author Gabriele Svelto <>
Sat, 18 May 2019 16:19:57 +0000
changeset 474436 e013f1f17109a8c22cbc7abf6f78db55bd2a8efb
parent 473737 5048590d3b69aa6c1d9fd13e388218dc344d214e
permissions -rw-r--r--
Bug 1547698 - Reorganize the code used to write the annotations upon a main process crash r=froydnj Annotation on main process crashes are written to both the .extra file (for crash submission) and to the event file so that the browser can detect the crash when restarting even if the crash report files have been deleted. This patch factorizes all the code that writes to both files, cutting down all the duplicate calls, and fixes an issue with the BreakpadReserveAddress and BreakpadReserveSize annotations which were not written to the event file. Differential Revision:

/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at */

//! Overview of the GPU cache.
//! The main goal of the GPU cache is to allow on-demand
//! allocation and construction of GPU resources for the
//! vertex shaders to consume.
//! Every item that wants to be stored in the GPU cache
//! should create a GpuCacheHandle that is used to refer
//! to a cached GPU resource. Creating a handle is a
//! cheap operation, that does *not* allocate room in the
//! cache.
//! On any frame when that data is required, the caller
//! must request that handle, via ```request```. If the
//! data is not in the cache, the user provided closure
//! will be invoked to build the data.
//! After ```end_frame``` has occurred, callers can
//! use the ```get_address``` API to get the allocated
//! address in the GPU cache of a given resource slot
//! for this frame.

use api::{DebugFlags, DocumentId, PremultipliedColorF};
use api::IdNamespace;
use api::units::TexelRect;
use euclid::{HomogeneousVector, TypedRect};
use crate::internal_types::{FastHashMap, FastHashSet};
use crate::profiler::GpuCacheProfileCounters;
use crate::render_backend::{FrameStamp, FrameId};
use crate::renderer::MAX_VERTEX_TEXTURE_WIDTH;
use std::{mem, u16, u32};
use std::num::NonZeroU32;
use std::ops::Add;
use std::time::{Duration, Instant};

/// At the time of this writing, Firefox uses about 15 GPU cache rows on
/// startup, and then gradually works its way up to the mid-30s with normal
/// browsing.
pub const GPU_CACHE_INITIAL_HEIGHT: i32 = 20;
const NEW_ROWS_PER_RESIZE: i32 = 10;

/// The number of frames an entry can go unused before being evicted.
const FRAMES_BEFORE_EVICTION: usize = 10;

/// The ratio of utilized blocks to total blocks for which we start the clock
/// on reclaiming memory.
const RECLAIM_THRESHOLD: f32 = 0.2;

/// The amount of time utilization must be below the above threshold before we
/// blow away the cache and rebuild it.
const RECLAIM_DELAY_S: u64 = 5;

#[derive(Debug, Copy, Clone, Eq, MallocSizeOf, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct Epoch(u32);

impl Epoch {
    fn next(&mut self) {
        *self = Epoch(self.0.wrapping_add(1));

#[derive(Debug, Copy, Clone, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct CacheLocation {
    block_index: BlockIndex,
    epoch: Epoch,

/// A single texel in RGBAF32 texture - 16 bytes.
#[derive(Copy, Clone, Debug, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct GpuBlockData {
    data: [f32; 4],

impl GpuBlockData {
    pub const EMPTY: Self = GpuBlockData { data: [0.0; 4] };

/// Conversion helpers for GpuBlockData
impl From<PremultipliedColorF> for GpuBlockData {
    fn from(c: PremultipliedColorF) -> Self {
        GpuBlockData {
            data: [c.r, c.g, c.b, c.a],

impl From<[f32; 4]> for GpuBlockData {
    fn from(data: [f32; 4]) -> Self {
        GpuBlockData { data }

impl<P> From<TypedRect<f32, P>> for GpuBlockData {
    fn from(r: TypedRect<f32, P>) -> Self {
        GpuBlockData {
            data: [

impl<P> From<HomogeneousVector<f32, P>> for GpuBlockData {
    fn from(v: HomogeneousVector<f32, P>) -> Self {
        GpuBlockData {
            data: [

impl From<TexelRect> for GpuBlockData {
    fn from(tr: TexelRect) -> Self {
        GpuBlockData {
            data: [tr.uv0.x, tr.uv0.y, tr.uv1.x, tr.uv1.y],

// Any data type that can be stored in the GPU cache should
// implement this trait.
pub trait ToGpuBlocks {
    // Request an arbitrary number of GPU data blocks.
    fn write_gpu_blocks(&self, _: GpuDataRequest);

// A handle to a GPU resource.
#[derive(Debug, Copy, Clone, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct GpuCacheHandle {
    location: Option<CacheLocation>,

impl GpuCacheHandle {
    pub fn new() -> Self {
        GpuCacheHandle { location: None }

// A unique address in the GPU cache. These are uploaded
// as part of the primitive instances, to allow the vertex
// shader to fetch the specific data.
#[derive(Copy, Debug, Clone, MallocSizeOf, Eq, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct GpuCacheAddress {
    pub u: u16,
    pub v: u16,

impl GpuCacheAddress {
    fn new(u: usize, v: usize) -> Self {
        GpuCacheAddress {
            u: u as u16,
            v: v as u16,

    pub const INVALID: GpuCacheAddress = GpuCacheAddress {
        u: u16::MAX,
        v: u16::MAX,

impl Add<usize> for GpuCacheAddress {
    type Output = GpuCacheAddress;

    fn add(self, other: usize) -> GpuCacheAddress {
        GpuCacheAddress {
            u: self.u + other as u16,
            v: self.v,

// An entry in a free-list of blocks in the GPU cache.
#[derive(Debug, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct Block {
    // The location in the cache of this block.
    address: GpuCacheAddress,
    // The current epoch (generation) of this block.
    epoch: Epoch,
    // Index of the next free block in the list it
    // belongs to (either a free-list or the
    // occupied list).
    next: Option<BlockIndex>,
    // The last frame this block was referenced.
    last_access_time: FrameId,

impl Block {
    fn new(
        address: GpuCacheAddress,
        next: Option<BlockIndex>,
        frame_id: FrameId,
        epoch: Epoch,
    ) -> Self {
        Block {
            last_access_time: frame_id,

    fn advance_epoch(&mut self, max_epoch: &mut Epoch) {;
        if max_epoch.0 < self.epoch.0 {
            max_epoch.0 = self.epoch.0;

    /// Creates an invalid dummy block ID.
    pub const INVALID: Block = Block {
        address: GpuCacheAddress { u: 0, v: 0 },
        epoch: Epoch(0),
        next: None,
        last_access_time: FrameId::INVALID,

/// Represents the index of a Block in the block array. We only create such
/// structs for blocks that represent the start of a chunk.
/// Because we use Option<BlockIndex> in a lot of places, we use a NonZeroU32
/// here and avoid ever using the index zero.
#[derive(Debug, Copy, Clone, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct BlockIndex(NonZeroU32);

impl BlockIndex {
    fn new(idx: usize) -> Self {
        debug_assert!(idx <= u32::MAX as usize);
        BlockIndex(NonZeroU32::new(idx as u32).expect("Index zero forbidden"))

    fn get(&self) -> usize {
        self.0.get() as usize

// A row in the cache texture.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct Row {
    // The fixed size of blocks that this row supports.
    // Each row becomes a slab allocator for a fixed block size.
    // This means no dealing with fragmentation within a cache
    // row as items are allocated and freed.
    block_count_per_item: usize,

impl Row {
    fn new(block_count_per_item: usize) -> Self {
        Row {

// A list of update operations that can be applied on the cache
// this frame. The list of updates is created by the render backend
// during frame construction. It's passed to the render thread
// where GL commands can be applied.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum GpuCacheUpdate {
    Copy {
        block_index: usize,
        block_count: usize,
        address: GpuCacheAddress,

/// Command to inform the debug display in the renderer when chunks are allocated
/// or freed.
pub enum GpuCacheDebugCmd {
    /// Describes an allocated chunk.
    /// Describes a freed chunk.

#[derive(Clone, MallocSizeOf)]
pub struct GpuCacheDebugChunk {
    pub address: GpuCacheAddress,
    pub size: usize,

#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct GpuCacheUpdateList {
    /// The frame current update list was generated from.
    pub frame_id: FrameId,
    /// Whether the texture should be cleared before updates
    /// are applied.
    pub clear: bool,
    /// The current height of the texture. The render thread
    /// should resize the texture if required.
    pub height: i32,
    /// List of updates to apply.
    pub updates: Vec<GpuCacheUpdate>,
    /// A flat list of GPU blocks that are pending upload
    /// to GPU memory.
    pub blocks: Vec<GpuBlockData>,
    /// Whole state GPU block metadata for debugging.
    #[cfg_attr(feature = "serde", serde(skip))]
    pub debug_commands: Vec<GpuCacheDebugCmd>,

// Holds the free lists of fixed size blocks. Mostly
// just serves to work around the borrow checker.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct FreeBlockLists {
    free_list_1: Option<BlockIndex>,
    free_list_2: Option<BlockIndex>,
    free_list_4: Option<BlockIndex>,
    free_list_8: Option<BlockIndex>,
    free_list_16: Option<BlockIndex>,
    free_list_32: Option<BlockIndex>,
    free_list_64: Option<BlockIndex>,
    free_list_128: Option<BlockIndex>,
    free_list_256: Option<BlockIndex>,
    free_list_341: Option<BlockIndex>,
    free_list_512: Option<BlockIndex>,
    free_list_1024: Option<BlockIndex>,

impl FreeBlockLists {
    fn new() -> Self {
        FreeBlockLists {
            free_list_1: None,
            free_list_2: None,
            free_list_4: None,
            free_list_8: None,
            free_list_16: None,
            free_list_32: None,
            free_list_64: None,
            free_list_128: None,
            free_list_256: None,
            free_list_341: None,
            free_list_512: None,
            free_list_1024: None,

    fn get_actual_block_count_and_free_list(
        &mut self,
        block_count: usize,
    ) -> (usize, &mut Option<BlockIndex>) {
        // Find the appropriate free list to use based on the block size.
        // Note that we cheat a bit with the 341 bucket, since it's not quite
        // a divisor of 1024, because purecss-francine allocates many 260-block
        // chunks, and there's no reason we shouldn't pack these three to a row.
        // This means the allocation statistics will under-report by one block
        // for each row using 341-block buckets, which is fine.
        debug_assert_eq!(MAX_VERTEX_TEXTURE_WIDTH, 1024, "Need to update bucketing");
        match block_count {
            0 => panic!("Can't allocate zero sized blocks!"),
            1 => (1, &mut self.free_list_1),
            2 => (2, &mut self.free_list_2),
            3...4 => (4, &mut self.free_list_4),
            5...8 => (8, &mut self.free_list_8),
            9...16 => (16, &mut self.free_list_16),
            17...32 => (32, &mut self.free_list_32),
            33...64 => (64, &mut self.free_list_64),
            65...128 => (128, &mut self.free_list_128),
            129...256 => (256, &mut self.free_list_256),
            257...341 => (341, &mut self.free_list_341),
            342...512 => (512, &mut self.free_list_512),
            513...1024 => (1024, &mut self.free_list_1024),
            _ => panic!("Can't allocate > MAX_VERTEX_TEXTURE_WIDTH per resource!"),

// CPU-side representation of the GPU resource cache texture.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct Texture {
    // Current texture height
    height: i32,
    // All blocks that have been created for this texture
    blocks: Vec<Block>,
    // Metadata about each allocated row.
    rows: Vec<Row>,
    // The base Epoch for this texture.
    base_epoch: Epoch,
    // The maximum epoch reached. We track this along with the above so
    // that we can rebuild the Texture and avoid collisions with handles
    // allocated for the old texture.
    max_epoch: Epoch,
    // Free lists of available blocks for each supported
    // block size in the texture. These are intrusive
    // linked lists.
    free_lists: FreeBlockLists,
    // Linked list of currently occupied blocks. This
    // makes it faster to iterate blocks looking for
    // candidates to be evicted from the cache.
    occupied_list_heads: FastHashMap<DocumentId, BlockIndex>,
    // Pending blocks that have been written this frame
    // and will need to be sent to the GPU.
    pending_blocks: Vec<GpuBlockData>,
    // Pending update commands.
    updates: Vec<GpuCacheUpdate>,
    // Profile stats
    allocated_block_count: usize,
    // The stamp at which we first reached our threshold for reclaiming `GpuCache`
    // memory, or `None` if the threshold hasn't been reached.
    #[cfg_attr(feature = "serde", serde(skip))]
    reached_reclaim_threshold: Option<Instant>,
    // List of debug commands to be sent to the renderer when the GPU cache
    // debug display is enabled.
    #[cfg_attr(feature = "serde", serde(skip))]
    debug_commands: Vec<GpuCacheDebugCmd>,
    // The current debug flags for the system.
    debug_flags: DebugFlags,

impl Texture {
    fn new(base_epoch: Epoch, debug_flags: DebugFlags) -> Self {
        // Pre-fill the block array with one invalid block so that we never use
        // 0 for a BlockIndex. This lets us use NonZeroU32 for BlockIndex, which
        // saves memory.
        let blocks = vec![Block::INVALID];

        Texture {
            height: GPU_CACHE_INITIAL_HEIGHT,
            rows: Vec::new(),
            max_epoch: base_epoch,
            free_lists: FreeBlockLists::new(),
            pending_blocks: Vec::new(),
            updates: Vec::new(),
            occupied_list_heads: FastHashMap::default(),
            allocated_block_count: 0,
            reached_reclaim_threshold: None,
            debug_commands: Vec::new(),

    // Push new data into the cache. The ```pending_block_index``` field represents
    // where the data was pushed into the texture ```pending_blocks``` array.
    // Return the allocated address for this data.
    fn push_data(
        &mut self,
        pending_block_index: Option<usize>,
        block_count: usize,
        frame_stamp: FrameStamp
    ) -> CacheLocation {
        // Find the appropriate free list to use based on the block size.
        let (alloc_size, free_list) = self.free_lists

        // See if we need a new row (if free-list has nothing available)
        if free_list.is_none() {
            if self.rows.len() as i32 == self.height {
                self.height += NEW_ROWS_PER_RESIZE;

            // Create a new row.
            let items_per_row = MAX_VERTEX_TEXTURE_WIDTH / alloc_size;
            let row_index = self.rows.len();

            // Create a ```Block``` for each possible allocation address
            // in this row, and link it in to the free-list for this
            // block size.
            let mut prev_block_index = None;
            for i in 0 .. items_per_row {
                let address = GpuCacheAddress::new(i * alloc_size, row_index);
                let block_index = BlockIndex::new(self.blocks.len());
                let block = Block::new(address, prev_block_index, frame_stamp.frame_id(), self.base_epoch);
                prev_block_index = Some(block_index);

            *free_list = prev_block_index;

        // Given the code above, it's now guaranteed that there is a block
        // available in the appropriate free-list. Pull a block from the
        // head of the list.
        let free_block_index = free_list.take().unwrap();
        let block = &mut self.blocks[free_block_index.get()];
        *free_list =;

        // Add the block to the occupied linked list. = self.occupied_list_heads.get(&frame_stamp.document_id()).cloned();
        block.last_access_time = frame_stamp.frame_id();
        self.occupied_list_heads.insert(frame_stamp.document_id(), free_block_index);
        self.allocated_block_count += alloc_size;

        if let Some(pending_block_index) = pending_block_index {
            // Add this update to the pending list of blocks that need
            // to be updated on the GPU.
            self.updates.push(GpuCacheUpdate::Copy {
                block_index: pending_block_index,
                address: block.address,

        // If we're using the debug display, communicate the allocation to the
        // renderer thread. Note that we do this regardless of whether or not
        // pending_block_index is None (if it is, the renderer thread will fill
        // in the data via a deferred resolve, but the block is still considered
        // allocated).
        if self.debug_flags.contains(DebugFlags::GPU_CACHE_DBG) {
            self.debug_commands.push(GpuCacheDebugCmd::Alloc(GpuCacheDebugChunk {
                address: block.address,
                size: block_count,

        CacheLocation {
            block_index: free_block_index,
            epoch: block.epoch,

    // Run through the list of occupied cache blocks and evict
    // any old blocks that haven't been referenced for a while.
    fn evict_old_blocks(&mut self, frame_stamp: FrameStamp) {
        // Prune any old items from the list to make room.
        // Traverse the occupied linked list and see
        // which items have not been used for a long time.
        let mut current_block = self.occupied_list_heads.get(&frame_stamp.document_id()).map(|x| *x);
        let mut prev_block: Option<BlockIndex> = None;

        while let Some(index) = current_block {
            let (next_block, should_unlink) = {
                let block = &mut self.blocks[index.get()];

                let next_block =;
                let mut should_unlink = false;

                // If this resource has not been used in the last
                // few frames, free it from the texture and mark
                // as empty.
                if block.last_access_time + FRAMES_BEFORE_EVICTION < frame_stamp.frame_id() {
                    should_unlink = true;

                    // Get the row metadata from the address.
                    let row = &mut self.rows[block.address.v as usize];

                    // Use the row metadata to determine which free-list
                    // this block belongs to.
                    let (_, free_list) = self.free_lists

                    block.advance_epoch(&mut self.max_epoch);
           = *free_list;
                    *free_list = Some(index);

                    self.allocated_block_count -= row.block_count_per_item;

                    if self.debug_flags.contains(DebugFlags::GPU_CACHE_DBG) {
                        let cmd = GpuCacheDebugCmd::Free(block.address);

                (next_block, should_unlink)

            // If the block was released, we will need to remove it
            // from the occupied linked list.
            if should_unlink {
                match prev_block {
                    Some(prev_block) => {
                        self.blocks[prev_block.get()].next = next_block;
                    None => {
                        match next_block {
                            Some(next_block) => {
                                self.occupied_list_heads.insert(frame_stamp.document_id(), next_block);
                            None => {
            } else {
                prev_block = current_block;

            current_block = next_block;

    /// Returns the ratio of utilized blocks.
    fn utilization(&self) -> f32 {
        let total_blocks = self.rows.len() * MAX_VERTEX_TEXTURE_WIDTH;
        debug_assert!(total_blocks > 0);
        let ratio = self.allocated_block_count as f32 / total_blocks as f32;
        debug_assert!(0.0 <= ratio && ratio <= 1.0, "Bad ratio: {}", ratio);

/// A wrapper object for GPU data requests,
/// works as a container that can only grow.
pub struct GpuDataRequest<'a> {
    handle: &'a mut GpuCacheHandle,
    frame_stamp: FrameStamp,
    start_index: usize,
    max_block_count: usize,
    texture: &'a mut Texture,

impl<'a> GpuDataRequest<'a> {
    pub fn push<B>(&mut self, block: B)
        B: Into<GpuBlockData>,

    pub fn current_used_block_num(&self) -> usize {
        self.texture.pending_blocks.len() - self.start_index

impl<'a> Drop for GpuDataRequest<'a> {
    fn drop(&mut self) {
        // Push the data to the texture pending updates list.
        let block_count = self.current_used_block_num();
        debug_assert!(block_count <= self.max_block_count);

        let location = self.texture
            .push_data(Some(self.start_index), block_count, self.frame_stamp);
        self.handle.location = Some(location);

/// The main LRU cache interface.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct GpuCache {
    /// Current FrameId.
    now: FrameStamp,
    /// CPU-side texture allocator.
    texture: Texture,
    /// Number of blocks requested this frame that don't
    /// need to be re-uploaded.
    saved_block_count: usize,
    /// The current debug flags for the system.
    debug_flags: DebugFlags,
    /// Whether there is a pending clear to send with the
    /// next update.
    pending_clear: bool,
    /// Indicates that prepare_for_frames has been called for this group of frames.
    /// Used for sanity checks.
    prepared_for_frames: bool,
    /// This indicates that we performed a cleanup operation which requires all
    /// documents to build a frame.
    requires_frame_build: bool,
    /// The set of documents which have had frames built in this update. Used for
    /// sanity checks.
    document_frames_to_build: FastHashSet<DocumentId>,

impl GpuCache {
    pub fn new() -> Self {
        let debug_flags = DebugFlags::empty();
        GpuCache {
            now: FrameStamp::INVALID,
            texture: Texture::new(Epoch(0), debug_flags),
            saved_block_count: 0,
            pending_clear: false,
            prepared_for_frames: false,
            requires_frame_build: false,
            document_frames_to_build: FastHashSet::default(),

    /// Creates a GpuCache and sets it up with a valid `FrameStamp`, which
    /// is useful for avoiding panics when instantiating the `GpuCache`
    /// directly from unit test code.
    pub fn new_for_testing() -> Self {
        let mut cache = Self::new();
        let mut now = FrameStamp::first(DocumentId::new(IdNamespace(1), 1));
        cache.prepared_for_frames = true;

    /// Drops everything in the GPU cache. Must not be called once gpu cache entries
    /// for the next frame have already been requested.
    pub fn clear(&mut self) {
        assert!(self.texture.updates.is_empty(), "Clearing with pending updates");
        let mut next_base_epoch = self.texture.max_epoch;;
        self.texture = Texture::new(next_base_epoch, self.debug_flags);
        self.saved_block_count = 0;
        self.pending_clear = true;
        self.requires_frame_build = true;

    pub fn requires_frame_build(&self) -> bool {

    pub fn prepare_for_frames(&mut self) {
        self.prepared_for_frames = true;
        if self.should_reclaim_memory() {
            for &document_id in self.texture.occupied_list_heads.keys() {

    pub fn bookkeep_after_frames(&mut self) {
        self.requires_frame_build = false;
        self.prepared_for_frames = false;

    /// Begin a new frame.
    pub fn begin_frame(&mut self, stamp: FrameStamp) {
        assert!(self.prepared_for_frames); = stamp;
        self.saved_block_count = 0;

    // Invalidate a (possibly) existing block in the cache.
    // This means the next call to request() for this location
    // will rebuild the data and upload it to the GPU.
    pub fn invalidate(&mut self, handle: &GpuCacheHandle) {
        if let Some(ref location) = handle.location {
            // don't invalidate blocks that are already re-assigned
            if let Some(block) = self.texture.blocks.get_mut(location.block_index.get()) {
                if block.epoch == location.epoch {
                    block.advance_epoch(&mut self.texture.max_epoch);

    /// Request a resource be added to the cache. If the resource
    /// is already in the cache, `None` will be returned.
    pub fn request<'a>(&'a mut self, handle: &'a mut GpuCacheHandle) -> Option<GpuDataRequest<'a>> {
        let mut max_block_count = MAX_VERTEX_TEXTURE_WIDTH;
        // Check if the allocation for this handle is still valid.
        if let Some(ref location) = handle.location {
            if let Some(block) = self.texture.blocks.get_mut(location.block_index.get()) {
                if block.epoch == location.epoch {
                    max_block_count = self.texture.rows[block.address.v as usize].block_count_per_item;
                    if block.last_access_time != {
                        // Mark last access time to avoid evicting this block.
                        block.last_access_time =;
                        self.saved_block_count += max_block_count;
                    return None;

        Some(GpuDataRequest {
            start_index: self.texture.pending_blocks.len(),
            texture: &mut self.texture,

    // Push an array of data blocks to be uploaded to the GPU
    // unconditionally for this frame. The cache handle will
    // assert if the caller tries to retrieve the address
    // of this handle on a subsequent frame. This is typically
    // used for uploading data that changes every frame, and
    // therefore makes no sense to try and cache.
    pub fn push_per_frame_blocks(&mut self, blocks: &[GpuBlockData]) -> GpuCacheHandle {
        let start_index = self.texture.pending_blocks.len();
        let location = self.texture
            .push_data(Some(start_index), blocks.len(),;
        GpuCacheHandle {
            location: Some(location),

    // Reserve space in the cache for per-frame blocks that
    // will be resolved by the render thread via the
    // external image callback.
    pub fn push_deferred_per_frame_blocks(&mut self, block_count: usize) -> GpuCacheHandle {
        let location = self.texture.push_data(None, block_count,;
        GpuCacheHandle {
            location: Some(location),

    /// End the frame. Return the list of updates to apply to the
    /// device specific cache texture.
    pub fn end_frame(
        &mut self,
        profile_counters: &mut GpuCacheProfileCounters,
    ) -> FrameStamp {

        let reached_threshold =
            self.texture.rows.len() > (GPU_CACHE_INITIAL_HEIGHT as usize) &&
            self.texture.utilization() < RECLAIM_THRESHOLD;
        if reached_threshold {
        } else {
            self.texture.reached_reclaim_threshold = None;


    /// Returns true if utilization has been low enough for long enough that we
    /// should blow the cache away and rebuild it.
    pub fn should_reclaim_memory(&self) -> bool {
            .map_or(false, |t| t.elapsed() > Duration::from_secs(RECLAIM_DELAY_S))

    /// Extract the pending updates from the cache.
    pub fn extract_updates(&mut self) -> GpuCacheUpdateList {
        let clear = self.pending_clear;
        self.pending_clear = false;
        GpuCacheUpdateList {
            height: self.texture.height,
            debug_commands: mem::replace(&mut self.texture.debug_commands, Vec::new()),
            updates: mem::replace(&mut self.texture.updates, Vec::new()),
            blocks: mem::replace(&mut self.texture.pending_blocks, Vec::new()),

    /// Sets the current debug flags for the system.
    pub fn set_debug_flags(&mut self, flags: DebugFlags) {
        self.debug_flags = flags;
        self.texture.debug_flags = flags;

    /// Get the actual GPU address in the texture for a given slot ID.
    /// It's assumed at this point that the given slot has been requested
    /// and built for this frame. Attempting to get the address for a
    /// freed or pending slot will panic!
    pub fn get_address(&self, id: &GpuCacheHandle) -> GpuCacheAddress {
        let location = id.location.expect("handle not requested or allocated!");
        let block = &self.texture.blocks[location.block_index.get()];
        debug_assert_eq!(block.epoch, location.epoch);

#[cfg(target_pointer_width = "64")]
fn test_struct_sizes() {
    use std::mem;
    // We can end up with a lot of blocks stored in the global vec, and keeping
    // them small helps reduce memory overhead.
    assert_eq!(mem::size_of::<Block>(), 24, "Block size changed");