input will be rounded nearest,
+ * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
+ * That is, we allow equality in stopping tests when the
+ * round-nearest rule will give the same floating-point value
+ * as would satisfaction of the stopping test with strict
+ * inequality.
+ * 4. We remove common factors of powers of 2 from relevant
+ * quantities.
+ * 5. When converting floating-point integers less than 1e16,
+ * we use floating-point arithmetic rather than resorting
+ * to multiple-precision integers.
+ * 6. When asked to produce fewer than 15 digits, we first try
+ * to get by with floating-point arithmetic; we resort to
+ * multiple-precision integer arithmetic only if we cannot
+ * guarantee that the floating-point calculation has given
+ * the correctly rounded result. For k requested digits and
+ * "uniformly" distributed input, the probability is
+ * something like 10^(k-15) that we must resort to the Long
+ * calculation.
+ */
+
+ static char *
+dtoa
+#ifdef KR_headers
+ (d, mode, ndigits, decpt, sign, rve)
+ double d; int mode, ndigits, *decpt, *sign; char **rve;
+#else
+ (double d, int mode, int ndigits, int *decpt, int *sign, char **rve)
+#endif
+{
+ /* Arguments ndigits, decpt, sign are similar to those
+ of ecvt and fcvt; trailing zeros are suppressed from
+ the returned string. If not null, *rve is set to point
+ to the end of the return value. If d is +-Infinity or NaN,
+ then *decpt is set to 9999.
+
+ mode:
+ 0 ==> shortest string that yields d when read in
+ and rounded to nearest.
+ 1 ==> like 0, but with Steele & White stopping rule;
+ e.g. with IEEE P754 arithmetic , mode 0 gives
+ 1e23 whereas mode 1 gives 9.999999999999999e22.
+ 2 ==> max(1,ndigits) significant digits. This gives a
+ return value similar to that of ecvt, except
+ that trailing zeros are suppressed.
+ 3 ==> through ndigits past the decimal point. This
+ gives a return value similar to that from fcvt,
+ except that trailing zeros are suppressed, and
+ ndigits can be negative.
+ 4,5 ==> similar to 2 and 3, respectively, but (in
+ round-nearest mode) with the tests of mode 0 to
+ possibly return a shorter string that rounds to d.
+ With IEEE arithmetic and compilation with
+ -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
+ as modes 2 and 3 when FLT_ROUNDS != 1.
+ 6-9 ==> Debugging modes similar to mode - 4: don't try
+ fast floating-point estimate (if applicable).
+
+ Values of mode other than 0-9 are treated as mode 0.
+
+ Sufficient space is allocated to the return value
+ to hold the suppressed trailing zeros.
+ */
+
+ int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
+ j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
+ spec_case, try_quick;
+ Long L;
+#ifndef Sudden_Underflow
+ int denorm;
+ ULong x;
+#endif
+ Bigint *b, *b1, *delta, *mlo, *mhi, *S;
+ double d2, ds, eps;
+ char *s, *s0;
+#ifdef Honor_FLT_ROUNDS
+ int rounding;
+#endif
+#ifdef SET_INEXACT
+ int inexact, oldinexact;
+#endif
+
+#ifdef __GNUC__
+ ilim = ilim1 = 0;
+ mlo = NULL;
+#endif
+
+#ifndef MULTIPLE_THREADS
+ if (dtoa_result) {
+ freedtoa(dtoa_result);
+ dtoa_result = 0;
+ }
+#endif
+
+ if (word0(d) & Sign_bit) {
+ /* set sign for everything, including 0's and NaNs */
+ *sign = 1;
+ word0(d) &= ~Sign_bit; /* clear sign bit */
+ }
+ else
+ *sign = 0;
+
+#if defined(IEEE_Arith) + defined(VAX)
+#ifdef IEEE_Arith
+ if ((word0(d) & Exp_mask) == Exp_mask)
+#else
+ if (word0(d) == 0x8000)
+#endif
+ {
+ /* Infinity or NaN */
+ *decpt = 9999;
+#ifdef IEEE_Arith
+ if (!word1(d) && !(word0(d) & 0xfffff))
+ return nrv_alloc("Infinity", rve, 8);
+#endif
+ return nrv_alloc("NaN", rve, 3);
+ }
+#endif
+#ifdef IBM
+ dval(d) += 0; /* normalize */
+#endif
+ if (!dval(d)) {
+ *decpt = 1;
+ return nrv_alloc("0", rve, 1);
+ }
+
+#ifdef SET_INEXACT
+ try_quick = oldinexact = get_inexact();
+ inexact = 1;
+#endif
+#ifdef Honor_FLT_ROUNDS
+ if ((rounding = Flt_Rounds) >= 2) {
+ if (*sign)
+ rounding = rounding == 2 ? 0 : 2;
+ else
+ if (rounding != 2)
+ rounding = 0;
+ }
+#endif
+
+ b = d2b(dval(d), &be, &bbits);
+#ifdef Sudden_Underflow
+ i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
+#else
+ if ((i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
+#endif
+ dval(d2) = dval(d);
+ word0(d2) &= Frac_mask1;
+ word0(d2) |= Exp_11;
+#ifdef IBM
+ if (j = 11 - hi0bits(word0(d2) & Frac_mask))
+ dval(d2) /= 1 << j;
+#endif
+
+ /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
+ * log10(x) = log(x) / log(10)
+ * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
+ * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
+ *
+ * This suggests computing an approximation k to log10(d) by
+ *
+ * k = (i - Bias)*0.301029995663981
+ * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
+ *
+ * We want k to be too large rather than too small.
+ * The error in the first-order Taylor series approximation
+ * is in our favor, so we just round up the constant enough
+ * to compensate for any error in the multiplication of
+ * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
+ * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
+ * adding 1e-13 to the constant term more than suffices.
+ * Hence we adjust the constant term to 0.1760912590558.
+ * (We could get a more accurate k by invoking log10,
+ * but this is probably not worthwhile.)
+ */
+
+ i -= Bias;
+#ifdef IBM
+ i <<= 2;
+ i += j;
+#endif
+#ifndef Sudden_Underflow
+ denorm = 0;
+ }
+ else {
+ /* d is denormalized */
+
+ i = bbits + be + (Bias + (P-1) - 1);
+ x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32)
+ : word1(d) << (32 - i);
+ dval(d2) = x;
+ word0(d2) -= 31*Exp_msk1; /* adjust exponent */
+ i -= (Bias + (P-1) - 1) + 1;
+ denorm = 1;
+ }
+#endif
+ ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
+ k = (int)ds;
+ if (ds < 0. && ds != k)
+ k--; /* want k = floor(ds) */
+ k_check = 1;
+ if (k >= 0 && k <= Ten_pmax) {
+ if (dval(d) < tens[k])
+ k--;
+ k_check = 0;
+ }
+ j = bbits - i - 1;
+ if (j >= 0) {
+ b2 = 0;
+ s2 = j;
+ }
+ else {
+ b2 = -j;
+ s2 = 0;
+ }
+ if (k >= 0) {
+ b5 = 0;
+ s5 = k;
+ s2 += k;
+ }
+ else {
+ b2 -= k;
+ b5 = -k;
+ s5 = 0;
+ }
+ if (mode < 0 || mode > 9)
+ mode = 0;
+
+#ifndef SET_INEXACT
+#ifdef Check_FLT_ROUNDS
+ try_quick = Rounding == 1;
+#else
+ try_quick = 1;
+#endif
+#endif /*SET_INEXACT*/
+
+ if (mode > 5) {
+ mode -= 4;
+ try_quick = 0;
+ }
+ leftright = 1;
+ switch(mode) {
+ case 0:
+ case 1:
+ ilim = ilim1 = -1;
+ i = 18;
+ ndigits = 0;
+ break;
+ case 2:
+ leftright = 0;
+ /* no break */
+ case 4:
+ if (ndigits <= 0)
+ ndigits = 1;
+ ilim = ilim1 = i = ndigits;
+ break;
+ case 3:
+ leftright = 0;
+ /* no break */
+ case 5:
+ i = ndigits + k + 1;
+ ilim = i;
+ ilim1 = i - 1;
+ if (i <= 0)
+ i = 1;
+ }
+ s = s0 = rv_alloc(i);
+
+#ifdef Honor_FLT_ROUNDS
+ if (mode > 1 && rounding != 1)
+ leftright = 0;
+#endif
+
+ if (ilim >= 0 && ilim <= Quick_max && try_quick) {
+
+ /* Try to get by with floating-point arithmetic. */
+
+ i = 0;
+ dval(d2) = dval(d);
+ k0 = k;
+ ilim0 = ilim;
+ ieps = 2; /* conservative */
+ if (k > 0) {
+ ds = tens[k&0xf];
+ j = k >> 4;
+ if (j & Bletch) {
+ /* prevent overflows */
+ j &= Bletch - 1;
+ dval(d) /= bigtens[n_bigtens-1];
+ ieps++;
+ }
+ for(; j; j >>= 1, i++)
+ if (j & 1) {
+ ieps++;
+ ds *= bigtens[i];
+ }
+ dval(d) /= ds;
+ }
+ else if ((j1 = -k)) {
+ dval(d) *= tens[j1 & 0xf];
+ for(j = j1 >> 4; j; j >>= 1, i++)
+ if (j & 1) {
+ ieps++;
+ dval(d) *= bigtens[i];
+ }
+ }
+ if (k_check && dval(d) < 1. && ilim > 0) {
+ if (ilim1 <= 0)
+ goto fast_failed;
+ ilim = ilim1;
+ k--;
+ dval(d) *= 10.;
+ ieps++;
+ }
+ dval(eps) = ieps*dval(d) + 7.;
+ word0(eps) -= (P-1)*Exp_msk1;
+ if (ilim == 0) {
+ S = mhi = 0;
+ dval(d) -= 5.;
+ if (dval(d) > dval(eps))
+ goto one_digit;
+ if (dval(d) < -dval(eps))
+ goto no_digits;
+ goto fast_failed;
+ }
+#ifndef No_leftright
+ if (leftright) {
+ /* Use Steele & White method of only
+ * generating digits needed.
+ */
+ dval(eps) = 0.5/tens[ilim-1] - dval(eps);
+ for(i = 0;;) {
+ L = (ULong) dval(d);
+ dval(d) -= L;
+ *s++ = '0' + (int)L;
+ if (dval(d) < dval(eps))
+ goto ret1;
+ if (1. - dval(d) < dval(eps))
+ goto bump_up;
+ if (++i >= ilim)
+ break;
+ dval(eps) *= 10.;
+ dval(d) *= 10.;
+ }
+ }
+ else {
+#endif
+ /* Generate ilim digits, then fix them up. */
+ dval(eps) *= tens[ilim-1];
+ for(i = 1;; i++, dval(d) *= 10.) {
+ L = (Long)(dval(d));
+ if (!(dval(d) -= L))
+ ilim = i;
+ *s++ = '0' + (int)L;
+ if (i == ilim) {
+ if (dval(d) > 0.5 + dval(eps))
+ goto bump_up;
+ else if (dval(d) < 0.5 - dval(eps)) {
+ while(*--s == '0');
+ s++;
+ goto ret1;
+ }
+ break;
+ }
+ }
+#ifndef No_leftright
+ }
+#endif
+ fast_failed:
+ s = s0;
+ dval(d) = dval(d2);
+ k = k0;
+ ilim = ilim0;
+ }
+
+ /* Do we have a "small" integer? */
+
+ if (be >= 0 && k <= Int_max) {
+ /* Yes. */
+ ds = tens[k];
+ if (ndigits < 0 && ilim <= 0) {
+ S = mhi = 0;
+ if (ilim < 0 || dval(d) <= 5*ds)
+ goto no_digits;
+ goto one_digit;
+ }
+ for(i = 1;; i++, dval(d) *= 10.) {
+ L = (Long)(dval(d) / ds);
+ dval(d) -= L*ds;
+#ifdef Check_FLT_ROUNDS
+ /* If FLT_ROUNDS == 2, L will usually be high by 1 */
+ if (dval(d) < 0) {
+ L--;
+ dval(d) += ds;
+ }
+#endif
+ *s++ = '0' + (int)L;
+ if (!dval(d)) {
+#ifdef SET_INEXACT
+ inexact = 0;
+#endif
+ break;
+ }
+ if (i == ilim) {
+#ifdef Honor_FLT_ROUNDS
+ if (mode > 1)
+ switch(rounding) {
+ case 0: goto ret1;
+ case 2: goto bump_up;
+ }
+#endif
+ dval(d) += dval(d);
+ if (dval(d) > ds || (dval(d) == ds && L & 1)) {
+ bump_up:
+ while(*--s == '9')
+ if (s == s0) {
+ k++;
+ *s = '0';
+ break;
+ }
+ ++*s++;
+ }
+ break;
+ }
+ }
+ goto ret1;
+ }
+
+ m2 = b2;
+ m5 = b5;
+ mhi = mlo = 0;
+ if (leftright) {
+ i =
+#ifndef Sudden_Underflow
+ denorm ? be + (Bias + (P-1) - 1 + 1) :
+#endif
+#ifdef IBM
+ 1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
+#else
+ 1 + P - bbits;
+#endif
+ b2 += i;
+ s2 += i;
+ mhi = i2b(1);
+ }
+ if (m2 > 0 && s2 > 0) {
+ i = m2 < s2 ? m2 : s2;
+ b2 -= i;
+ m2 -= i;
+ s2 -= i;
+ }
+ if (b5 > 0) {
+ if (leftright) {
+ if (m5 > 0) {
+ mhi = pow5mult(mhi, m5);
+ b1 = mult(mhi, b);
+ Bfree(b);
+ b = b1;
+ }
+ if ((j = b5 - m5))
+ b = pow5mult(b, j);
+ }
+ else
+ b = pow5mult(b, b5);
+ }
+ S = i2b(1);
+ if (s5 > 0)
+ S = pow5mult(S, s5);
+
+ /* Check for special case that d is a normalized power of 2. */
+
+ spec_case = 0;
+ if ((mode < 2 || leftright)
+#ifdef Honor_FLT_ROUNDS
+ && rounding == 1
+#endif
+ ) {
+ if (!word1(d) && !(word0(d) & Bndry_mask)
+#ifndef Sudden_Underflow
+ && word0(d) & (Exp_mask & ~Exp_msk1)
+#endif
+ ) {
+ /* The special case */
+ b2 += Log2P;
+ s2 += Log2P;
+ spec_case = 1;
+ }
+ }
+
+ /* Arrange for convenient computation of quotients:
+ * shift left if necessary so divisor has 4 leading 0 bits.
+ *
+ * Perhaps we should just compute leading 28 bits of S once
+ * and for all and pass them and a shift to quorem, so it
+ * can do shifts and ors to compute the numerator for q.
+ */
+#ifdef Pack_32
+ if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f))
+ i = 32 - i;
+#else
+ if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf)
+ i = 16 - i;
+#endif
+ if (i > 4) {
+ i -= 4;
+ b2 += i;
+ m2 += i;
+ s2 += i;
+ }
+ else if (i < 4) {
+ i += 28;
+ b2 += i;
+ m2 += i;
+ s2 += i;
+ }
+ if (b2 > 0)
+ b = lshift(b, b2);
+ if (s2 > 0)
+ S = lshift(S, s2);
+ if (k_check) {
+ if (cmp(b,S) < 0) {
+ k--;
+ b = multadd(b, 10, 0); /* we botched the k estimate */
+ if (leftright)
+ mhi = multadd(mhi, 10, 0);
+ ilim = ilim1;
+ }
+ }
+ if (ilim <= 0 && (mode == 3 || mode == 5)) {
+ if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
+ /* no digits, fcvt style */
+ no_digits:
+ k = -1 - ndigits;
+ goto ret;
+ }
+ one_digit:
+ *s++ = '1';
+ k++;
+ goto ret;
+ }
+ if (leftright) {
+ if (m2 > 0)
+ mhi = lshift(mhi, m2);
+
+ /* Compute mlo -- check for special case
+ * that d is a normalized power of 2.
+ */
+
+ mlo = mhi;
+ if (spec_case) {
+ mhi = Balloc(mhi->k);
+ Bcopy(mhi, mlo);
+ mhi = lshift(mhi, Log2P);
+ }
+
+ for(i = 1;;i++) {
+ dig = quorem(b,S) + '0';
+ /* Do we yet have the shortest decimal string
+ * that will round to d?
+ */
+ j = cmp(b, mlo);
+ delta = diff(S, mhi);
+ j1 = delta->sign ? 1 : cmp(b, delta);
+ Bfree(delta);
+#ifndef ROUND_BIASED
+ if (j1 == 0 && mode != 1 && !(word1(d) & 1)
+#ifdef Honor_FLT_ROUNDS
+ && rounding >= 1
+#endif
+ ) {
+ if (dig == '9')
+ goto round_9_up;
+ if (j > 0)
+ dig++;
+#ifdef SET_INEXACT
+ else if (!b->x[0] && b->wds <= 1)
+ inexact = 0;
+#endif
+ *s++ = dig;
+ goto ret;
+ }
+#endif
+ if (j < 0 || (j == 0 && mode != 1
+#ifndef ROUND_BIASED
+ && !(word1(d) & 1)
+#endif
+ )) {
+ if (!b->x[0] && b->wds <= 1) {
+#ifdef SET_INEXACT
+ inexact = 0;
+#endif
+ goto accept_dig;
+ }
+#ifdef Honor_FLT_ROUNDS
+ if (mode > 1)
+ switch(rounding) {
+ case 0: goto accept_dig;
+ case 2: goto keep_dig;
+ }
+#endif /*Honor_FLT_ROUNDS*/
+ if (j1 > 0) {
+ b = lshift(b, 1);
+ j1 = cmp(b, S);
+ if ((j1 > 0 || (j1 == 0 && dig & 1))
+ && dig++ == '9')
+ goto round_9_up;
+ }
+ accept_dig:
+ *s++ = dig;
+ goto ret;
+ }
+ if (j1 > 0) {
+#ifdef Honor_FLT_ROUNDS
+ if (!rounding)
+ goto accept_dig;
+#endif
+ if (dig == '9') { /* possible if i == 1 */
+ round_9_up:
+ *s++ = '9';
+ goto roundoff;
+ }
+ *s++ = dig + 1;
+ goto ret;
+ }
+#ifdef Honor_FLT_ROUNDS
+ keep_dig:
+#endif
+ *s++ = dig;
+ if (i == ilim)
+ break;
+ b = multadd(b, 10, 0);
+ if (mlo == mhi)
+ mlo = mhi = multadd(mhi, 10, 0);
+ else {
+ mlo = multadd(mlo, 10, 0);
+ mhi = multadd(mhi, 10, 0);
+ }
+ }
+ }
+ else
+ for(i = 1;; i++) {
+ *s++ = dig = quorem(b,S) + '0';
+ if (!b->x[0] && b->wds <= 1) {
+#ifdef SET_INEXACT
+ inexact = 0;
+#endif
+ goto ret;
+ }
+ if (i >= ilim)
+ break;
+ b = multadd(b, 10, 0);
+ }
+
+ /* Round off last digit */
+
+#ifdef Honor_FLT_ROUNDS
+ switch(rounding) {
+ case 0: goto trimzeros;
+ case 2: goto roundoff;
+ }
+#endif
+ b = lshift(b, 1);
+ j = cmp(b, S);
+ if (j > 0 || (j == 0 && dig & 1)) {
+ roundoff:
+ while(*--s == '9')
+ if (s == s0) {
+ k++;
+ *s++ = '1';
+ goto ret;
+ }
+ ++*s++;
+ }
+ else {
+#ifdef Honor_FLT_ROUNDS
+ trimzeros:
+#endif
+ while(*--s == '0');
+ s++;
+ }
+ ret:
+ Bfree(S);
+ if (mhi) {
+ if (mlo && mlo != mhi)
+ Bfree(mlo);
+ Bfree(mhi);
+ }
+ ret1:
+#ifdef SET_INEXACT
+ if (inexact) {
+ if (!oldinexact) {
+ word0(d) = Exp_1 + (70 << Exp_shift);
+ word1(d) = 0;
+ dval(d) += 1.;
+ }
+ }
+ else if (!oldinexact)
+ clear_inexact();
+#endif
+ Bfree(b);
+ *s = 0;
+ *decpt = k + 1;
+ if (rve)
+ *rve = s;
+ return s0;
+ }
+#ifdef __cplusplus
+}
+#endif
--- a/js/src/jsapi.cpp
+++ b/js/src/jsapi.cpp
@@ -736,16 +736,18 @@ JS_NewRuntime(uint32 maxbytes)
return NULL;
/* Initialize infallibly first, so we can goto bad and JS_DestroyRuntime. */
memset(rt, 0, sizeof(JSRuntime));
JS_INIT_CLIST(&rt->contextList);
JS_INIT_CLIST(&rt->trapList);
JS_INIT_CLIST(&rt->watchPointList);
+ if (!js_InitDtoa())
+ goto bad;
if (!js_InitGC(rt, maxbytes))
goto bad;
if (!js_InitAtomState(rt))
goto bad;
if (!js_InitDeflatedStringCache(rt))
goto bad;
#ifdef JS_THREADSAFE
if (!js_InitThreadPrivateIndex(js_ThreadDestructorCB))
--- a/js/src/jsdtoa.cpp
+++ b/js/src/jsdtoa.cpp
@@ -46,2779 +46,148 @@
#include "jsdtoa.h"
#include "jsprf.h"
#include "jsutil.h" /* Added by JSIFY */
#include "jspubtd.h"
#include "jsnum.h"
#include "jsbit.h"
#ifdef JS_THREADSAFE
-#include "prlock.h"
+#include "jslock.h"
#endif
-/****************************************************************
- *
- * The author of this software is David M. Gay.
- *
- * Copyright (c) 1991 by Lucent Technologies.
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose without fee is hereby granted, provided that this entire notice
- * is included in all copies of any software which is or includes a copy
- * or modification of this software and in all copies of the supporting
- * documentation for such software.
- *
- * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
- * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
- * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
- * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
- *
- ***************************************************************/
-
-/* Please send bug reports to
- David M. Gay
- Bell Laboratories, Room 2C-463
- 600 Mountain Avenue
- Murray Hill, NJ 07974-0636
- U.S.A.
- dmg@bell-labs.com
- */
-
-/* On a machine with IEEE extended-precision registers, it is
- * necessary to specify double-precision (53-bit) rounding precision
- * before invoking strtod or dtoa. If the machine uses (the equivalent
- * of) Intel 80x87 arithmetic, the call
- * _control87(PC_53, MCW_PC);
- * does this with many compilers. Whether this or another call is
- * appropriate depends on the compiler; for this to work, it may be
- * necessary to #include "float.h" or another system-dependent header
- * file.
- */
-
-/* strtod for IEEE-arithmetic machines.
- *
- * This strtod returns a nearest machine number to the input decimal
- * string (or sets err to JS_DTOA_ERANGE or JS_DTOA_ENOMEM). With IEEE
- * arithmetic, ties are broken by the IEEE round-even rule. Otherwise
- * ties are broken by biased rounding (add half and chop).
- *
- * Inspired loosely by William D. Clinger's paper "How to Read Floating
- * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
- *
- * Modifications:
- *
- * 1. We only require IEEE double-precision
- * arithmetic (not IEEE double-extended).
- * 2. We get by with floating-point arithmetic in a case that
- * Clinger missed -- when we're computing d * 10^n
- * for a small integer d and the integer n is not too
- * much larger than 22 (the maximum integer k for which
- * we can represent 10^k exactly), we may be able to
- * compute (d*10^k) * 10^(e-k) with just one roundoff.
- * 3. Rather than a bit-at-a-time adjustment of the binary
- * result in the hard case, we use floating-point
- * arithmetic to determine the adjustment to within
- * one bit; only in really hard cases do we need to
- * compute a second residual.
- * 4. Because of 3., we don't need a large table of powers of 10
- * for ten-to-e (just some small tables, e.g. of 10^k
- * for 0 <= k <= 22).
- */
-
-/*
- * #define IEEE_8087 for IEEE-arithmetic machines where the least
- * significant byte has the lowest address.
- * #define IEEE_MC68k for IEEE-arithmetic machines where the most
- * significant byte has the lowest address.
- * #define Long int on machines with 32-bit ints and 64-bit longs.
- * #define Sudden_Underflow for IEEE-format machines without gradual
- * underflow (i.e., that flush to zero on underflow).
- * #define No_leftright to omit left-right logic in fast floating-point
- * computation of js_dtoa.
- * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
- * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
- * that use extended-precision instructions to compute rounded
- * products and quotients) with IBM.
- * #define ROUND_BIASED for IEEE-format with biased rounding.
- * #define Inaccurate_Divide for IEEE-format with correctly rounded
- * products but inaccurate quotients, e.g., for Intel i860.
- * #define JS_HAVE_LONG_LONG on machines that have a "long long"
- * integer type (of >= 64 bits). If long long is available and the name is
- * something other than "long long", #define Llong to be the name,
- * and if "unsigned Llong" does not work as an unsigned version of
- * Llong, #define #ULLong to be the corresponding unsigned type.
- * #define Bad_float_h if your system lacks a float.h or if it does not
- * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
- * FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
- * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
- * if memory is available and otherwise does something you deem
- * appropriate. If MALLOC is undefined, malloc will be invoked
- * directly -- and assumed always to succeed.
- * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
- * memory allocations from a private pool of memory when possible.
- * When used, the private pool is PRIVATE_MEM bytes long: 2000 bytes,
- * unless #defined to be a different length. This default length
- * suffices to get rid of MALLOC calls except for unusual cases,
- * such as decimal-to-binary conversion of a very long string of
- * digits.
- * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
- * Infinity and NaN (case insensitively). On some systems (e.g.,
- * some HP systems), it may be necessary to #define NAN_WORD0
- * appropriately -- to the most significant word of a quiet NaN.
- * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
- * #define MULTIPLE_THREADS if the system offers preemptively scheduled
- * multiple threads. In this case, you must provide (or suitably
- * #define) two locks, acquired by ACQUIRE_DTOA_LOCK() and released
- * by RELEASE_DTOA_LOCK(). (The second lock, accessed
- * in pow5mult, ensures lazy evaluation of only one copy of high
- * powers of 5; omitting this lock would introduce a small
- * probability of wasting memory, but would otherwise be harmless.)
- * You must also invoke freedtoa(s) to free the value s returned by
- * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
- * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
- * avoids underflows on inputs whose result does not underflow.
- */
#ifdef IS_LITTLE_ENDIAN
#define IEEE_8087
#else
#define IEEE_MC68k
#endif
#ifndef Long
#define Long int32
#endif
#ifndef ULong
#define ULong uint32
#endif
-#define Bug(errorMessageString) JS_ASSERT(!errorMessageString)
-
-#include "stdlib.h"
-#include "string.h"
-
-#ifdef MALLOC
-extern void *MALLOC(size_t);
-#else
-#define MALLOC malloc
-#endif
-
-#define Omit_Private_Memory
-/* Private memory currently doesn't work with JS_THREADSAFE */
-#ifndef Omit_Private_Memory
-#ifndef PRIVATE_MEM
-#define PRIVATE_MEM 2000
-#endif
-#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
-static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
-#endif
-
-#ifdef Bad_float_h
-#undef __STDC__
-
-#define DBL_DIG 15
-#define DBL_MAX_10_EXP 308
-#define DBL_MAX_EXP 1024
-#define FLT_RADIX 2
-#define FLT_ROUNDS 1
-#define DBL_MAX 1.7976931348623157e+308
-
-
-
-#ifndef LONG_MAX
-#define LONG_MAX 2147483647
-#endif
-
-#else /* ifndef Bad_float_h */
-#include "float.h"
-#endif /* Bad_float_h */
-
-#ifndef __MATH_H__
-#include "math.h"
-#endif
-
-#ifndef CONST
-#define CONST const
-#endif
-
-#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
-Exactly one of IEEE_8087 or IEEE_MC68k should be defined.
-#endif
-
-#define word0(x) JSDOUBLE_HI32(x)
-#define set_word0(x, y) JSDOUBLE_SET_HI32(x, y)
-#define word1(x) JSDOUBLE_LO32(x)
-#define set_word1(x, y) JSDOUBLE_SET_LO32(x, y)
-
-#define Storeinc(a,b,c) (*(a)++ = (b) << 16 | (c) & 0xffff)
-
-/* #define P DBL_MANT_DIG */
-/* Ten_pmax = floor(P*log(2)/log(5)) */
-/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
-/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
-/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
-
-#define Exp_shift 20
-#define Exp_shift1 20
-#define Exp_msk1 0x100000
-#define Exp_msk11 0x100000
-#define Exp_mask 0x7ff00000
-#define P 53
-#define Bias 1023
-#define Emin (-1022)
-#define Exp_1 0x3ff00000
-#define Exp_11 0x3ff00000
-#define Ebits 11
-#define Frac_mask 0xfffff
-#define Frac_mask1 0xfffff
-#define Ten_pmax 22
-#define Bletch 0x10
-#define Bndry_mask 0xfffff
-#define Bndry_mask1 0xfffff
-#define LSB 1
-#define Sign_bit 0x80000000
-#define Log2P 1
-#define Tiny0 0
-#define Tiny1 1
-#define Quick_max 14
-#define Int_max 14
-#define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */
-#ifndef NO_IEEE_Scale
-#define Avoid_Underflow
-#endif
-
-
-
-#ifdef RND_PRODQUOT
-#define rounded_product(a,b) a = rnd_prod(a, b)
-#define rounded_quotient(a,b) a = rnd_quot(a, b)
-extern double rnd_prod(double, double), rnd_quot(double, double);
-#else
-#define rounded_product(a,b) a *= b
-#define rounded_quotient(a,b) a /= b
-#endif
-
-#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
-#define Big1 0xffffffff
-
-#ifndef JS_HAVE_LONG_LONG
-#undef ULLong
-#else /* long long available */
+/*
#ifndef Llong
#define Llong JSInt64
#endif
-#ifndef ULLong
-#define ULLong JSUint64
-#endif
-#endif /* JS_HAVE_LONG_LONG */
-#ifdef JS_THREADSAFE
-#define MULTIPLE_THREADS
-static PRLock *freelist_lock;
-#define ACQUIRE_DTOA_LOCK() \
- JS_BEGIN_MACRO \
- if (!initialized) \
- InitDtoa(); \
- PR_Lock(freelist_lock); \
- JS_END_MACRO
-#define RELEASE_DTOA_LOCK() PR_Unlock(freelist_lock)
-#else
-#undef MULTIPLE_THREADS
-#define ACQUIRE_DTOA_LOCK() /*nothing*/
-#define RELEASE_DTOA_LOCK() /*nothing*/
-#endif
-
-#define Kmax 15
-
-struct Bigint {
- struct Bigint *next; /* Free list link */
- int32 k; /* lg2(maxwds) */
- int32 maxwds; /* Number of words allocated for x */
- int32 sign; /* Zero if positive, 1 if negative. Ignored by most Bigint routines! */
- int32 wds; /* Actual number of words. If value is nonzero, the most significant word must be nonzero. */
- ULong x[1]; /* wds words of number in little endian order */
-};
-
-#ifdef ENABLE_OOM_TESTING
-/* Out-of-memory testing. Use a good testcase (over and over) and then use
- * these routines to cause a memory failure on every possible Balloc allocation,
- * to make sure that all out-of-memory paths can be followed. See bug 14044.
- */
-
-static int allocationNum; /* which allocation is next? */
-static int desiredFailure; /* which allocation should fail? */
-
-/**
- * js_BigintTestingReset
- *
- * Call at the beginning of a test run to set the allocation failure position.
- * (Set to 0 to just have the engine count allocations without failing.)
- */
-JS_PUBLIC_API(void)
-js_BigintTestingReset(int newFailure)
-{
- allocationNum = 0;
- desiredFailure = newFailure;
-}
-
-/**
- * js_BigintTestingWhere
- *
- * Report the current allocation position. This is really only useful when you
- * want to learn how many allocations a test run has.
- */
-JS_PUBLIC_API(int)
-js_BigintTestingWhere()
-{
- return allocationNum;
-}
-
-
-/*
- * So here's what you do: Set up a fantastic test case that exercises the
- * elements of the code you wish. Set the failure point at 0 and run the test,
- * then get the allocation position. This number is the number of allocations
- * your test makes. Now loop from 1 to that number, setting the failure point
- * at each loop count, and run the test over and over, causing failures at each
- * step. Any memory failure *should* cause a Out-Of-Memory exception; if it
- * doesn't, then there's still an error here.
- */
-#endif
-
-typedef struct Bigint Bigint;
-
-static Bigint *freelist[Kmax+1];
-
-/*
- * Allocate a Bigint with 2^k words.
- * This is not threadsafe. The caller must use thread locks
- */
-static Bigint *Balloc(int32 k)
-{
- int32 x;
- Bigint *rv;
-#ifndef Omit_Private_Memory
- uint32 len;
-#endif
-
-#ifdef ENABLE_OOM_TESTING
- if (++allocationNum == desiredFailure) {
- printf("Forced Failing Allocation number %d\n", allocationNum);
- return NULL;
- }
-#endif
-
- if ((rv = freelist[k]) != NULL)
- freelist[k] = rv->next;
- if (rv == NULL) {
- x = 1 << k;
-#ifdef Omit_Private_Memory
- rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
-#else
- len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
- /sizeof(double);
- if (pmem_next - private_mem + len <= PRIVATE_mem) {
- rv = (Bigint*)pmem_next;
- pmem_next += len;
- }
- else
- rv = (Bigint*)MALLOC(len*sizeof(double));
-#endif
- if (!rv)
- return NULL;
- rv->k = k;
- rv->maxwds = x;
- }
- rv->sign = rv->wds = 0;
- return rv;
-}
-
-static void Bfree(Bigint *v)
-{
- if (v) {
- v->next = freelist[v->k];
- freelist[v->k] = v;
- }
-}
-
-#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
- y->wds*sizeof(Long) + 2*sizeof(int32))
-
-/* Return b*m + a. Deallocate the old b. Both a and m must be between 0 and
- * 65535 inclusive. NOTE: old b is deallocated on memory failure.
- */
-static Bigint *multadd(Bigint *b, int32 m, int32 a)
-{
- int32 i, wds;
-#ifdef ULLong
- ULong *x;
- ULLong carry, y;
-#else
- ULong carry, *x, y;
- ULong xi, z;
-#endif
- Bigint *b1;
-
-#ifdef ENABLE_OOM_TESTING
- if (++allocationNum == desiredFailure) {
- /* Faux allocation, because I'm not getting all of the failure paths
- * without it.
- */
- printf("Forced Failing Allocation number %d\n", allocationNum);
- Bfree(b);
- return NULL;
- }
-#endif
-
- wds = b->wds;
- x = b->x;
- i = 0;
- carry = a;
- do {
-#ifdef ULLong
- y = *x * (ULLong)m + carry;
- carry = y >> 32;
- *x++ = (ULong)(y & 0xffffffffUL);
-#else
- xi = *x;
- y = (xi & 0xffff) * m + carry;
- z = (xi >> 16) * m + (y >> 16);
- carry = z >> 16;
- *x++ = (z << 16) + (y & 0xffff);
+#ifndef ULlong
+#define ULlong JSUint64
#endif
- }
- while(++i < wds);
- if (carry) {
- if (wds >= b->maxwds) {
- b1 = Balloc(b->k+1);
- if (!b1) {
- Bfree(b);
- return NULL;
- }
- Bcopy(b1, b);
- Bfree(b);
- b = b1;
- }
- b->x[wds++] = (ULong)carry;
- b->wds = wds;
- }
- return b;
-}
-
-static Bigint *s2b(CONST char *s, int32 nd0, int32 nd, ULong y9)
-{
- Bigint *b;
- int32 i, k;
- Long x, y;
-
- x = (nd + 8) / 9;
- for(k = 0, y = 1; x > y; y <<= 1, k++) ;
- b = Balloc(k);
- if (!b)
- return NULL;
- b->x[0] = y9;
- b->wds = 1;
-
- i = 9;
- if (9 < nd0) {
- s += 9;
- do {
- b = multadd(b, 10, *s++ - '0');
- if (!b)
- return NULL;
- } while(++i < nd0);
- s++;
- }
- else
- s += 10;
- for(; i < nd; i++) {
- b = multadd(b, 10, *s++ - '0');
- if (!b)
- return NULL;
- }
- return b;
-}
-
-
-/* Return the number (0 through 32) of most significant zero bits in x. */
-static int32 hi0bits(register ULong x)
-{
-#ifdef JS_HAS_BUILTIN_BITSCAN32
- return( (!x) ? 32 : js_bitscan_clz32(x) );
-#else
- register int32 k = 0;
-
- if (!(x & 0xffff0000)) {
- k = 16;
- x <<= 16;
- }
- if (!(x & 0xff000000)) {
- k += 8;
- x <<= 8;
- }
- if (!(x & 0xf0000000)) {
- k += 4;
- x <<= 4;
- }
- if (!(x & 0xc0000000)) {
- k += 2;
- x <<= 2;
- }
- if (!(x & 0x80000000)) {
- k++;
- if (!(x & 0x40000000))
- return 32;
- }
- return k;
-#endif /* JS_HAS_BUILTIN_BITSCAN32 */
-}
-
-
-/* Return the number (0 through 32) of least significant zero bits in y.
- * Also shift y to the right past these 0 through 32 zeros so that y's
- * least significant bit will be set unless y was originally zero. */
-static int32 lo0bits(ULong *y)
-{
-#ifdef JS_HAS_BUILTIN_BITSCAN32
- int32 k;
- ULong x = *y;
-
- if (x>1)
- *y = ( x >> (k = js_bitscan_ctz32(x)) );
- else
- k = ((x ^ 1) << 5);
-#else
- register int32 k;
- register ULong x = *y;
-
- if (x & 7) {
- if (x & 1)
- return 0;
- if (x & 2) {
- *y = x >> 1;
- return 1;
- }
- *y = x >> 2;
- return 2;
- }
- k = 0;
- if (!(x & 0xffff)) {
- k = 16;
- x >>= 16;
- }
- if (!(x & 0xff)) {
- k += 8;
- x >>= 8;
- }
- if (!(x & 0xf)) {
- k += 4;
- x >>= 4;
- }
- if (!(x & 0x3)) {
- k += 2;
- x >>= 2;
- }
- if (!(x & 1)) {
- k++;
- x >>= 1;
- if (!x & 1)
- return 32;
- }
- *y = x;
-#endif /* JS_HAS_BUILTIN_BITSCAN32 */
- return k;
-}
-
-/* Return a new Bigint with the given integer value, which must be nonnegative. */
-static Bigint *i2b(int32 i)
-{
- Bigint *b;
-
- b = Balloc(1);
- if (!b)
- return NULL;
- b->x[0] = i;
- b->wds = 1;
- return b;
-}
-
-/* Return a newly allocated product of a and b. */
-static Bigint *mult(CONST Bigint *a, CONST Bigint *b)
-{
- CONST Bigint *t;
- Bigint *c;
- int32 k, wa, wb, wc;
- ULong y;
- ULong *xc, *xc0, *xce;
- CONST ULong *x, *xa, *xae, *xb, *xbe;
-#ifdef ULLong
- ULLong carry, z;
-#else
- ULong carry, z;
- ULong z2;
-#endif
-
- if (a->wds < b->wds) {
- t = a;
- a = b;
- b = t;
- }
- k = a->k;
- wa = a->wds;
- wb = b->wds;
- wc = wa + wb;
- if (wc > a->maxwds)
- k++;
- c = Balloc(k);
- if (!c)
- return NULL;
- for(xc = c->x, xce = xc + wc; xc < xce; xc++)
- *xc = 0;
- xa = a->x;
- xae = xa + wa;
- xb = b->x;
- xbe = xb + wb;
- xc0 = c->x;
-#ifdef ULLong
- for(; xb < xbe; xc0++) {
- if ((y = *xb++) != 0) {
- x = xa;
- xc = xc0;
- carry = 0;
- do {
- z = *x++ * (ULLong)y + *xc + carry;
- carry = z >> 32;
- *xc++ = (ULong)(z & 0xffffffffUL);
- }
- while(x < xae);
- *xc = (ULong)carry;
- }
- }
-#else
- for(; xb < xbe; xb++, xc0++) {
- if ((y = *xb & 0xffff) != 0) {
- x = xa;
- xc = xc0;
- carry = 0;
- do {
- z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
- carry = z >> 16;
- z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
- carry = z2 >> 16;
- Storeinc(xc, z2, z);
- }
- while(x < xae);
- *xc = carry;
- }
- if ((y = *xb >> 16) != 0) {
- x = xa;
- xc = xc0;
- carry = 0;
- z2 = *xc;
- do {
- z = (*x & 0xffff) * y + (*xc >> 16) + carry;
- carry = z >> 16;
- Storeinc(xc, z, z2);
- z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
- carry = z2 >> 16;
- }
- while(x < xae);
- *xc = z2;
- }
- }
-#endif
- for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
- c->wds = wc;
- return c;
-}
-
-/*
- * 'p5s' points to a linked list of Bigints that are powers of 5.
- * This list grows on demand, and it can only grow: it won't change
- * in any other way. So if we read 'p5s' or the 'next' field of
- * some Bigint on the list, and it is not NULL, we know it won't
- * change to NULL or some other value. Only when the value of
- * 'p5s' or 'next' is NULL do we need to acquire the lock and add
- * a new Bigint to the list.
- */
-
-static Bigint *p5s;
+*/
#ifdef JS_THREADSAFE
-static PRLock *p5s_lock;
-#endif
-
-/* Return b * 5^k. Deallocate the old b. k must be nonnegative. */
-/* NOTE: old b is deallocated on memory failure. */
-static Bigint *pow5mult(Bigint *b, int32 k)
-{
- Bigint *b1, *p5, *p51;
- int32 i;
- static CONST int32 p05[3] = { 5, 25, 125 };
-
- if ((i = k & 3) != 0) {
- b = multadd(b, p05[i-1], 0);
- if (!b)
- return NULL;
- }
-
- if (!(k >>= 2))
- return b;
- if (!(p5 = p5s)) {
-#ifdef JS_THREADSAFE
- /*
- * We take great care to not call i2b() and Bfree()
- * while holding the lock.
- */
- Bigint *wasted_effort = NULL;
- p5 = i2b(625);
- if (!p5) {
- Bfree(b);
- return NULL;
- }
- /* lock and check again */
- PR_Lock(p5s_lock);
- if (!p5s) {
- /* first time */
- p5s = p5;
- p5->next = 0;
- } else {
- /* some other thread just beat us */
- wasted_effort = p5;
- p5 = p5s;
- }
- PR_Unlock(p5s_lock);
- if (wasted_effort) {
- Bfree(wasted_effort);
- }
-#else
- /* first time */
- p5 = p5s = i2b(625);
- if (!p5) {
- Bfree(b);
- return NULL;
- }
- p5->next = 0;
-#endif
- }
- for(;;) {
- if (k & 1) {
- b1 = mult(b, p5);
- Bfree(b);
- if (!b1)
- return NULL;
- b = b1;
- }
- if (!(k >>= 1))
- break;
- if (!(p51 = p5->next)) {
-#ifdef JS_THREADSAFE
- Bigint *wasted_effort = NULL;
- p51 = mult(p5, p5);
- if (!p51) {
- Bfree(b);
- return NULL;
- }
- PR_Lock(p5s_lock);
- if (!p5->next) {
- p5->next = p51;
- p51->next = 0;
- } else {
- wasted_effort = p51;
- p51 = p5->next;
- }
- PR_Unlock(p5s_lock);
- if (wasted_effort) {
- Bfree(wasted_effort);
- }
-#else
- p51 = mult(p5,p5);
- if (!p51) {
- Bfree(b);
- return NULL;
- }
- p51->next = 0;
- p5->next = p51;
-#endif
- }
- p5 = p51;
- }
- return b;
-}
-
-/* Return b * 2^k. Deallocate the old b. k must be nonnegative.
- * NOTE: on memory failure, old b is deallocated. */
-static Bigint *lshift(Bigint *b, int32 k)
-{
- int32 i, k1, n, n1;
- Bigint *b1;
- ULong *x, *x1, *xe, z;
-
- n = k >> 5;
- k1 = b->k;
- n1 = n + b->wds + 1;
- for(i = b->maxwds; n1 > i; i <<= 1)
- k1++;
- b1 = Balloc(k1);
- if (!b1)
- goto done;
- x1 = b1->x;
- for(i = 0; i < n; i++)
- *x1++ = 0;
- x = b->x;
- xe = x + b->wds;
- if (k &= 0x1f) {
- k1 = 32 - k;
- z = 0;
- do {
- *x1++ = *x << k | z;
- z = *x++ >> k1;
- }
- while(x < xe);
- if ((*x1 = z) != 0)
- ++n1;
- }
- else do
- *x1++ = *x++;
- while(x < xe);
- b1->wds = n1 - 1;
-done:
- Bfree(b);
- return b1;
-}
-
-/* Return -1, 0, or 1 depending on whether a<b, a==b, or a>b, respectively. */
-static int32 cmp(Bigint *a, Bigint *b)
-{
- ULong *xa, *xa0, *xb, *xb0;
- int32 i, j;
-
- i = a->wds;
- j = b->wds;
-#ifdef DEBUG
- if (i > 1 && !a->x[i-1])
- Bug("cmp called with a->x[a->wds-1] == 0");
- if (j > 1 && !b->x[j-1])
- Bug("cmp called with b->x[b->wds-1] == 0");
-#endif
- if (i -= j)
- return i;
- xa0 = a->x;
- xa = xa0 + j;
- xb0 = b->x;
- xb = xb0 + j;
- for(;;) {
- if (*--xa != *--xb)
- return *xa < *xb ? -1 : 1;
- if (xa <= xa0)
- break;
- }
- return 0;
-}
-
-static Bigint *diff(Bigint *a, Bigint *b)
-{
- Bigint *c;
- int32 i, wa, wb;
- ULong *xa, *xae, *xb, *xbe, *xc;
-#ifdef ULLong
- ULLong borrow, y;
-#else
- ULong borrow, y;
- ULong z;
-#endif
-
- i = cmp(a,b);
- if (!i) {
- c = Balloc(0);
- if (!c)
- return NULL;
- c->wds = 1;
- c->x[0] = 0;
- return c;
- }
- if (i < 0) {
- c = a;
- a = b;
- b = c;
- i = 1;
- }
- else
- i = 0;
- c = Balloc(a->k);
- if (!c)
- return NULL;
- c->sign = i;
- wa = a->wds;
- xa = a->x;
- xae = xa + wa;
- wb = b->wds;
- xb = b->x;
- xbe = xb + wb;
- xc = c->x;
- borrow = 0;
-#ifdef ULLong
- do {
- y = (ULLong)*xa++ - *xb++ - borrow;
- borrow = y >> 32 & 1UL;
- *xc++ = (ULong)(y & 0xffffffffUL);
- }
- while(xb < xbe);
- while(xa < xae) {
- y = *xa++ - borrow;
- borrow = y >> 32 & 1UL;
- *xc++ = (ULong)(y & 0xffffffffUL);
- }
-#else
- do {
- y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
- borrow = (y & 0x10000) >> 16;
- z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
- borrow = (z & 0x10000) >> 16;
- Storeinc(xc, z, y);
- }
- while(xb < xbe);
- while(xa < xae) {
- y = (*xa & 0xffff) - borrow;
- borrow = (y & 0x10000) >> 16;
- z = (*xa++ >> 16) - borrow;
- borrow = (z & 0x10000) >> 16;
- Storeinc(xc, z, y);
- }
-#endif
- while(!*--xc)
- wa--;
- c->wds = wa;
- return c;
-}
-
-/* Return the absolute difference between x and the adjacent greater-magnitude double number (ignoring exponent overflows). */
-static double ulp(double x)
-{
- register Long L;
- double a = 0;
-
- L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
-#ifndef Sudden_Underflow
- if (L > 0) {
-#endif
- set_word0(a, L);
- set_word1(a, 0);
-#ifndef Sudden_Underflow
- }
- else {
- L = -L >> Exp_shift;
- if (L < Exp_shift) {
- set_word0(a, 0x80000 >> L);
- set_word1(a, 0);
- }
- else {
- set_word0(a, 0);
- L -= Exp_shift;
- set_word1(a, L >= 31 ? 1 : 1 << (31 - L));
- }
- }
-#endif
- return a;
-}
-
-
-static double b2d(Bigint *a, int32 *e)
-{
- ULong *xa, *xa0, w, y, z;
- int32 k;
- double d = 0;
-#define d0 word0(d)
-#define d1 word1(d)
-#define set_d0(x) set_word0(d, x)
-#define set_d1(x) set_word1(d, x)
-
- xa0 = a->x;
- xa = xa0 + a->wds;
- y = *--xa;
-#ifdef DEBUG
- if (!y) Bug("zero y in b2d");
-#endif
- k = hi0bits(y);
- *e = 32 - k;
- if (k < Ebits) {
- set_d0(Exp_1 | y >> (Ebits - k));
- w = xa > xa0 ? *--xa : 0;
- set_d1(y << (32-Ebits + k) | w >> (Ebits - k));
- goto ret_d;
- }
- z = xa > xa0 ? *--xa : 0;
- if (k -= Ebits) {
- set_d0(Exp_1 | y << k | z >> (32 - k));
- y = xa > xa0 ? *--xa : 0;
- set_d1(z << k | y >> (32 - k));
- }
- else {
- set_d0(Exp_1 | y);
- set_d1(z);
- }
- ret_d:
-#undef d0
-#undef d1
-#undef set_d0
-#undef set_d1
- return d;
-}
-
-
-/* Convert d into the form b*2^e, where b is an odd integer. b is the returned
- * Bigint and e is the returned binary exponent. Return the number of significant
- * bits in b in bits. d must be finite and nonzero. */
-static Bigint *d2b(double d, int32 *e, int32 *bits)
-{
- Bigint *b;
- int32 de, i, k;
- ULong *x, y, z;
-#define d0 word0(d)
-#define d1 word1(d)
-#define set_d0(x) set_word0(d, x)
-#define set_d1(x) set_word1(d, x)
-
- b = Balloc(1);
- if (!b)
- return NULL;
- x = b->x;
-
- z = d0 & Frac_mask;
- set_d0(d0 & 0x7fffffff); /* clear sign bit, which we ignore */
-#ifdef Sudden_Underflow
- de = (int32)(d0 >> Exp_shift);
- z |= Exp_msk11;
-#else
- if ((de = (int32)(d0 >> Exp_shift)) != 0)
- z |= Exp_msk1;
-#endif
- if ((y = d1) != 0) {
- if ((k = lo0bits(&y)) != 0) {
- x[0] = y | z << (32 - k);
- z >>= k;
- }
- else
- x[0] = y;
- i = b->wds = (x[1] = z) ? 2 : 1;
- }
- else {
- JS_ASSERT(z);
- k = lo0bits(&z);
- x[0] = z;
- i = b->wds = 1;
- k += 32;
- }
-#ifndef Sudden_Underflow
- if (de) {
-#endif
- *e = de - Bias - (P-1) + k;
- *bits = P - k;
-#ifndef Sudden_Underflow
- }
- else {
- *e = de - Bias - (P-1) + 1 + k;
- *bits = 32*i - hi0bits(x[i-1]);
- }
-#endif
- return b;
-}
-#undef d0
-#undef d1
-#undef set_d0
-#undef set_d1
-
-
-static double ratio(Bigint *a, Bigint *b)
-{
- double da, db;
- int32 k, ka, kb;
+static PRLock *dtoalock;
+static JSBool _dtoainited = JS_FALSE;
- da = b2d(a, &ka);
- db = b2d(b, &kb);
- k = ka - kb + 32*(a->wds - b->wds);
- if (k > 0)
- set_word0(da, word0(da) + k*Exp_msk1);
- else {
- k = -k;
- set_word0(db, word0(db) + k*Exp_msk1);
- }
- return da / db;
-}
-
-static CONST double
-tens[] = {
- 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
- 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
- 1e20, 1e21, 1e22
-};
-
-static CONST double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
-static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
-#ifdef Avoid_Underflow
- 9007199254740992.e-256
+#define LOCK_DTOA() PR_Lock(dtoalock);
+#define UNLOCK_DTOA() PR_Unlock(dtoalock)
#else
- 1e-256
-#endif
- };
-/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
-/* flag unnecessarily. It leads to a song and dance at the end of strtod. */
-#define Scale_Bit 0x10
-#define n_bigtens 5
-
-
-#ifdef INFNAN_CHECK
-
-#ifndef NAN_WORD0
-#define NAN_WORD0 0x7ff80000
-#endif
-
-#ifndef NAN_WORD1
-#define NAN_WORD1 0
-#endif
-
-static int match(CONST char **sp, char *t)
-{
- int c, d;
- CONST char *s = *sp;
-
- while(d = *t++) {
- if ((c = *++s) >= 'A' && c <= 'Z')
- c += 'a' - 'A';
- if (c != d)
- return 0;
- }
- *sp = s + 1;
- return 1;
- }
-#endif /* INFNAN_CHECK */
-
-
-#ifdef JS_THREADSAFE
-static JSBool initialized = JS_FALSE;
-
-/* hacked replica of nspr _PR_InitDtoa */
-static void InitDtoa(void)
-{
- freelist_lock = PR_NewLock();
- p5s_lock = PR_NewLock();
- initialized = JS_TRUE;
-}
+#define LOCK_DTOA()
+#define UNLOCK_DTOA()
#endif
-
-void js_FinishDtoa(void)
-{
- int count;
- Bigint *temp;
-
-#ifdef JS_THREADSAFE
- if (initialized == JS_TRUE) {
- PR_DestroyLock(freelist_lock);
- PR_DestroyLock(p5s_lock);
- initialized = JS_FALSE;
- }
-#endif
-
- /* clear down the freelist array and p5s */
-
- /* static Bigint *freelist[Kmax+1]; */
- for (count = 0; count <= Kmax; count++) {
- Bigint **listp = &freelist[count];
- while ((temp = *listp) != NULL) {
- *listp = temp->next;
- free(temp);
- }
- freelist[count] = NULL;
- }
-
- /* static Bigint *p5s; */
- while (p5s) {
- temp = p5s;
- p5s = p5s->next;
- free(temp);
- }
-}
-
-/* nspr2 watcom bug ifdef omitted */
-
-JS_FRIEND_API(double)
-JS_strtod(CONST char *s00, char **se, int *err)
-{
- int32 scale;
- int32 bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
- e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
- CONST char *s, *s0, *s1;
- double aadj, aadj1, adj, rv, rv0;
- Long L;
- ULong y, z;
- Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
-
- *err = 0;
-
- bb = bd = bs = delta = NULL;
- sign = nz0 = nz = 0;
- rv = 0.;
-
- /* Locking for Balloc's shared buffers that will be used in this block */
- ACQUIRE_DTOA_LOCK();
-
- for(s = s00;;s++) switch(*s) {
- case '-':
- sign = 1;
- /* no break */
- case '+':
- if (*++s)
- goto break2;
- /* no break */
- case 0:
- s = s00;
- goto ret;
- case '\t':
- case '\n':
- case '\v':
- case '\f':
- case '\r':
- case ' ':
- continue;
- default:
- goto break2;
- }
-break2:
+#include "dtoa.c"
- if (*s == '0') {
- nz0 = 1;
- while(*++s == '0') ;
- if (!*s)
- goto ret;
- }
- s0 = s;
- y = z = 0;
- for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
- if (nd < 9)
- y = 10*y + c - '0';
- else if (nd < 16)
- z = 10*z + c - '0';
- nd0 = nd;
- if (c == '.') {
- c = *++s;
- if (!nd) {
- for(; c == '0'; c = *++s)
- nz++;
- if (c > '0' && c <= '9') {
- s0 = s;
- nf += nz;
- nz = 0;
- goto have_dig;
- }
- goto dig_done;
- }
- for(; c >= '0' && c <= '9'; c = *++s) {
- have_dig:
- nz++;
- if (c -= '0') {
- nf += nz;
- for(i = 1; i < nz; i++)
- if (nd++ < 9)
- y *= 10;
- else if (nd <= DBL_DIG + 1)
- z *= 10;
- if (nd++ < 9)
- y = 10*y + c;
- else if (nd <= DBL_DIG + 1)
- z = 10*z + c;
- nz = 0;
- }
- }
- }
-dig_done:
- e = 0;
- if (c == 'e' || c == 'E') {
- if (!nd && !nz && !nz0) {
- s = s00;
- goto ret;
- }
- s00 = s;
- esign = 0;
- switch(c = *++s) {
- case '-':
- esign = 1;
- case '+':
- c = *++s;
- }
- if (c >= '0' && c <= '9') {
- while(c == '0')
- c = *++s;
- if (c > '0' && c <= '9') {
- L = c - '0';
- s1 = s;
- while((c = *++s) >= '0' && c <= '9')
- L = 10*L + c - '0';
- if (s - s1 > 8 || L > 19999)
- /* Avoid confusion from exponents
- * so large that e might overflow.
- */
- e = 19999; /* safe for 16 bit ints */
- else
- e = (int32)L;
- if (esign)
- e = -e;
- }
- else
- e = 0;
- }
- else
- s = s00;
- }
- if (!nd) {
- if (!nz && !nz0) {
-#ifdef INFNAN_CHECK
- /* Check for Nan and Infinity */
- switch(c) {
- case 'i':
- case 'I':
- if (match(&s,"nfinity")) {
- set_word0(rv, 0x7ff00000);
- set_word1(rv, 0);
- goto ret;
- }
- break;
- case 'n':
- case 'N':
- if (match(&s, "an")) {
- set_word0(rv, NAN_WORD0);
- set_word1(rv, NAN_WORD1);
- goto ret;
- }
- }
-#endif /* INFNAN_CHECK */
- s = s00;
- }
- goto ret;
- }
- e1 = e -= nf;
-
- /* Now we have nd0 digits, starting at s0, followed by a
- * decimal point, followed by nd-nd0 digits. The number we're
- * after is the integer represented by those digits times
- * 10**e */
-
- if (!nd0)
- nd0 = nd;
- k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
- rv = y;
- if (k > 9)
- rv = tens[k - 9] * rv + z;
- bd0 = 0;
- if (nd <= DBL_DIG
-#ifndef RND_PRODQUOT
- && FLT_ROUNDS == 1
-#endif
- ) {
- if (!e)
- goto ret;
- if (e > 0) {
- if (e <= Ten_pmax) {
- /* rv = */ rounded_product(rv, tens[e]);
- goto ret;
- }
- i = DBL_DIG - nd;
- if (e <= Ten_pmax + i) {
- /* A fancier test would sometimes let us do
- * this for larger i values.
- */
- e -= i;
- rv *= tens[i];
- /* rv = */ rounded_product(rv, tens[e]);
- goto ret;
- }
- }
-#ifndef Inaccurate_Divide
- else if (e >= -Ten_pmax) {
- /* rv = */ rounded_quotient(rv, tens[-e]);
- goto ret;
- }
-#endif
- }
- e1 += nd - k;
-
- scale = 0;
-
- /* Get starting approximation = rv * 10**e1 */
-
- if (e1 > 0) {
- if ((i = e1 & 15) != 0)
- rv *= tens[i];
- if (e1 &= ~15) {
- if (e1 > DBL_MAX_10_EXP) {
- ovfl:
- *err = JS_DTOA_ERANGE;
-#ifdef __STDC__
- rv = HUGE_VAL;
-#else
- /* Can't trust HUGE_VAL */
- set_word0(rv, Exp_mask);
- set_word1(rv, 0);
-#endif
- if (bd0)
- goto retfree;
- goto ret;
- }
- e1 >>= 4;
- for(j = 0; e1 > 1; j++, e1 >>= 1)
- if (e1 & 1)
- rv *= bigtens[j];
- /* The last multiplication could overflow. */
- set_word0(rv, word0(rv) - P*Exp_msk1);
- rv *= bigtens[j];
- if ((z = word0(rv) & Exp_mask) > Exp_msk1*(DBL_MAX_EXP+Bias-P))
- goto ovfl;
- if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
- /* set to largest number */
- /* (Can't trust DBL_MAX) */
- set_word0(rv, Big0);
- set_word1(rv, Big1);
- }
- else
- set_word0(rv, word0(rv) + P*Exp_msk1);
- }
- }
- else if (e1 < 0) {
- e1 = -e1;
- if ((i = e1 & 15) != 0)
- rv /= tens[i];
- if (e1 &= ~15) {
- e1 >>= 4;
- if (e1 >= 1 << n_bigtens)
- goto undfl;
-#ifdef Avoid_Underflow
- if (e1 & Scale_Bit)
- scale = P;
- for(j = 0; e1 > 0; j++, e1 >>= 1)
- if (e1 & 1)
- rv *= tinytens[j];
- if (scale && (j = P + 1 - ((word0(rv) & Exp_mask)
- >> Exp_shift)) > 0) {
- /* scaled rv is denormal; zap j low bits */
- if (j >= 32) {
- set_word1(rv, 0);
- set_word0(rv, word0(rv) & (0xffffffff << (j-32)));
- if (!word0(rv))
- set_word0(rv, 1);
- }
- else
- set_word1(rv, word1(rv) & (0xffffffff << j));
- }
-#else
- for(j = 0; e1 > 1; j++, e1 >>= 1)
- if (e1 & 1)
- rv *= tinytens[j];
- /* The last multiplication could underflow. */
- rv0 = rv;
- rv *= tinytens[j];
- if (!rv) {
- rv = 2.*rv0;
- rv *= tinytens[j];
-#endif
- if (!rv) {
- undfl:
- rv = 0.;
- *err = JS_DTOA_ERANGE;
- if (bd0)
- goto retfree;
- goto ret;
- }
-#ifndef Avoid_Underflow
- set_word0(rv, Tiny0);
- set_word1(rv, Tiny1);
- /* The refinement below will clean
- * this approximation up.
- */
- }
-#endif
- }
+JS_FRIEND_API(JSBool)
+js_InitDtoa()
+{
+#ifdef JS_THREADSAFE
+ if (!_dtoainited) {
+ dtoalock = PR_NewLock();
+ JS_ASSERT(dtoalock);
+ _dtoainited = JS_TRUE;
}
- /* Now the hard part -- adjusting rv to the correct value.*/
-
- /* Put digits into bd: true value = bd * 10^e */
-
- bd0 = s2b(s0, nd0, nd, y);
- if (!bd0)
- goto nomem;
-
- for(;;) {
- bd = Balloc(bd0->k);
- if (!bd)
- goto nomem;
- Bcopy(bd, bd0);
- bb = d2b(rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
- if (!bb)
- goto nomem;
- bs = i2b(1);
- if (!bs)
- goto nomem;
-
- if (e >= 0) {
- bb2 = bb5 = 0;
- bd2 = bd5 = e;
- }
- else {
- bb2 = bb5 = -e;
- bd2 = bd5 = 0;
- }
- if (bbe >= 0)
- bb2 += bbe;
- else
- bd2 -= bbe;
- bs2 = bb2;
-#ifdef Sudden_Underflow
- j = P + 1 - bbbits;
-#else
-#ifdef Avoid_Underflow
- j = bbe - scale;
-#else
- j = bbe;
-#endif
- i = j + bbbits - 1; /* logb(rv) */
- if (i < Emin) /* denormal */
- j += P - Emin;
- else
- j = P + 1 - bbbits;
-#endif
- bb2 += j;
- bd2 += j;
-#ifdef Avoid_Underflow
- bd2 += scale;
-#endif
- i = bb2 < bd2 ? bb2 : bd2;
- if (i > bs2)
- i = bs2;
- if (i > 0) {
- bb2 -= i;
- bd2 -= i;
- bs2 -= i;
- }
- if (bb5 > 0) {
- bs = pow5mult(bs, bb5);
- if (!bs)
- goto nomem;
- bb1 = mult(bs, bb);
- if (!bb1)
- goto nomem;
- Bfree(bb);
- bb = bb1;
- }
- if (bb2 > 0) {
- bb = lshift(bb, bb2);
- if (!bb)
- goto nomem;
- }
- if (bd5 > 0) {
- bd = pow5mult(bd, bd5);
- if (!bd)
- goto nomem;
- }
- if (bd2 > 0) {
- bd = lshift(bd, bd2);
- if (!bd)
- goto nomem;
- }
- if (bs2 > 0) {
- bs = lshift(bs, bs2);
- if (!bs)
- goto nomem;
- }
- delta = diff(bb, bd);
- if (!delta)
- goto nomem;
- dsign = delta->sign;
- delta->sign = 0;
- i = cmp(delta, bs);
- if (i < 0) {
- /* Error is less than half an ulp -- check for
- * special case of mantissa a power of two.
- */
- if (dsign || word1(rv) || word0(rv) & Bndry_mask
-#ifdef Avoid_Underflow
- || (word0(rv) & Exp_mask) <= Exp_msk1 + P*Exp_msk1
+ return (dtoalock != 0);
#else
- || (word0(rv) & Exp_mask) <= Exp_msk1
-#endif
- ) {
-#ifdef Avoid_Underflow
- if (!delta->x[0] && delta->wds == 1)
- dsign = 2;
-#endif
- break;
- }
- delta = lshift(delta,Log2P);
- if (!delta)
- goto nomem;
- if (cmp(delta, bs) > 0)
- goto drop_down;
- break;
- }
- if (i == 0) {
- /* exactly half-way between */
- if (dsign) {
- if ((word0(rv) & Bndry_mask1) == Bndry_mask1
- && word1(rv) == 0xffffffff) {
- /*boundary case -- increment exponent*/
- set_word0(rv, (word0(rv) & Exp_mask) + Exp_msk1);
- set_word1(rv, 0);
-#ifdef Avoid_Underflow
- dsign = 0;
-#endif
- break;
- }
- }
- else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
-#ifdef Avoid_Underflow
- dsign = 2;
-#endif
- drop_down:
- /* boundary case -- decrement exponent */
-#ifdef Sudden_Underflow
- L = word0(rv) & Exp_mask;
- if (L <= Exp_msk1)
- goto undfl;
- L -= Exp_msk1;
-#else
- L = (word0(rv) & Exp_mask) - Exp_msk1;
-#endif
- set_word0(rv, L | Bndry_mask1);
- set_word1(rv, 0xffffffff);
- break;
- }
-#ifndef ROUND_BIASED
- if (!(word1(rv) & LSB))
- break;
-#endif
- if (dsign)
- rv += ulp(rv);
-#ifndef ROUND_BIASED
- else {
- rv -= ulp(rv);
-#ifndef Sudden_Underflow
- if (!rv)
- goto undfl;
-#endif
- }
-#ifdef Avoid_Underflow
- dsign = 1 - dsign;
-#endif
-#endif
- break;
- }
- if ((aadj = ratio(delta, bs)) <= 2.) {
- if (dsign)
- aadj = aadj1 = 1.;
- else if (word1(rv) || word0(rv) & Bndry_mask) {
-#ifndef Sudden_Underflow
- if (word1(rv) == Tiny1 && !word0(rv))
- goto undfl;
-#endif
- aadj = 1.;
- aadj1 = -1.;
- }
- else {
- /* special case -- power of FLT_RADIX to be */
- /* rounded down... */
-
- if (aadj < 2./FLT_RADIX)
- aadj = 1./FLT_RADIX;
- else
- aadj *= 0.5;
- aadj1 = -aadj;
- }
- }
- else {
- aadj *= 0.5;
- aadj1 = dsign ? aadj : -aadj;
-#ifdef Check_FLT_ROUNDS
- switch(FLT_ROUNDS) {
- case 2: /* towards +infinity */
- aadj1 -= 0.5;
- break;
- case 0: /* towards 0 */
- case 3: /* towards -infinity */
- aadj1 += 0.5;
- }
-#else
- if (FLT_ROUNDS == 0)
- aadj1 += 0.5;
+ return JS_TRUE;
#endif
- }
- y = word0(rv) & Exp_mask;
-
- /* Check for overflow */
-
- if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
- rv0 = rv;
- set_word0(rv, word0(rv) - P*Exp_msk1);
- adj = aadj1 * ulp(rv);
- rv += adj;
- if ((word0(rv) & Exp_mask) >=
- Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
- if (word0(rv0) == Big0 && word1(rv0) == Big1)
- goto ovfl;
- set_word0(rv, Big0);
- set_word1(rv, Big1);
- goto cont;
- }
- else
- set_word0(rv, word0(rv) + P*Exp_msk1);
- }
- else {
-#ifdef Sudden_Underflow
- if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
- rv0 = rv;
- set_word0(rv, word0(rv) + P*Exp_msk1);
- adj = aadj1 * ulp(rv);
- rv += adj;
- if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
- {
- if (word0(rv0) == Tiny0
- && word1(rv0) == Tiny1)
- goto undfl;
- set_word0(rv, Tiny0);
- set_word1(rv, Tiny1);
- goto cont;
- }
- else
- set_word0(rv, word0(rv) - P*Exp_msk1);
- }
- else {
- adj = aadj1 * ulp(rv);
- rv += adj;
- }
-#else
- /* Compute adj so that the IEEE rounding rules will
- * correctly round rv + adj in some half-way cases.
- * If rv * ulp(rv) is denormalized (i.e.,
- * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
- * trouble from bits lost to denormalization;
- * example: 1.2e-307 .
- */
-#ifdef Avoid_Underflow
- if (y <= P*Exp_msk1 && aadj > 1.)
-#else
- if (y <= (P-1)*Exp_msk1 && aadj > 1.)
-#endif
- {
- aadj1 = (double)(int32)(aadj + 0.5);
- if (!dsign)
- aadj1 = -aadj1;
- }
-#ifdef Avoid_Underflow
- if (scale && y <= P*Exp_msk1)
- set_word0(aadj1, word0(aadj1) + (P+1)*Exp_msk1 - y);
-#endif
- adj = aadj1 * ulp(rv);
- rv += adj;
-#endif
- }
- z = word0(rv) & Exp_mask;
-#ifdef Avoid_Underflow
- if (!scale)
-#endif
- if (y == z) {
- /* Can we stop now? */
- L = (Long)aadj;
- aadj -= L;
- /* The tolerances below are conservative. */
- if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
- if (aadj < .4999999 || aadj > .5000001)
- break;
- }
- else if (aadj < .4999999/FLT_RADIX)
- break;
- }
- cont:
- Bfree(bb);
- Bfree(bd);
- Bfree(bs);
- Bfree(delta);
- bb = bd = bs = delta = NULL;
- }
-#ifdef Avoid_Underflow
- if (scale) {
- rv0 = 0.;
- set_word0(rv0, Exp_1 - P*Exp_msk1);
- set_word1(rv0, 0);
- if ((word0(rv) & Exp_mask) <= P*Exp_msk1
- && word1(rv) & 1
- && dsign != 2) {
- if (dsign) {
-#ifdef Sudden_Underflow
- /* rv will be 0, but this would give the */
- /* right result if only rv *= rv0 worked. */
- set_word0(rv, word0(rv) + P*Exp_msk1);
- set_word0(rv0, Exp_1 - 2*P*Exp_msk1);
-#endif
- rv += ulp(rv);
- }
- else
- set_word1(rv, word1(rv) & ~1);
- }
- rv *= rv0;
- }
-#endif /* Avoid_Underflow */
-retfree:
- Bfree(bb);
- Bfree(bd);
- Bfree(bs);
- Bfree(bd0);
- Bfree(delta);
-ret:
- RELEASE_DTOA_LOCK();
- if (se)
- *se = (char *)s;
- return sign ? -rv : rv;
-
-nomem:
- Bfree(bb);
- Bfree(bd);
- Bfree(bs);
- Bfree(bd0);
- Bfree(delta);
- RELEASE_DTOA_LOCK();
- *err = JS_DTOA_ENOMEM;
- return 0;
-}
-
-
-/* Return floor(b/2^k) and set b to be the remainder. The returned quotient must be less than 2^32. */
-static uint32 quorem2(Bigint *b, int32 k)
-{
- ULong mask;
- ULong result;
- ULong *bx, *bxe;
- int32 w;
- int32 n = k >> 5;
- k &= 0x1F;
- mask = (1<<k) - 1;
-
- w = b->wds - n;
- if (w <= 0)
- return 0;
- JS_ASSERT(w <= 2);
- bx = b->x;
- bxe = bx + n;
- result = *bxe >> k;
- *bxe &= mask;
- if (w == 2) {
- JS_ASSERT(!(bxe[1] & ~mask));
- if (k)
- result |= bxe[1] << (32 - k);
- }
- n++;
- while (!*bxe && bxe != bx) {
- n--;
- bxe--;
- }
- b->wds = n;
- return result;
-}
-
-/* Return floor(b/S) and set b to be the remainder. As added restrictions, b must not have
- * more words than S, the most significant word of S must not start with a 1 bit, and the
- * returned quotient must be less than 36. */
-static int32 quorem(Bigint *b, Bigint *S)
-{
- int32 n;
- ULong *bx, *bxe, q, *sx, *sxe;
-#ifdef ULLong
- ULLong borrow, carry, y, ys;
-#else
- ULong borrow, carry, y, ys;
- ULong si, z, zs;
-#endif
-
- n = S->wds;
- JS_ASSERT(b->wds <= n);
- if (b->wds < n)
- return 0;
- sx = S->x;
- sxe = sx + --n;
- bx = b->x;
- bxe = bx + n;
- JS_ASSERT(*sxe <= 0x7FFFFFFF);
- q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
- JS_ASSERT(q < 36);
- if (q) {
- borrow = 0;
- carry = 0;
- do {
-#ifdef ULLong
- ys = *sx++ * (ULLong)q + carry;
- carry = ys >> 32;
- y = *bx - (ys & 0xffffffffUL) - borrow;
- borrow = y >> 32 & 1UL;
- *bx++ = (ULong)(y & 0xffffffffUL);
-#else
- si = *sx++;
- ys = (si & 0xffff) * q + carry;
- zs = (si >> 16) * q + (ys >> 16);
- carry = zs >> 16;
- y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
- borrow = (y & 0x10000) >> 16;
- z = (*bx >> 16) - (zs & 0xffff) - borrow;
- borrow = (z & 0x10000) >> 16;
- Storeinc(bx, z, y);
-#endif
- }
- while(sx <= sxe);
- if (!*bxe) {
- bx = b->x;
- while(--bxe > bx && !*bxe)
- --n;
- b->wds = n;
- }
- }
- if (cmp(b, S) >= 0) {
- q++;
- borrow = 0;
- carry = 0;
- bx = b->x;
- sx = S->x;
- do {
-#ifdef ULLong
- ys = *sx++ + carry;
- carry = ys >> 32;
- y = *bx - (ys & 0xffffffffUL) - borrow;
- borrow = y >> 32 & 1UL;
- *bx++ = (ULong)(y & 0xffffffffUL);
-#else
- si = *sx++;
- ys = (si & 0xffff) + carry;
- zs = (si >> 16) + (ys >> 16);
- carry = zs >> 16;
- y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
- borrow = (y & 0x10000) >> 16;
- z = (*bx >> 16) - (zs & 0xffff) - borrow;
- borrow = (z & 0x10000) >> 16;
- Storeinc(bx, z, y);
-#endif
- } while(sx <= sxe);
- bx = b->x;
- bxe = bx + n;
- if (!*bxe) {
- while(--bxe > bx && !*bxe)
- --n;
- b->wds = n;
- }
- }
- return (int32)q;
}
-/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
- *
- * Inspired by "How to Print Floating-Point Numbers Accurately" by
- * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
- *
- * Modifications:
- * 1. Rather than iterating, we use a simple numeric overestimate
- * to determine k = floor(log10(d)). We scale relevant
- * quantities using O(log2(k)) rather than O(k) multiplications.
- * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
- * try to generate digits strictly left to right. Instead, we
- * compute with fewer bits and propagate the carry if necessary
- * when rounding the final digit up. This is often faster.
- * 3. Under the assumption that input will be rounded nearest,
- * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
- * That is, we allow equality in stopping tests when the
- * round-nearest rule will give the same floating-point value
- * as would satisfaction of the stopping test with strict
- * inequality.
- * 4. We remove common factors of powers of 2 from relevant
- * quantities.
- * 5. When converting floating-point integers less than 1e16,
- * we use floating-point arithmetic rather than resorting
- * to multiple-precision integers.
- * 6. When asked to produce fewer than 15 digits, we first try
- * to get by with floating-point arithmetic; we resort to
- * multiple-precision integer arithmetic only if we cannot
- * guarantee that the floating-point calculation has given
- * the correctly rounded result. For k requested digits and
- * "uniformly" distributed input, the probability is
- * something like 10^(k-15) that we must resort to the Long
- * calculation.
- */
-
-/* Always emits at least one digit. */
-/* If biasUp is set, then rounding in modes 2 and 3 will round away from zero
- * when the number is exactly halfway between two representable values. For example,
- * rounding 2.5 to zero digits after the decimal point will return 3 and not 2.
- * 2.49 will still round to 2, and 2.51 will still round to 3. */
-/* bufsize should be at least 20 for modes 0 and 1. For the other modes,
- * bufsize should be two greater than the maximum number of output characters expected. */
-static JSBool
-js_dtoa(double d, int mode, JSBool biasUp, int ndigits,
- int *decpt, int *sign, char **rve, char *buf, size_t bufsize)
+JS_FRIEND_API(void)
+js_FinishDtoa()
{
- /* Arguments ndigits, decpt, sign are similar to those
- of ecvt and fcvt; trailing zeros are suppressed from
- the returned string. If not null, *rve is set to point
- to the end of the return value. If d is +-Infinity or NaN,
- then *decpt is set to 9999.
-
- mode:
- 0 ==> shortest string that yields d when read in
- and rounded to nearest.
- 1 ==> like 0, but with Steele & White stopping rule;
- e.g. with IEEE P754 arithmetic , mode 0 gives
- 1e23 whereas mode 1 gives 9.999999999999999e22.
- 2 ==> max(1,ndigits) significant digits. This gives a
- return value similar to that of ecvt, except
- that trailing zeros are suppressed.
- 3 ==> through ndigits past the decimal point. This
- gives a return value similar to that from fcvt,
- except that trailing zeros are suppressed, and
- ndigits can be negative.
- 4-9 should give the same return values as 2-3, i.e.,
- 4 <= mode <= 9 ==> same return as mode
- 2 + (mode & 1). These modes are mainly for
- debugging; often they run slower but sometimes
- faster than modes 2-3.
- 4,5,8,9 ==> left-to-right digit generation.
- 6-9 ==> don't try fast floating-point estimate
- (if applicable).
-
- Values of mode other than 0-9 are treated as mode 0.
-
- Sufficient space is allocated to the return value
- to hold the suppressed trailing zeros.
- */
-
- int32 bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
- j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
- spec_case, try_quick;
- Long L;
-#ifndef Sudden_Underflow
- int32 denorm;
- ULong x;
-#endif
- Bigint *b, *b1, *delta, *mlo, *mhi, *S;
- double d2, ds, eps;
- char *s;
- const char *cs;
-
- if (word0(d) & Sign_bit) {
- /* set sign for everything, including 0's and NaNs */
- *sign = 1;
- set_word0(d, word0(d) & ~Sign_bit); /* clear sign bit */
- }
- else
- *sign = 0;
-
- if ((word0(d) & Exp_mask) == Exp_mask) {
- /* Infinity or NaN */
- *decpt = 9999;
- cs = !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN";
- if ((cs[0] == 'I' && bufsize < 9) || (cs[0] == 'N' && bufsize < 4)) {
- JS_ASSERT(JS_FALSE);
-/* JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */
- return JS_FALSE;
- }
- strcpy(buf, cs);
- if (rve) {
- *rve = buf[3] ? buf + 8 : buf + 3;
- JS_ASSERT(**rve == '\0');
- }
- return JS_TRUE;
- }
-
- b = NULL; /* initialize for abort protection */
- S = NULL;
- mlo = mhi = NULL;
-
- if (!d) {
- no_digits:
- *decpt = 1;
- if (bufsize < 2) {
- JS_ASSERT(JS_FALSE);
-/* JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */
- return JS_FALSE;
- }
- buf[0] = '0'; buf[1] = '\0'; /* copy "0" to buffer */
- if (rve)
- *rve = buf + 1;
- /* We might have jumped to "no_digits" from below, so we need
- * to be sure to free the potentially allocated Bigints to avoid
- * memory leaks. */
- Bfree(b);
- Bfree(S);
- if (mlo != mhi)
- Bfree(mlo);
- Bfree(mhi);
- return JS_TRUE;
- }
-
- b = d2b(d, &be, &bbits);
- if (!b)
- goto nomem;
-#ifdef Sudden_Underflow
- i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
-#else
- if ((i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) {
-#endif
- d2 = d;
- set_word0(d2, word0(d2) & Frac_mask1);
- set_word0(d2, word0(d2) | Exp_11);
-
- /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
- * log10(x) = log(x) / log(10)
- * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
- * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
- *
- * This suggests computing an approximation k to log10(d) by
- *
- * k = (i - Bias)*0.301029995663981
- * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
- *
- * We want k to be too large rather than too small.
- * The error in the first-order Taylor series approximation
- * is in our favor, so we just round up the constant enough
- * to compensate for any error in the multiplication of
- * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
- * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
- * adding 1e-13 to the constant term more than suffices.
- * Hence we adjust the constant term to 0.1760912590558.
- * (We could get a more accurate k by invoking log10,
- * but this is probably not worthwhile.)
- */
-
- i -= Bias;
-#ifndef Sudden_Underflow
- denorm = 0;
- }
- else {
- /* d is denormalized */
-
- i = bbits + be + (Bias + (P-1) - 1);
- x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32) : word1(d) << (32 - i);
- d2 = x;
- set_word0(d2, word0(d2) - 31*Exp_msk1); /* adjust exponent */
- i -= (Bias + (P-1) - 1) + 1;
- denorm = 1;
+#ifdef JS_THREADSAFE
+ if (_dtoainited) {
+ PR_DestroyLock(dtoalock);
+ dtoalock = NULL;
+ _dtoainited = JS_FALSE;
}
#endif
- /* At this point d = f*2^i, where 1 <= f < 2. d2 is an approximation of f. */
- ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
- k = (int32)ds;
- if (ds < 0. && ds != k)
- k--; /* want k = floor(ds) */
- k_check = 1;
- if (k >= 0 && k <= Ten_pmax) {
- if (d < tens[k])
- k--;
- k_check = 0;
- }
- /* At this point floor(log10(d)) <= k <= floor(log10(d))+1.
- If k_check is zero, we're guaranteed that k = floor(log10(d)). */
- j = bbits - i - 1;
- /* At this point d = b/2^j, where b is an odd integer. */
- if (j >= 0) {
- b2 = 0;
- s2 = j;
- }
- else {
- b2 = -j;
- s2 = 0;
- }
- if (k >= 0) {
- b5 = 0;
- s5 = k;
- s2 += k;
- }
- else {
- b2 -= k;
- b5 = -k;
- s5 = 0;
- }
- /* At this point d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5), where b is an odd integer,
- b2 >= 0, b5 >= 0, s2 >= 0, and s5 >= 0. */
- if (mode < 0 || mode > 9)
- mode = 0;
- try_quick = 1;
- if (mode > 5) {
- mode -= 4;
- try_quick = 0;
- }
- leftright = 1;
- ilim = ilim1 = 0;
- switch(mode) {
- case 0:
- case 1:
- ilim = ilim1 = -1;
- i = 18;
- ndigits = 0;
- break;
- case 2:
- leftright = 0;
- /* no break */
- case 4:
- if (ndigits <= 0)
- ndigits = 1;
- ilim = ilim1 = i = ndigits;
- break;
- case 3:
- leftright = 0;
- /* no break */
- case 5:
- i = ndigits + k + 1;
- ilim = i;
- ilim1 = i - 1;
- if (i <= 0)
- i = 1;
- }
- /* ilim is the maximum number of significant digits we want, based on k and ndigits. */
- /* ilim1 is the maximum number of significant digits we want, based on k and ndigits,
- when it turns out that k was computed too high by one. */
-
- /* Ensure space for at least i+1 characters, including trailing null. */
- if (bufsize <= (size_t)i) {
- Bfree(b);
- JS_ASSERT(JS_FALSE);
- return JS_FALSE;
- }
- s = buf;
-
- if (ilim >= 0 && ilim <= Quick_max && try_quick) {
-
- /* Try to get by with floating-point arithmetic. */
-
- i = 0;
- d2 = d;
- k0 = k;
- ilim0 = ilim;
- ieps = 2; /* conservative */
- /* Divide d by 10^k, keeping track of the roundoff error and avoiding overflows. */
- if (k > 0) {
- ds = tens[k&0xf];
- j = k >> 4;
- if (j & Bletch) {
- /* prevent overflows */
- j &= Bletch - 1;
- d /= bigtens[n_bigtens-1];
- ieps++;
- }
- for(; j; j >>= 1, i++)
- if (j & 1) {
- ieps++;
- ds *= bigtens[i];
- }
- d /= ds;
- }
- else if ((j1 = -k) != 0) {
- d *= tens[j1 & 0xf];
- for(j = j1 >> 4; j; j >>= 1, i++)
- if (j & 1) {
- ieps++;
- d *= bigtens[i];
- }
- }
- /* Check that k was computed correctly. */
- if (k_check && d < 1. && ilim > 0) {
- if (ilim1 <= 0)
- goto fast_failed;
- ilim = ilim1;
- k--;
- d *= 10.;
- ieps++;
- }
- /* eps bounds the cumulative error. */
- eps = ieps*d + 7.;
- set_word0(eps, word0(eps) - (P-1)*Exp_msk1);
- if (ilim == 0) {
- S = mhi = 0;
- d -= 5.;
- if (d > eps)
- goto one_digit;
- if (d < -eps)
- goto no_digits;
- goto fast_failed;
- }
-#ifndef No_leftright
- if (leftright) {
- /* Use Steele & White method of only
- * generating digits needed.
- */
- eps = 0.5/tens[ilim-1] - eps;
- for(i = 0;;) {
- L = (Long)d;
- d -= L;
- *s++ = '0' + (char)L;
- if (d < eps)
- goto ret1;
- if (1. - d < eps) {
-#ifdef DEBUG
- /* Clear d to avoid precision warning. */
- d = 0;
-#endif
- goto bump_up;
- }
- if (++i >= ilim)
- break;
- eps *= 10.;
- d *= 10.;
- }
- }
- else {
-#endif
- /* Generate ilim digits, then fix them up. */
- eps *= tens[ilim-1];
- for(i = 1;; i++, d *= 10.) {
- L = (Long)d;
- d -= L;
- *s++ = '0' + (char)L;
- if (i == ilim) {
- if (d > 0.5 + eps) {
-#ifdef DEBUG
- /* Clear d to avoid precision warning. */
- d = 0;
-#endif
- goto bump_up;
- }
- else if (d < 0.5 - eps) {
- while(*--s == '0') ;
- s++;
- goto ret1;
- }
- break;
- }
- }
-#ifndef No_leftright
- }
-#endif
- fast_failed:
- s = buf;
- d = d2;
- k = k0;
- ilim = ilim0;
- }
-
- /* Do we have a "small" integer? */
-
- if (be >= 0 && k <= Int_max) {
- /* Yes. */
- ds = tens[k];
- if (ndigits < 0 && ilim <= 0) {
- S = mhi = 0;
- if (ilim < 0 || d < 5*ds || (!biasUp && d == 5*ds))
- goto no_digits;
- goto one_digit;
- }
-
- /* Use true number of digits to limit looping. */
- for(i = 1; i<=k+1; i++) {
- L = (Long) (d / ds);
- d -= L*ds;
-#ifdef Check_FLT_ROUNDS
- /* If FLT_ROUNDS == 2, L will usually be high by 1 */
- if (d < 0) {
- L--;
- d += ds;
- }
-#endif
- *s++ = '0' + (char)L;
- if (i == ilim) {
- d += d;
- if ((d > ds) || (d == ds && (L & 1 || biasUp))) {
- bump_up:
- while(*--s == '9')
- if (s == buf) {
- k++;
- *s = '0';
- break;
- }
- ++*s++;
- }
- break;
- }
- d *= 10.;
- }
-#ifdef DEBUG
- if (d != 0.0) {
- fprintf(stderr,
-"WARNING: A loss of precision for double floating point is detected.\n"
-" The result of any operation on doubles can be meaningless.\n"
-" A possible cause is missing code to restore FPU state, see\n"
-" bug 360282 for details.\n");
- }
-#endif
- goto ret1;
- }
-
- m2 = b2;
- m5 = b5;
- if (leftright) {
- if (mode < 2) {
- i =
-#ifndef Sudden_Underflow
- denorm ? be + (Bias + (P-1) - 1 + 1) :
-#endif
- 1 + P - bbits;
- /* i is 1 plus the number of trailing zero bits in d's significand. Thus,
- (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 lsb of d)/10^k. */
- }
- else {
- j = ilim - 1;
- if (m5 >= j)
- m5 -= j;
- else {
- s5 += j -= m5;
- b5 += j;
- m5 = 0;
- }
- if ((i = ilim) < 0) {
- m2 -= i;
- i = 0;
- }
- /* (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 * 10^(1-ilim))/10^k. */
- }
- b2 += i;
- s2 += i;
- mhi = i2b(1);
- if (!mhi)
- goto nomem;
- /* (mhi * 2^m2 * 5^m5) / (2^s2 * 5^s5) = one-half of last printed (when mode >= 2) or
- input (when mode < 2) significant digit, divided by 10^k. */
- }
- /* We still have d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5). Reduce common factors in
- b2, m2, and s2 without changing the equalities. */
- if (m2 > 0 && s2 > 0) {
- i = m2 < s2 ? m2 : s2;
- b2 -= i;
- m2 -= i;
- s2 -= i;
- }
-
- /* Fold b5 into b and m5 into mhi. */
- if (b5 > 0) {
- if (leftright) {
- if (m5 > 0) {
- mhi = pow5mult(mhi, m5);
- if (!mhi)
- goto nomem;
- b1 = mult(mhi, b);
- if (!b1)
- goto nomem;
- Bfree(b);
- b = b1;
- }
- if ((j = b5 - m5) != 0) {
- b = pow5mult(b, j);
- if (!b)
- goto nomem;
- }
- }
- else {
- b = pow5mult(b, b5);
- if (!b)
- goto nomem;
- }
- }
- /* Now we have d/10^k = (b * 2^b2) / (2^s2 * 5^s5) and
- (mhi * 2^m2) / (2^s2 * 5^s5) = one-half of last printed or input significant digit, divided by 10^k. */
-
- S = i2b(1);
- if (!S)
- goto nomem;
- if (s5 > 0) {
- S = pow5mult(S, s5);
- if (!S)
- goto nomem;
- }
- /* Now we have d/10^k = (b * 2^b2) / (S * 2^s2) and
- (mhi * 2^m2) / (S * 2^s2) = one-half of last printed or input significant digit, divided by 10^k. */
-
- /* Check for special case that d is a normalized power of 2. */
- spec_case = 0;
- if (mode < 2) {
- if (!word1(d) && !(word0(d) & Bndry_mask)
-#ifndef Sudden_Underflow
- && word0(d) & (Exp_mask & Exp_mask << 1)
-#endif
- ) {
- /* The special case. Here we want to be within a quarter of the last input
- significant digit instead of one half of it when the decimal output string's value is less than d. */
- b2 += Log2P;
- s2 += Log2P;
- spec_case = 1;
- }
- }
-
- /* Arrange for convenient computation of quotients:
- * shift left if necessary so divisor has 4 leading 0 bits.
- *
- * Perhaps we should just compute leading 28 bits of S once
- * and for all and pass them and a shift to quorem, so it
- * can do shifts and ors to compute the numerator for q.
- */
- if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) != 0)
- i = 32 - i;
- /* i is the number of leading zero bits in the most significant word of S*2^s2. */
- if (i > 4) {
- i -= 4;
- b2 += i;
- m2 += i;
- s2 += i;
- }
- else if (i < 4) {
- i += 28;
- b2 += i;
- m2 += i;
- s2 += i;
- }
- /* Now S*2^s2 has exactly four leading zero bits in its most significant word. */
- if (b2 > 0) {
- b = lshift(b, b2);
- if (!b)
- goto nomem;
- }
- if (s2 > 0) {
- S = lshift(S, s2);
- if (!S)
- goto nomem;
- }
- /* Now we have d/10^k = b/S and
- (mhi * 2^m2) / S = maximum acceptable error, divided by 10^k. */
- if (k_check) {
- if (cmp(b,S) < 0) {
- k--;
- b = multadd(b, 10, 0); /* we botched the k estimate */
- if (!b)
- goto nomem;
- if (leftright) {
- mhi = multadd(mhi, 10, 0);
- if (!mhi)
- goto nomem;
- }
- ilim = ilim1;
- }
- }
- /* At this point 1 <= d/10^k = b/S < 10. */
-
- if (ilim <= 0 && mode > 2) {
- /* We're doing fixed-mode output and d is less than the minimum nonzero output in this mode.
- Output either zero or the minimum nonzero output depending on which is closer to d. */
- if (ilim < 0)
- goto no_digits;
- S = multadd(S,5,0);
- if (!S)
- goto nomem;
- i = cmp(b,S);
- if (i < 0 || (i == 0 && !biasUp)) {
- /* Always emit at least one digit. If the number appears to be zero
- using the current mode, then emit one '0' digit and set decpt to 1. */
- /*no_digits:
- k = -1 - ndigits;
- goto ret; */
- goto no_digits;
- }
- one_digit:
- *s++ = '1';
- k++;
- goto ret;
- }
- if (leftright) {
- if (m2 > 0) {
- mhi = lshift(mhi, m2);
- if (!mhi)
- goto nomem;
- }
-
- /* Compute mlo -- check for special case
- * that d is a normalized power of 2.
- */
-
- mlo = mhi;
- if (spec_case) {
- mhi = Balloc(mhi->k);
- if (!mhi)
- goto nomem;
- Bcopy(mhi, mlo);
- mhi = lshift(mhi, Log2P);
- if (!mhi)
- goto nomem;
- }
- /* mlo/S = maximum acceptable error, divided by 10^k, if the output is less than d. */
- /* mhi/S = maximum acceptable error, divided by 10^k, if the output is greater than d. */
-
- for(i = 1;;i++) {
- dig = quorem(b,S) + '0';
- /* Do we yet have the shortest decimal string
- * that will round to d?
- */
- j = cmp(b, mlo);
- /* j is b/S compared with mlo/S. */
- delta = diff(S, mhi);
- if (!delta)
- goto nomem;
- j1 = delta->sign ? 1 : cmp(b, delta);
- Bfree(delta);
- /* j1 is b/S compared with 1 - mhi/S. */
-#ifndef ROUND_BIASED
- if (j1 == 0 && !mode && !(word1(d) & 1)) {
- if (dig == '9')
- goto round_9_up;
- if (j > 0)
- dig++;
- *s++ = (char)dig;
- goto ret;
- }
-#endif
- if ((j < 0) || (j == 0 && !mode
-#ifndef ROUND_BIASED
- && !(word1(d) & 1)
-#endif
- )) {
- if (j1 > 0) {
- /* Either dig or dig+1 would work here as the least significant decimal digit.
- Use whichever would produce a decimal value closer to d. */
- b = lshift(b, 1);
- if (!b)
- goto nomem;
- j1 = cmp(b, S);
- if (((j1 > 0) || (j1 == 0 && (dig & 1 || biasUp)))
- && (dig++ == '9'))
- goto round_9_up;
- }
- *s++ = (char)dig;
- goto ret;
- }
- if (j1 > 0) {
- if (dig == '9') { /* possible if i == 1 */
- round_9_up:
- *s++ = '9';
- goto roundoff;
- }
- *s++ = (char)dig + 1;
- goto ret;
- }
- *s++ = (char)dig;
- if (i == ilim)
- break;
- b = multadd(b, 10, 0);
- if (!b)
- goto nomem;
- if (mlo == mhi) {
- mlo = mhi = multadd(mhi, 10, 0);
- if (!mhi)
- goto nomem;
- }
- else {
- mlo = multadd(mlo, 10, 0);
- if (!mlo)
- goto nomem;
- mhi = multadd(mhi, 10, 0);
- if (!mhi)
- goto nomem;
- }
- }
- }
- else
- for(i = 1;; i++) {
- *s++ = (char)(dig = quorem(b,S) + '0');
- if (i >= ilim)
- break;
- b = multadd(b, 10, 0);
- if (!b)
- goto nomem;
- }
-
- /* Round off last digit */
-
- b = lshift(b, 1);
- if (!b)
- goto nomem;
- j = cmp(b, S);
- if ((j > 0) || (j == 0 && (dig & 1 || biasUp))) {
- roundoff:
- while(*--s == '9')
- if (s == buf) {
- k++;
- *s++ = '1';
- goto ret;
- }
- ++*s++;
- }
- else {
- /* Strip trailing zeros */
- while(*--s == '0') ;
- s++;
- }
- ret:
- Bfree(S);
- if (mhi) {
- if (mlo && mlo != mhi)
- Bfree(mlo);
- Bfree(mhi);
- }
- ret1:
- Bfree(b);
- JS_ASSERT(s < buf + bufsize);
- *s = '\0';
- if (rve)
- *rve = s;
- *decpt = k + 1;
- return JS_TRUE;
-
-nomem:
- Bfree(S);
- if (mhi) {
- if (mlo && mlo != mhi)
- Bfree(mlo);
- Bfree(mhi);
- }
- Bfree(b);
- return JS_FALSE;
}
-
/* Mapping of JSDToStrMode -> js_dtoa mode */
-static const int dtoaModes[] = {
+static const uint8 dtoaModes[] = {
0, /* DTOSTR_STANDARD */
0, /* DTOSTR_STANDARD_EXPONENTIAL, */
3, /* DTOSTR_FIXED, */
2, /* DTOSTR_EXPONENTIAL, */
2}; /* DTOSTR_PRECISION */
+JS_FRIEND_API(double)
+JS_strtod(const char *s00, char **se, int *err)
+{
+ double retval;
+ if (err)
+ *err = 0;
+ LOCK_DTOA();
+ retval = _strtod(s00, se);
+ UNLOCK_DTOA();
+ return retval;
+}
+
JS_FRIEND_API(char *)
JS_dtostr(char *buffer, size_t bufferSize, JSDToStrMode mode, int precision, double d)
{
- int decPt; /* Position of decimal point relative to first digit returned by js_dtoa */
- int sign; /* Nonzero if the sign bit was set in d */
- int nDigits; /* Number of significand digits returned by js_dtoa */
- char *numBegin = buffer+2; /* Pointer to the digits returned by js_dtoa; the +2 leaves space for */
- /* the sign and/or decimal point */
- char *numEnd; /* Pointer past the digits returned by js_dtoa */
- JSBool dtoaRet;
+ int decPt; /* Offset of decimal point from first digit */
+ int sign; /* Nonzero if the sign bit was set in d */
+ int nDigits; /* Number of significand digits returned by js_dtoa */
+ char *numBegin; /* Pointer to the digits returned by js_dtoa */
+ char *numEnd = 0; /* Pointer past the digits returned by js_dtoa */
+
+ JS_ASSERT(bufferSize >= (size_t)(mode <= DTOSTR_STANDARD_EXPONENTIAL
+ ? DTOSTR_STANDARD_BUFFER_SIZE
+ : DTOSTR_VARIABLE_BUFFER_SIZE(precision)));
- JS_ASSERT(bufferSize >= (size_t)(mode <= DTOSTR_STANDARD_EXPONENTIAL ? DTOSTR_STANDARD_BUFFER_SIZE :
- DTOSTR_VARIABLE_BUFFER_SIZE(precision)));
-
+ /*
+ * Change mode here rather than below because the buffer may not be large
+ * enough to hold a large integer.
+ */
if (mode == DTOSTR_FIXED && (d >= 1e21 || d <= -1e21))
- mode = DTOSTR_STANDARD; /* Change mode here rather than below because the buffer may not be large enough to hold a large integer. */
+ mode = DTOSTR_STANDARD;
- /* Locking for Balloc's shared buffers */
- ACQUIRE_DTOA_LOCK();
- dtoaRet = js_dtoa(d, dtoaModes[mode], mode >= DTOSTR_FIXED, precision, &decPt, &sign, &numEnd, numBegin, bufferSize-2);
- RELEASE_DTOA_LOCK();
- if (!dtoaRet)
- return 0;
+ LOCK_DTOA();
+ numBegin = dtoa(d, dtoaModes[mode], precision, &decPt, &sign, &numEnd);
+ if (!numBegin) {
+ UNLOCK_DTOA();
+ return NULL;
+ }
nDigits = numEnd - numBegin;
+ JS_ASSERT((size_t) nDigits <= bufferSize - 2);
+ if ((size_t) nDigits > bufferSize - 2) {
+ UNLOCK_DTOA();
+ return NULL;
+ }
- /* If Infinity, -Infinity, or NaN, return the string regardless of the mode. */
+ memcpy(buffer + 2, numBegin, nDigits);
+ freedtoa(numBegin);
+ UNLOCK_DTOA();
+ numBegin = buffer + 2; /* +2 leaves space for sign and/or decimal point */
+ numEnd = numBegin + nDigits;
+ *numEnd = '\0';
+
+ /* If Infinity, -Infinity, or NaN, return the string regardless of mode. */
if (decPt != 9999) {
JSBool exponentialNotation = JS_FALSE;
- int minNDigits = 0; /* Minimum number of significand digits required by mode and precision */
+ int minNDigits = 0; /* Min number of significant digits required */
char *p;
char *q;
switch (mode) {
case DTOSTR_STANDARD:
if (decPt < -5 || decPt > 21)
exponentialNotation = JS_TRUE;
else
@@ -2843,17 +212,17 @@ JS_dtostr(char *buffer, size_t bufferSiz
case DTOSTR_PRECISION:
JS_ASSERT(precision > 0);
minNDigits = precision;
if (decPt < -5 || decPt > precision)
exponentialNotation = JS_TRUE;
break;
}
- /* If the number has fewer than minNDigits, pad it with zeros at the end */
+ /* If the number has fewer than minNDigits, end-pad it with zeros. */
if (nDigits < minNDigits) {
p = numBegin + minNDigits;
nDigits = minNDigits;
do {
*numEnd++ = '0';
} while (numEnd != p);
*numEnd = '\0';
}
@@ -2937,16 +306,49 @@ divrem(Bigint *b, uint32 divisor)
*bp = quotientHi << 16 | quotientLo;
} while (bp != bx);
/* Decrease the size of the number if its most significant word is now zero. */
if (bx[n-1] == 0)
b->wds--;
return remainder;
}
+/* Return floor(b/2^k) and set b to be the remainder. The returned quotient must be less than 2^32. */
+static uint32 quorem2(Bigint *b, int32 k)
+{
+ ULong mask;
+ ULong result;
+ ULong *bx, *bxe;
+ int32 w;
+ int32 n = k >> 5;
+ k &= 0x1F;
+ mask = (1<<k) - 1;
+
+ w = b->wds - n;
+ if (w <= 0)
+ return 0;
+ JS_ASSERT(w <= 2);
+ bx = b->x;
+ bxe = bx + n;
+ result = *bxe >> k;
+ *bxe &= mask;
+ if (w == 2) {
+ JS_ASSERT(!(bxe[1] & ~mask));
+ if (k)
+ result |= bxe[1] << (32 - k);
+ }
+ n++;
+ while (!*bxe && bxe != bx) {
+ n--;
+ bxe--;
+ }
+ b->wds = n;
+ return result;
+}
+
/* "-0.0000...(1073 zeros after decimal point)...0001\0" is the longest string that we could produce,
* which occurs when printing -5e-324 in binary. We could compute a better estimate of the size of
* the output string and malloc fewer bytes depending on d and base, but why bother? */
#define DTOBASESTR_BUFFER_SIZE 1078
#define BASEDIGIT(digit) ((char)(((digit) >= 10) ? 'a' - 10 + (digit) : '0' + (digit)))
JS_FRIEND_API(char *)
@@ -2975,44 +377,42 @@ JS_dtobasestr(int base, double d)
}
/* Check for Infinity and NaN */
if ((word0(d) & Exp_mask) == Exp_mask) {
strcpy(p, !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN");
return buffer;
}
- /* Locking for Balloc's shared buffers */
- ACQUIRE_DTOA_LOCK();
-
+ LOCK_DTOA();
/* Output the integer part of d with the digits in reverse order. */
pInt = p;
di = fd_floor(d);
if (di <= 4294967295.0) {
uint32 n = (uint32)di;
if (n)
do {
uint32 m = n / base;
digit = n - m*base;
n = m;
JS_ASSERT(digit < (uint32)base);
*p++ = BASEDIGIT(digit);
} while (n);
else *p++ = '0';
} else {
- int32 e;
- int32 bits; /* Number of significant bits in di; not used. */
+ int e;
+ int bits; /* Number of significant bits in di; not used. */
Bigint *b = d2b(di, &e, &bits);
if (!b)
goto nomem1;
b = lshift(b, e);
if (!b) {
nomem1:
Bfree(b);
- RELEASE_DTOA_LOCK();
+ UNLOCK_DTOA();
free(buffer);
return NULL;
}
do {
digit = divrem(b, base);
JS_ASSERT(digit < (uint32)base);
*p++ = BASEDIGIT(digit);
} while (b->wds);
@@ -3024,31 +424,32 @@ JS_dtobasestr(int base, double d)
char ch = *pInt;
*pInt++ = *q;
*q-- = ch;
}
df = d - di;
if (df != 0.0) {
/* We have a fraction. */
- int32 e, bbits, s2, done;
+ int e, bbits;
+ int32 s2, done;
Bigint *b, *s, *mlo, *mhi;
b = s = mlo = mhi = NULL;
*p++ = '.';
b = d2b(df, &e, &bbits);
if (!b) {
nomem2:
Bfree(b);
Bfree(s);
if (mlo != mhi)
Bfree(mlo);
Bfree(mhi);
- RELEASE_DTOA_LOCK();
+ UNLOCK_DTOA();
free(buffer);
return NULL;
}
JS_ASSERT(e < 0);
/* At this point df = b * 2^e. e must be less than zero because 0 < df < 1. */
s2 = -(int32)(word0(d) >> Exp_shift1 & Exp_mask>>Exp_shift1);
#ifndef Sudden_Underflow
@@ -3156,12 +557,12 @@ JS_dtobasestr(int base, double d)
Bfree(b);
Bfree(s);
if (mlo != mhi)
Bfree(mlo);
Bfree(mhi);
}
JS_ASSERT(p < buffer + DTOBASESTR_BUFFER_SIZE);
*p = '\0';
- RELEASE_DTOA_LOCK();
+ UNLOCK_DTOA();
}
return buffer;
}
--- a/js/src/jsdtoa.h
+++ b/js/src/jsdtoa.h
@@ -118,13 +118,14 @@ JS_dtostr(char *buffer, size_t bufferSiz
*/
JS_FRIEND_API(char *)
JS_dtobasestr(int base, double d);
/*
* Clean up any persistent RAM allocated during the execution of DtoA
* routines, and remove any locks that might have been created.
*/
-extern void js_FinishDtoa(void);
+JS_FRIEND_API(JSBool) js_InitDtoa(void);
+JS_FRIEND_API(void) js_FinishDtoa(void);
JS_END_EXTERN_C
#endif /* jsdtoa_h___ */
--- a/js/src/jsnum.cpp
+++ b/js/src/jsnum.cpp
@@ -1010,28 +1010,20 @@ js_strtod(JSContext *cx, const jschar *s
if ((negative = (*istr == '-')) != 0 || *istr == '+')
istr++;
if (!strncmp(istr, js_Infinity_str, sizeof js_Infinity_str - 1)) {
d = *(negative ? cx->runtime->jsNegativeInfinity : cx->runtime->jsPositiveInfinity);
estr = istr + 8;
} else {
int err;
d = JS_strtod(cstr, &estr, &err);
- if (err == JS_DTOA_ENOMEM) {
- JS_ReportOutOfMemory(cx);
- if (cstr != cbuf)
- JS_free(cx, cstr);
- return JS_FALSE;
- }
- if (err == JS_DTOA_ERANGE) {
- if (d == HUGE_VAL)
- d = *cx->runtime->jsPositiveInfinity;
- else if (d == -HUGE_VAL)
- d = *cx->runtime->jsNegativeInfinity;
- }
+ if (d == HUGE_VAL)
+ d = *cx->runtime->jsPositiveInfinity;
+ else if (d == -HUGE_VAL)
+ d = *cx->runtime->jsNegativeInfinity;
#ifdef HPUX
if (d == 0.0 && negative) {
/*
* "-0", "-1e-2000" come out as positive zero
* here on HPUX. Force a negative zero instead.
*/
JSDOUBLE_HI32(d) = JSDOUBLE_HI32_SIGNBIT;
JSDOUBLE_LO32(d) = 0;