layout/tables/nsTableFrame.cpp
author Sylvestre Ledru <sledru@mozilla.com>
Sat, 15 Jul 2017 19:03:04 +0200
changeset 370357 d72854694b360ce5051f37256518c3b3a8e69237
parent 369886 8e48ee4ce7d4e8ab0a57668ea334fadd5dff31a6
child 370361 66f0d5a2c077325dcd716a2a0bc6192bc4fc9fae
permissions -rw-r--r--
Bug 1381253 - Remove redundant control flow declarations rs=ehsan MozReview-Commit-ID: FFxP4aMCbOL

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 sw=2 et tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "mozilla/Likely.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/IntegerRange.h"
#include "mozilla/WritingModes.h"

#include "gfxContext.h"
#include "nsCOMPtr.h"
#include "nsTableFrame.h"
#include "nsStyleContext.h"
#include "nsStyleConsts.h"
#include "nsIContent.h"
#include "nsCellMap.h"
#include "nsTableCellFrame.h"
#include "nsHTMLParts.h"
#include "nsTableColFrame.h"
#include "nsTableColGroupFrame.h"
#include "nsTableRowFrame.h"
#include "nsTableRowGroupFrame.h"
#include "nsTableWrapperFrame.h"

#include "BasicTableLayoutStrategy.h"
#include "FixedTableLayoutStrategy.h"

#include "nsPresContext.h"
#include "nsContentUtils.h"
#include "nsCSSRendering.h"
#include "nsGkAtoms.h"
#include "nsCSSAnonBoxes.h"
#include "nsIPresShell.h"
#include "nsIDOMElement.h"
#include "nsIDOMHTMLElement.h"
#include "nsIScriptError.h"
#include "nsFrameManager.h"
#include "nsError.h"
#include "nsCSSFrameConstructor.h"
#include "mozilla/Range.h"
#include "mozilla/ServoRestyleManager.h"
#include "mozilla/ServoStyleSet.h"
#include "mozilla/StyleSetHandle.h"
#include "mozilla/StyleSetHandleInlines.h"
#include "nsDisplayList.h"
#include "nsIScrollableFrame.h"
#include "nsCSSProps.h"
#include "RestyleTracker.h"
#include "nsStyleChangeList.h"
#include <algorithm>

#include "gfxPrefs.h"
#include "mozilla/layers/StackingContextHelper.h"
#include "mozilla/layers/WebRenderDisplayItemLayer.h"

using namespace mozilla;
using namespace mozilla::image;
using namespace mozilla::layout;

/********************************************************************************
 ** TableReflowInput                                                         **
 ********************************************************************************/

namespace mozilla {

struct TableReflowInput {

  // the real reflow state
  const ReflowInput& reflowInput;

  // The table's available size (in reflowInput's writing mode)
  LogicalSize availSize;

  // Stationary inline-offset
  nscoord iCoord;

  // Running block-offset
  nscoord bCoord;

  TableReflowInput(const ReflowInput& aReflowInput,
                     const LogicalSize& aAvailSize)
    : reflowInput(aReflowInput)
    , availSize(aAvailSize)
  {
    MOZ_ASSERT(reflowInput.mFrame->IsTableFrame(),
               "TableReflowInput should only be created for nsTableFrame");
    nsTableFrame* table =
      static_cast<nsTableFrame*>(reflowInput.mFrame->FirstInFlow());
    WritingMode wm = aReflowInput.GetWritingMode();
    LogicalMargin borderPadding = table->GetChildAreaOffset(wm, &reflowInput);

    iCoord = borderPadding.IStart(wm) + table->GetColSpacing(-1);
    bCoord = borderPadding.BStart(wm); //cellspacing added during reflow

    // XXX do we actually need to check for unconstrained inline-size here?
    if (NS_UNCONSTRAINEDSIZE != availSize.ISize(wm)) {
      int32_t colCount = table->GetColCount();
      availSize.ISize(wm) -= borderPadding.IStartEnd(wm) +
                             table->GetColSpacing(-1) +
                             table->GetColSpacing(colCount);
      availSize.ISize(wm) = std::max(0, availSize.ISize(wm));
    }

    if (NS_UNCONSTRAINEDSIZE != availSize.BSize(wm)) {
      availSize.BSize(wm) -= borderPadding.BStartEnd(wm) +
                             table->GetRowSpacing(-1) +
                             table->GetRowSpacing(table->GetRowCount());
      availSize.BSize(wm) = std::max(0, availSize.BSize(wm));
    }
  }
};

} // namespace mozilla

/********************************************************************************
 ** nsTableFrame                                                               **
 ********************************************************************************/

struct BCPropertyData
{
  BCPropertyData() : mBStartBorderWidth(0), mIEndBorderWidth(0),
                     mBEndBorderWidth(0), mIStartBorderWidth(0),
                     mIStartCellBorderWidth(0), mIEndCellBorderWidth(0) {}
  TableArea mDamageArea;
  BCPixelSize mBStartBorderWidth;
  BCPixelSize mIEndBorderWidth;
  BCPixelSize mBEndBorderWidth;
  BCPixelSize mIStartBorderWidth;
  BCPixelSize mIStartCellBorderWidth;
  BCPixelSize mIEndCellBorderWidth;
};

nsStyleContext*
nsTableFrame::GetParentStyleContext(nsIFrame** aProviderFrame) const
{
  // Since our parent, the table wrapper frame, returned this frame, we
  // must return whatever our parent would normally have returned.

  NS_PRECONDITION(GetParent(), "table constructed without table wrapper");
  if (!mContent->GetParent() && !StyleContext()->GetPseudo()) {
    // We're the root.  We have no style context parent.
    *aProviderFrame = nullptr;
    return nullptr;
  }

  return GetParent()->DoGetParentStyleContext(aProviderFrame);
}

nsTableFrame::nsTableFrame(nsStyleContext* aContext, ClassID aID)
  : nsContainerFrame(aContext, aID)
  , mCellMap(nullptr)
  , mTableLayoutStrategy(nullptr)
{
  memset(&mBits, 0, sizeof(mBits));
}

void
nsTableFrame::Init(nsIContent*       aContent,
                   nsContainerFrame* aParent,
                   nsIFrame*         aPrevInFlow)
{
  NS_PRECONDITION(!mCellMap, "Init called twice");
  NS_PRECONDITION(!mTableLayoutStrategy, "Init called twice");
  NS_PRECONDITION(!aPrevInFlow || aPrevInFlow->IsTableFrame(),
                  "prev-in-flow must be of same type");

  // Let the base class do its processing
  nsContainerFrame::Init(aContent, aParent, aPrevInFlow);

  // see if border collapse is on, if so set it
  const nsStyleTableBorder* tableStyle = StyleTableBorder();
  bool borderCollapse = (NS_STYLE_BORDER_COLLAPSE == tableStyle->mBorderCollapse);
  SetBorderCollapse(borderCollapse);

  if (!aPrevInFlow) {
    // If we're the first-in-flow, we manage the cell map & layout strategy that
    // get used by our continuation chain:
    mCellMap = new nsTableCellMap(*this, borderCollapse);
    if (IsAutoLayout()) {
      mTableLayoutStrategy = new BasicTableLayoutStrategy(this);
    } else {
      mTableLayoutStrategy = new FixedTableLayoutStrategy(this);
    }
  } else {
    // Set my isize, because all frames in a table flow are the same isize and
    // code in nsTableWrapperFrame depends on this being set.
    WritingMode wm = GetWritingMode();
    SetSize(LogicalSize(wm, aPrevInFlow->ISize(wm), BSize(wm)));
  }
}

nsTableFrame::~nsTableFrame()
{
  delete mCellMap;
  delete mTableLayoutStrategy;
}

void
nsTableFrame::DestroyFrom(nsIFrame* aDestructRoot)
{
  mColGroups.DestroyFramesFrom(aDestructRoot);
  nsContainerFrame::DestroyFrom(aDestructRoot);
}

// Make sure any views are positioned properly
void
nsTableFrame::RePositionViews(nsIFrame* aFrame)
{
  nsContainerFrame::PositionFrameView(aFrame);
  nsContainerFrame::PositionChildViews(aFrame);
}

static bool
IsRepeatedFrame(nsIFrame* kidFrame)
{
  return (kidFrame->IsTableRowFrame() || kidFrame->IsTableRowGroupFrame()) &&
         kidFrame->HasAnyStateBits(NS_REPEATED_ROW_OR_ROWGROUP);
}

bool
nsTableFrame::PageBreakAfter(nsIFrame* aSourceFrame,
                             nsIFrame* aNextFrame)
{
  const nsStyleDisplay* display = aSourceFrame->StyleDisplay();
  nsTableRowGroupFrame* prevRg = do_QueryFrame(aSourceFrame);
  // don't allow a page break after a repeated element ...
  if ((display->mBreakAfter || (prevRg && prevRg->HasInternalBreakAfter())) &&
      !IsRepeatedFrame(aSourceFrame)) {
    return !(aNextFrame && IsRepeatedFrame(aNextFrame)); // or before
  }

  if (aNextFrame) {
    display = aNextFrame->StyleDisplay();
    // don't allow a page break before a repeated element ...
     nsTableRowGroupFrame* nextRg = do_QueryFrame(aNextFrame);
    if ((display->mBreakBefore ||
        (nextRg && nextRg->HasInternalBreakBefore())) &&
        !IsRepeatedFrame(aNextFrame)) {
      return !IsRepeatedFrame(aSourceFrame); // or after
    }
  }
  return false;
}

/* static */ void
nsTableFrame::RegisterPositionedTablePart(nsIFrame* aFrame)
{
  // Supporting relative positioning for table parts other than table cells has
  // the potential to break sites that apply 'position: relative' to those
  // parts, expecting nothing to happen. We warn at the console to make tracking
  // down the issue easy.
  if (!IS_TABLE_CELL(aFrame->Type())) {
    nsIContent* content = aFrame->GetContent();
    nsPresContext* presContext = aFrame->PresContext();
    if (content && !presContext->HasWarnedAboutPositionedTableParts()) {
      presContext->SetHasWarnedAboutPositionedTableParts();
      nsContentUtils::ReportToConsole(nsIScriptError::warningFlag,
                                      NS_LITERAL_CSTRING("Layout: Tables"),
                                      content->OwnerDoc(),
                                      nsContentUtils::eLAYOUT_PROPERTIES,
                                      "TablePartRelPosWarning");
    }
  }

  nsTableFrame* tableFrame = nsTableFrame::GetTableFrame(aFrame);
  MOZ_ASSERT(tableFrame, "Should have a table frame here");
  tableFrame = static_cast<nsTableFrame*>(tableFrame->FirstContinuation());

  // Retrieve the positioned parts array for this table.
  FrameTArray* positionedParts = tableFrame->GetProperty(PositionedTablePartArray());

  // Lazily create the array if it doesn't exist yet.
  if (!positionedParts) {
    positionedParts = new FrameTArray;
    tableFrame->SetProperty(PositionedTablePartArray(), positionedParts);
  }

  // Add this frame to the list.
  positionedParts->AppendElement(aFrame);
}

/* static */ void
nsTableFrame::UnregisterPositionedTablePart(nsIFrame* aFrame,
                                            nsIFrame* aDestructRoot)
{
  // Retrieve the table frame, and check if we hit aDestructRoot on the way.
  bool didPassThrough;
  nsTableFrame* tableFrame = GetTableFramePassingThrough(aDestructRoot, aFrame,
      &didPassThrough);
  if (!didPassThrough && !tableFrame->GetPrevContinuation()) {
    // The table frame will be destroyed, and it's the first im flow (and thus
    // owning the PositionedTablePartArray), so we don't need to do
    // anything.
    return;
  }
  tableFrame = static_cast<nsTableFrame*>(tableFrame->FirstContinuation());

  // Retrieve the positioned parts array for this table.
  FrameTArray* positionedParts = tableFrame->GetProperty(PositionedTablePartArray());

  // Remove the frame.
  MOZ_ASSERT(positionedParts && positionedParts->Contains(aFrame),
             "Asked to unregister a positioned table part that wasn't registered");
  if (positionedParts) {
    positionedParts->RemoveElement(aFrame);
  }
}

// XXX this needs to be cleaned up so that the frame constructor breaks out col group
// frames into a separate child list, bug 343048.
void
nsTableFrame::SetInitialChildList(ChildListID     aListID,
                                  nsFrameList&    aChildList)
{
  if (aListID != kPrincipalList) {
    nsContainerFrame::SetInitialChildList(aListID, aChildList);
    return;
  }

  MOZ_ASSERT(mFrames.IsEmpty() && mColGroups.IsEmpty(),
             "unexpected second call to SetInitialChildList");

  // XXXbz the below code is an icky cesspit that's only needed in its current
  // form for two reasons:
  // 1) Both rowgroups and column groups come in on the principal child list.
  while (aChildList.NotEmpty()) {
    nsIFrame* childFrame = aChildList.FirstChild();
    aChildList.RemoveFirstChild();
    const nsStyleDisplay* childDisplay = childFrame->StyleDisplay();

    if (mozilla::StyleDisplay::TableColumnGroup == childDisplay->mDisplay) {
      NS_ASSERTION(childFrame->IsTableColGroupFrame(),
                   "This is not a colgroup");
      mColGroups.AppendFrame(nullptr, childFrame);
    }
    else { // row groups and unknown frames go on the main list for now
      mFrames.AppendFrame(nullptr, childFrame);
    }
  }

  // If we have a prev-in-flow, then we're a table that has been split and
  // so don't treat this like an append
  if (!GetPrevInFlow()) {
    // process col groups first so that real cols get constructed before
    // anonymous ones due to cells in rows.
    InsertColGroups(0, mColGroups);
    InsertRowGroups(mFrames);
    // calc collapsing borders
    if (IsBorderCollapse()) {
      SetFullBCDamageArea();
    }
  }
}

void
nsTableFrame::AttributeChangedFor(nsIFrame*       aFrame,
                                  nsIContent*     aContent,
                                  nsIAtom*        aAttribute)
{
  nsTableCellFrame *cellFrame = do_QueryFrame(aFrame);
  if (cellFrame) {
    if ((nsGkAtoms::rowspan == aAttribute) ||
        (nsGkAtoms::colspan == aAttribute)) {
      nsTableCellMap* cellMap = GetCellMap();
      if (cellMap) {
        // for now just remove the cell from the map and reinsert it
        int32_t rowIndex, colIndex;
        cellFrame->GetRowIndex(rowIndex);
        cellFrame->GetColIndex(colIndex);
        RemoveCell(cellFrame, rowIndex);
        AutoTArray<nsTableCellFrame*, 1> cells;
        cells.AppendElement(cellFrame);
        InsertCells(cells, rowIndex, colIndex - 1);

        // XXX Should this use eStyleChange?  It currently doesn't need
        // to, but it might given more optimization.
        PresContext()->PresShell()->
          FrameNeedsReflow(this, nsIPresShell::eTreeChange, NS_FRAME_IS_DIRTY);
      }
    }
  }
}


/* ****** CellMap methods ******* */

/* return the effective col count */
int32_t
nsTableFrame::GetEffectiveColCount() const
{
  int32_t colCount = GetColCount();
  if (LayoutStrategy()->GetType() == nsITableLayoutStrategy::Auto) {
    nsTableCellMap* cellMap = GetCellMap();
    if (!cellMap) {
      return 0;
    }
    // don't count cols at the end that don't have originating cells
    for (int32_t colIdx = colCount - 1; colIdx >= 0; colIdx--) {
      if (cellMap->GetNumCellsOriginatingInCol(colIdx) > 0) {
        break;
      }
      colCount--;
    }
  }
  return colCount;
}

int32_t
nsTableFrame::GetIndexOfLastRealCol()
{
  int32_t numCols = mColFrames.Length();
  if (numCols > 0) {
    for (int32_t colIdx = numCols - 1; colIdx >= 0; colIdx--) {
      nsTableColFrame* colFrame = GetColFrame(colIdx);
      if (colFrame) {
        if (eColAnonymousCell != colFrame->GetColType()) {
          return colIdx;
        }
      }
    }
  }
  return -1;
}

nsTableColFrame*
nsTableFrame::GetColFrame(int32_t aColIndex) const
{
  NS_ASSERTION(!GetPrevInFlow(), "GetColFrame called on next in flow");
  int32_t numCols = mColFrames.Length();
  if ((aColIndex >= 0) && (aColIndex < numCols)) {
    return mColFrames.ElementAt(aColIndex);
  }
  else {
    NS_ERROR("invalid col index");
    return nullptr;
  }
}

int32_t
nsTableFrame::GetEffectiveRowSpan(int32_t                 aRowIndex,
                                  const nsTableCellFrame& aCell) const
{
  nsTableCellMap* cellMap = GetCellMap();
  NS_PRECONDITION (nullptr != cellMap, "bad call, cellMap not yet allocated.");

  int32_t colIndex;
  aCell.GetColIndex(colIndex);
  return cellMap->GetEffectiveRowSpan(aRowIndex, colIndex);
}

int32_t
nsTableFrame::GetEffectiveRowSpan(const nsTableCellFrame& aCell,
                                  nsCellMap*              aCellMap)
{
  nsTableCellMap* tableCellMap = GetCellMap(); if (!tableCellMap) ABORT1(1);

  int32_t colIndex, rowIndex;
  aCell.GetColIndex(colIndex);
  aCell.GetRowIndex(rowIndex);

  if (aCellMap)
    return aCellMap->GetRowSpan(rowIndex, colIndex, true);
  else
    return tableCellMap->GetEffectiveRowSpan(rowIndex, colIndex);
}

int32_t
nsTableFrame::GetEffectiveColSpan(const nsTableCellFrame& aCell,
                                  nsCellMap*              aCellMap) const
{
  nsTableCellMap* tableCellMap = GetCellMap(); if (!tableCellMap) ABORT1(1);

  int32_t colIndex, rowIndex;
  aCell.GetColIndex(colIndex);
  aCell.GetRowIndex(rowIndex);

  if (aCellMap)
    return aCellMap->GetEffectiveColSpan(*tableCellMap, rowIndex, colIndex);
  else
    return tableCellMap->GetEffectiveColSpan(rowIndex, colIndex);
}

bool
nsTableFrame::HasMoreThanOneCell(int32_t aRowIndex) const
{
  nsTableCellMap* tableCellMap = GetCellMap(); if (!tableCellMap) ABORT1(1);
  return tableCellMap->HasMoreThanOneCell(aRowIndex);
}

void
nsTableFrame::AdjustRowIndices(int32_t         aRowIndex,
                               int32_t         aAdjustment)
{
  // Iterate over the row groups and adjust the row indices of all rows
  // whose index is >= aRowIndex.
  RowGroupArray rowGroups;
  OrderRowGroups(rowGroups);

  for (uint32_t rgIdx = 0; rgIdx < rowGroups.Length(); rgIdx++) {
    rowGroups[rgIdx]->AdjustRowIndices(aRowIndex, aAdjustment);
  }
}


void
nsTableFrame::ResetRowIndices(const nsFrameList::Slice& aRowGroupsToExclude)
{
  // Iterate over the row groups and adjust the row indices of all rows
  // omit the rowgroups that will be inserted later
  mDeletedRowIndexRanges.clear();

  RowGroupArray rowGroups;
  OrderRowGroups(rowGroups);

  nsTHashtable<nsPtrHashKey<nsTableRowGroupFrame> > excludeRowGroups;
  nsFrameList::Enumerator excludeRowGroupsEnumerator(aRowGroupsToExclude);
  while (!excludeRowGroupsEnumerator.AtEnd()) {
    excludeRowGroups.PutEntry(static_cast<nsTableRowGroupFrame*>(excludeRowGroupsEnumerator.get()));
#ifdef DEBUG
    {
      // Check to make sure that the row indices of all rows in excluded row
      // groups are '0' (i.e. the initial value since they haven't been added yet)
      const nsFrameList& rowFrames =
        excludeRowGroupsEnumerator.get()->PrincipalChildList();
      for (nsFrameList::Enumerator rows(rowFrames); !rows.AtEnd(); rows.Next()) {
        nsTableRowFrame* row = static_cast<nsTableRowFrame*>(rows.get());
        MOZ_ASSERT(row->GetRowIndex() == 0,
                   "exclusions cannot be used for rows that were already added,"
                   "because we'd need to process mDeletedRowIndexRanges");
      }
    }
#endif
    excludeRowGroupsEnumerator.Next();
  }

  int32_t rowIndex = 0;
  for (uint32_t rgIdx = 0; rgIdx < rowGroups.Length(); rgIdx++) {
    nsTableRowGroupFrame* rgFrame = rowGroups[rgIdx];
    if (!excludeRowGroups.GetEntry(rgFrame)) {
      const nsFrameList& rowFrames = rgFrame->PrincipalChildList();
      for (nsFrameList::Enumerator rows(rowFrames); !rows.AtEnd(); rows.Next()) {
        if (mozilla::StyleDisplay::TableRow ==
            rows.get()->StyleDisplay()->mDisplay) {
          nsTableRowFrame* row = static_cast<nsTableRowFrame*>(rows.get());
          row->SetRowIndex(rowIndex);
          rowIndex++;
        }
      }
    }
  }
}

void
nsTableFrame::InsertColGroups(int32_t                   aStartColIndex,
                              const nsFrameList::Slice& aColGroups)
{
  int32_t colIndex = aStartColIndex;
  nsFrameList::Enumerator colGroups(aColGroups);
  for (; !colGroups.AtEnd(); colGroups.Next()) {
    MOZ_ASSERT(colGroups.get()->IsTableColGroupFrame());
    nsTableColGroupFrame* cgFrame =
      static_cast<nsTableColGroupFrame*>(colGroups.get());
    cgFrame->SetStartColumnIndex(colIndex);
    // XXXbz this sucks.  AddColsToTable will actually remove colgroups from
    // the list we're traversing!  Need to fix things here.  :( I guess this is
    // why the old code used pointer-to-last-frame as opposed to
    // pointer-to-frame-after-last....

    // How about dealing with this by storing a const reference to the
    // mNextSibling of the framelist's last frame, instead of storing a pointer
    // to the first-after-next frame?  Will involve making nsFrameList friend
    // of nsIFrame, but it's time for that anyway.
    cgFrame->AddColsToTable(colIndex, false,
                              colGroups.get()->PrincipalChildList());
    int32_t numCols = cgFrame->GetColCount();
    colIndex += numCols;
  }

  nsFrameList::Enumerator remainingColgroups = colGroups.GetUnlimitedEnumerator();
  if (!remainingColgroups.AtEnd()) {
    nsTableColGroupFrame::ResetColIndices(
      static_cast<nsTableColGroupFrame*>(remainingColgroups.get()), colIndex);
  }
}

void
nsTableFrame::InsertCol(nsTableColFrame& aColFrame,
                        int32_t          aColIndex)
{
  mColFrames.InsertElementAt(aColIndex, &aColFrame);
  nsTableColType insertedColType = aColFrame.GetColType();
  int32_t numCacheCols = mColFrames.Length();
  nsTableCellMap* cellMap = GetCellMap();
  if (cellMap) {
    int32_t numMapCols = cellMap->GetColCount();
    if (numCacheCols > numMapCols) {
      bool removedFromCache = false;
      if (eColAnonymousCell != insertedColType) {
        nsTableColFrame* lastCol = mColFrames.ElementAt(numCacheCols - 1);
        if (lastCol) {
          nsTableColType lastColType = lastCol->GetColType();
          if (eColAnonymousCell == lastColType) {
            // remove the col from the cache
            mColFrames.RemoveElementAt(numCacheCols - 1);
            // remove the col from the eColGroupAnonymousCell col group
            nsTableColGroupFrame* lastColGroup = (nsTableColGroupFrame *)mColGroups.LastChild();
            if (lastColGroup) {
              lastColGroup->RemoveChild(*lastCol, false);

              // remove the col group if it is empty
              if (lastColGroup->GetColCount() <= 0) {
                mColGroups.DestroyFrame((nsIFrame*)lastColGroup);
              }
            }
            removedFromCache = true;
          }
        }
      }
      if (!removedFromCache) {
        cellMap->AddColsAtEnd(1);
      }
    }
  }
  // for now, just bail and recalc all of the collapsing borders
  if (IsBorderCollapse()) {
    TableArea damageArea(aColIndex, 0, 1, GetRowCount());
    AddBCDamageArea(damageArea);
  }
}

void
nsTableFrame::RemoveCol(nsTableColGroupFrame* aColGroupFrame,
                        int32_t               aColIndex,
                        bool                  aRemoveFromCache,
                        bool                  aRemoveFromCellMap)
{
  if (aRemoveFromCache) {
    mColFrames.RemoveElementAt(aColIndex);
  }
  if (aRemoveFromCellMap) {
    nsTableCellMap* cellMap = GetCellMap();
    if (cellMap) {
      // If we have some anonymous cols at the end already, we just
      // add a new anonymous col.
      if (!mColFrames.IsEmpty() &&
          mColFrames.LastElement() && // XXXbz is this ever null?
          mColFrames.LastElement()->GetColType() == eColAnonymousCell) {
        AppendAnonymousColFrames(1);
      } else {
        // All of our colframes correspond to actual <col> tags.  It's possible
        // that we still have at least as many <col> tags as we have logical
        // columns from cells, but we might have one less.  Handle the latter
        // case as follows: First ask the cellmap to drop its last col if it
        // doesn't have any actual cells in it.  Then call
        // MatchCellMapToColCache to append an anonymous column if it's needed;
        // this needs to be after RemoveColsAtEnd, since it will determine the
        // need for a new column frame based on the width of the cell map.
        cellMap->RemoveColsAtEnd();
        MatchCellMapToColCache(cellMap);
      }
    }
  }
  // for now, just bail and recalc all of the collapsing borders
  if (IsBorderCollapse()) {
    TableArea damageArea(0, 0, GetColCount(), GetRowCount());
    AddBCDamageArea(damageArea);
  }
}

/** Get the cell map for this table frame.  It is not always mCellMap.
  * Only the first-in-flow has a legit cell map.
  */
nsTableCellMap*
nsTableFrame::GetCellMap() const
{
  return static_cast<nsTableFrame*>(FirstInFlow())->mCellMap;
}

// XXX this needs to be moved to nsCSSFrameConstructor
nsTableColGroupFrame*
nsTableFrame::CreateAnonymousColGroupFrame(nsTableColGroupType aColGroupType)
{
  nsIContent* colGroupContent = GetContent();
  nsPresContext* presContext = PresContext();
  nsIPresShell *shell = presContext->PresShell();

  RefPtr<nsStyleContext> colGroupStyle;
  colGroupStyle = shell->StyleSet()->
    ResolveInheritingAnonymousBoxStyle(nsCSSAnonBoxes::tableColGroup,
                                       mStyleContext);
  // Create a col group frame
  nsIFrame* newFrame = NS_NewTableColGroupFrame(shell, colGroupStyle);
  ((nsTableColGroupFrame *)newFrame)->SetColType(aColGroupType);
  newFrame->Init(colGroupContent, this, nullptr);
  return (nsTableColGroupFrame *)newFrame;
}

void
nsTableFrame::AppendAnonymousColFrames(int32_t aNumColsToAdd)
{
  // get the last col group frame
  nsTableColGroupFrame* colGroupFrame =
    static_cast<nsTableColGroupFrame*>(mColGroups.LastChild());

  if (!colGroupFrame ||
      (colGroupFrame->GetColType() != eColGroupAnonymousCell)) {
    int32_t colIndex = (colGroupFrame) ?
                        colGroupFrame->GetStartColumnIndex() +
                        colGroupFrame->GetColCount() : 0;
    colGroupFrame = CreateAnonymousColGroupFrame(eColGroupAnonymousCell);
    if (!colGroupFrame) {
      return;
    }
    // add the new frame to the child list
    mColGroups.AppendFrame(this, colGroupFrame);
    colGroupFrame->SetStartColumnIndex(colIndex);
  }
  AppendAnonymousColFrames(colGroupFrame, aNumColsToAdd, eColAnonymousCell,
                           true);

}

// XXX this needs to be moved to nsCSSFrameConstructor
// Right now it only creates the col frames at the end
void
nsTableFrame::AppendAnonymousColFrames(nsTableColGroupFrame* aColGroupFrame,
                                       int32_t               aNumColsToAdd,
                                       nsTableColType        aColType,
                                       bool                  aAddToTable)
{
  NS_PRECONDITION(aColGroupFrame, "null frame");
  NS_PRECONDITION(aColType != eColAnonymousCol, "Shouldn't happen");

  nsIPresShell *shell = PresContext()->PresShell();

  // Get the last col frame
  nsFrameList newColFrames;

  int32_t startIndex = mColFrames.Length();
  int32_t lastIndex  = startIndex + aNumColsToAdd - 1;

  for (int32_t childX = startIndex; childX <= lastIndex; childX++) {
    nsIContent* iContent;
    RefPtr<nsStyleContext> styleContext;
    nsStyleContext* parentStyleContext;

    // all anonymous cols that we create here use a pseudo style context of the
    // col group
    iContent = aColGroupFrame->GetContent();
    parentStyleContext = aColGroupFrame->StyleContext();
    styleContext = shell->StyleSet()->
      ResolveInheritingAnonymousBoxStyle(nsCSSAnonBoxes::tableCol,
                                         parentStyleContext);
    // ASSERTION to check for bug 54454 sneaking back in...
    NS_ASSERTION(iContent, "null content in CreateAnonymousColFrames");

    // create the new col frame
    nsIFrame* colFrame = NS_NewTableColFrame(shell, styleContext);
    ((nsTableColFrame *) colFrame)->SetColType(aColType);
    colFrame->Init(iContent, aColGroupFrame, nullptr);

    newColFrames.AppendFrame(nullptr, colFrame);
  }
  nsFrameList& cols = aColGroupFrame->GetWritableChildList();
  nsIFrame* oldLastCol = cols.LastChild();
  const nsFrameList::Slice& newCols =
    cols.InsertFrames(nullptr, oldLastCol, newColFrames);
  if (aAddToTable) {
    // get the starting col index in the cache
    int32_t startColIndex;
    if (oldLastCol) {
      startColIndex =
        static_cast<nsTableColFrame*>(oldLastCol)->GetColIndex() + 1;
    } else {
      startColIndex = aColGroupFrame->GetStartColumnIndex();
    }

    aColGroupFrame->AddColsToTable(startColIndex, true, newCols);
  }
}

void
nsTableFrame::MatchCellMapToColCache(nsTableCellMap* aCellMap)
{
  int32_t numColsInMap   = GetColCount();
  int32_t numColsInCache = mColFrames.Length();
  int32_t numColsToAdd = numColsInMap - numColsInCache;
  if (numColsToAdd > 0) {
    // this sets the child list, updates the col cache and cell map
    AppendAnonymousColFrames(numColsToAdd);
  }
  if (numColsToAdd < 0) {
    int32_t numColsNotRemoved = DestroyAnonymousColFrames(-numColsToAdd);
    // if the cell map has fewer cols than the cache, correct it
    if (numColsNotRemoved > 0) {
      aCellMap->AddColsAtEnd(numColsNotRemoved);
    }
  }
}

void
nsTableFrame::DidResizeColumns()
{
  NS_PRECONDITION(!GetPrevInFlow(),
                  "should only be called on first-in-flow");
  if (mBits.mResizedColumns)
    return; // already marked

  for (nsTableFrame *f = this; f;
       f = static_cast<nsTableFrame*>(f->GetNextInFlow()))
    f->mBits.mResizedColumns = true;
}

void
nsTableFrame::AppendCell(nsTableCellFrame& aCellFrame,
                         int32_t           aRowIndex)
{
  nsTableCellMap* cellMap = GetCellMap();
  if (cellMap) {
    TableArea damageArea(0, 0, 0, 0);
    cellMap->AppendCell(aCellFrame, aRowIndex, true, damageArea);
    MatchCellMapToColCache(cellMap);
    if (IsBorderCollapse()) {
      AddBCDamageArea(damageArea);
    }
  }
}

void
nsTableFrame::InsertCells(nsTArray<nsTableCellFrame*>& aCellFrames,
                          int32_t                      aRowIndex,
                          int32_t                      aColIndexBefore)
{
  nsTableCellMap* cellMap = GetCellMap();
  if (cellMap) {
    TableArea damageArea(0, 0, 0, 0);
    cellMap->InsertCells(aCellFrames, aRowIndex, aColIndexBefore, damageArea);
    MatchCellMapToColCache(cellMap);
    if (IsBorderCollapse()) {
      AddBCDamageArea(damageArea);
    }
  }
}

// this removes the frames from the col group and table, but not the cell map
int32_t
nsTableFrame::DestroyAnonymousColFrames(int32_t aNumFrames)
{
  // only remove cols that are of type eTypeAnonymous cell (they are at the end)
  int32_t endIndex   = mColFrames.Length() - 1;
  int32_t startIndex = (endIndex - aNumFrames) + 1;
  int32_t numColsRemoved = 0;
  for (int32_t colIdx = endIndex; colIdx >= startIndex; colIdx--) {
    nsTableColFrame* colFrame = GetColFrame(colIdx);
    if (colFrame && (eColAnonymousCell == colFrame->GetColType())) {
      nsTableColGroupFrame* cgFrame =
        static_cast<nsTableColGroupFrame*>(colFrame->GetParent());
      // remove the frame from the colgroup
      cgFrame->RemoveChild(*colFrame, false);
      // remove the frame from the cache, but not the cell map
      RemoveCol(nullptr, colIdx, true, false);
      numColsRemoved++;
    }
    else {
      break;
    }
  }
  return (aNumFrames - numColsRemoved);
}

void
nsTableFrame::RemoveCell(nsTableCellFrame* aCellFrame,
                         int32_t           aRowIndex)
{
  nsTableCellMap* cellMap = GetCellMap();
  if (cellMap) {
    TableArea damageArea(0, 0, 0, 0);
    cellMap->RemoveCell(aCellFrame, aRowIndex, damageArea);
    MatchCellMapToColCache(cellMap);
    if (IsBorderCollapse()) {
      AddBCDamageArea(damageArea);
    }
  }
}

int32_t
nsTableFrame::GetStartRowIndex(nsTableRowGroupFrame* aRowGroupFrame)
{
  RowGroupArray orderedRowGroups;
  OrderRowGroups(orderedRowGroups);

  int32_t rowIndex = 0;
  for (uint32_t rgIndex = 0; rgIndex < orderedRowGroups.Length(); rgIndex++) {
    nsTableRowGroupFrame* rgFrame = orderedRowGroups[rgIndex];
    if (rgFrame == aRowGroupFrame) {
      break;
    }
    int32_t numRows = rgFrame->GetRowCount();
    rowIndex += numRows;
  }
  return rowIndex;
}

// this cannot extend beyond a single row group
void
nsTableFrame::AppendRows(nsTableRowGroupFrame*       aRowGroupFrame,
                         int32_t                     aRowIndex,
                         nsTArray<nsTableRowFrame*>& aRowFrames)
{
  nsTableCellMap* cellMap = GetCellMap();
  if (cellMap) {
    int32_t absRowIndex = GetStartRowIndex(aRowGroupFrame) + aRowIndex;
    InsertRows(aRowGroupFrame, aRowFrames, absRowIndex, true);
  }
}

// this cannot extend beyond a single row group
int32_t
nsTableFrame::InsertRows(nsTableRowGroupFrame*       aRowGroupFrame,
                         nsTArray<nsTableRowFrame*>& aRowFrames,
                         int32_t                     aRowIndex,
                         bool                        aConsiderSpans)
{
#ifdef DEBUG_TABLE_CELLMAP
  printf("=== insertRowsBefore firstRow=%d \n", aRowIndex);
  Dump(true, false, true);
#endif

  int32_t numColsToAdd = 0;
  nsTableCellMap* cellMap = GetCellMap();
  if (cellMap) {
    TableArea damageArea(0, 0, 0, 0);
    bool shouldRecalculateIndex = !IsDeletedRowIndexRangesEmpty();
    if (shouldRecalculateIndex) {
      ResetRowIndices(nsFrameList::Slice(mFrames, nullptr, nullptr));
    }
    int32_t origNumRows = cellMap->GetRowCount();
    int32_t numNewRows = aRowFrames.Length();
    cellMap->InsertRows(aRowGroupFrame, aRowFrames, aRowIndex, aConsiderSpans, damageArea);
    MatchCellMapToColCache(cellMap);

    // Perform row index adjustment only if row indices were not
    // reset above
    if (!shouldRecalculateIndex) {
      if (aRowIndex < origNumRows) {
        AdjustRowIndices(aRowIndex, numNewRows);
      }

      // assign the correct row indices to the new rows. If they were recalculated
      // above it may not have been done correctly because each row is constructed
      // with index 0
      for (int32_t rowB = 0; rowB < numNewRows; rowB++) {
        nsTableRowFrame* rowFrame = aRowFrames.ElementAt(rowB);
        rowFrame->SetRowIndex(aRowIndex + rowB);
      }
    }

    if (IsBorderCollapse()) {
      AddBCDamageArea(damageArea);
    }
  }
#ifdef DEBUG_TABLE_CELLMAP
  printf("=== insertRowsAfter \n");
  Dump(true, false, true);
#endif

  return numColsToAdd;
}

void
nsTableFrame::AddDeletedRowIndex(int32_t aDeletedRowStoredIndex)
{
  if (mDeletedRowIndexRanges.size() == 0) {
    mDeletedRowIndexRanges.insert(std::pair<int32_t, int32_t>
                                    (aDeletedRowStoredIndex,
                                     aDeletedRowStoredIndex));
    return;
  }

  // Find the position of the current deleted row's stored index
  // among the previous deleted row index ranges and merge ranges if
  // they are consecutive, else add a new (disjoint) range to the map.
  // Call to mDeletedRowIndexRanges.upper_bound is
  // O(log(mDeletedRowIndexRanges.size())) therefore call to
  // AddDeletedRowIndex is also ~O(log(mDeletedRowIndexRanges.size()))

  // greaterIter = will point to smallest range in the map with lower value
  //              greater than the aDeletedRowStoredIndex.
  //              If no such value exists, point to end of map.
  // smallerIter = will point to largest range in the map with higher value
  //              smaller than the aDeletedRowStoredIndex
  //              If no such value exists, point to beginning of map.
  // i.e. when both values exist below is true:
  // smallerIter->second < aDeletedRowStoredIndex < greaterIter->first
  auto greaterIter = mDeletedRowIndexRanges.upper_bound(aDeletedRowStoredIndex);
  auto smallerIter = greaterIter;

  if (smallerIter != mDeletedRowIndexRanges.begin()) {
    smallerIter--;
    // While greaterIter might be out-of-bounds (by being equal to end()),
    // smallerIter now cannot be, since we returned early above for a 0-size map.
  }

  // Note: smallerIter can only be equal to greaterIter when both
  // of them point to the beginning of the map and in that case smallerIter
  // does not "exist" but we clip smallerIter to point to beginning of map
  // so that it doesn't point to something unknown or outside the map boundry.
  // Note: When greaterIter is not the end (i.e. it "exists") upper_bound()
  // ensures aDeletedRowStoredIndex < greaterIter->first so no need to
  // assert that.
  MOZ_ASSERT(smallerIter == greaterIter ||
               aDeletedRowStoredIndex > smallerIter->second,
             "aDeletedRowIndexRanges already contains aDeletedRowStoredIndex! "
             "Trying to delete an already deleted row?");

  if (smallerIter->second == aDeletedRowStoredIndex - 1) {
    if (greaterIter != mDeletedRowIndexRanges.end() &&
        greaterIter->first == aDeletedRowStoredIndex + 1) {
      // merge current index with smaller and greater range as they are consecutive
      smallerIter->second = greaterIter->second;
      mDeletedRowIndexRanges.erase(greaterIter);
    }
    else {
      // add aDeletedRowStoredIndex in the smaller range as it is consecutive
      smallerIter->second = aDeletedRowStoredIndex;
    }
  } else if (greaterIter != mDeletedRowIndexRanges.end() &&
             greaterIter->first == aDeletedRowStoredIndex + 1) {
    // add aDeletedRowStoredIndex in the greater range as it is consecutive
    mDeletedRowIndexRanges.insert(std::pair<int32_t, int32_t>
                                   (aDeletedRowStoredIndex,
                                    greaterIter->second));
    mDeletedRowIndexRanges.erase(greaterIter);
  } else {
    // add new range as aDeletedRowStoredIndex is disjoint from existing ranges
    mDeletedRowIndexRanges.insert(std::pair<int32_t, int32_t>
                                   (aDeletedRowStoredIndex,
                                    aDeletedRowStoredIndex));
  }
}

int32_t
nsTableFrame::GetAdjustmentForStoredIndex(int32_t aStoredIndex)
{
  if (mDeletedRowIndexRanges.size() == 0)
    return 0;

  int32_t adjustment = 0;

  // O(log(mDeletedRowIndexRanges.size()))
  auto endIter = mDeletedRowIndexRanges.upper_bound(aStoredIndex);
  for (auto iter = mDeletedRowIndexRanges.begin(); iter != endIter; ++iter) {
    adjustment += iter->second - iter->first + 1;
  }

  return adjustment;
}

// this cannot extend beyond a single row group
void
nsTableFrame::RemoveRows(nsTableRowFrame& aFirstRowFrame,
                         int32_t          aNumRowsToRemove,
                         bool             aConsiderSpans)
{
#ifdef TBD_OPTIMIZATION
  // decide if we need to rebalance. we have to do this here because the row group
  // cannot do it when it gets the dirty reflow corresponding to the frame being destroyed
  bool stopTelling = false;
  for (nsIFrame* kidFrame = aFirstFrame.FirstChild(); (kidFrame && !stopAsking);
       kidFrame = kidFrame->GetNextSibling()) {
    nsTableCellFrame *cellFrame = do_QueryFrame(kidFrame);
    if (cellFrame) {
      stopTelling = tableFrame->CellChangedWidth(*cellFrame, cellFrame->GetPass1MaxElementWidth(),
                                                 cellFrame->GetMaximumWidth(), true);
    }
  }
  // XXX need to consider what happens if there are cells that have rowspans
  // into the deleted row. Need to consider moving rows if a rebalance doesn't happen
#endif

  int32_t firstRowIndex = aFirstRowFrame.GetRowIndex();
#ifdef DEBUG_TABLE_CELLMAP
  printf("=== removeRowsBefore firstRow=%d numRows=%d\n", firstRowIndex, aNumRowsToRemove);
  Dump(true, false, true);
#endif
  nsTableCellMap* cellMap = GetCellMap();
  if (cellMap) {
    TableArea damageArea(0, 0, 0, 0);

    // Mark rows starting from aFirstRowFrame to the next 'aNumRowsToRemove-1'
    // number of rows as deleted.
    nsTableRowGroupFrame* parentFrame = aFirstRowFrame.GetTableRowGroupFrame();
    parentFrame->MarkRowsAsDeleted(aFirstRowFrame, aNumRowsToRemove);

    cellMap->RemoveRows(firstRowIndex, aNumRowsToRemove, aConsiderSpans, damageArea);
    MatchCellMapToColCache(cellMap);
    if (IsBorderCollapse()) {
      AddBCDamageArea(damageArea);
    }
  }

#ifdef DEBUG_TABLE_CELLMAP
  printf("=== removeRowsAfter\n");
  Dump(true, true, true);
#endif
}

// collect the rows ancestors of aFrame
int32_t
nsTableFrame::CollectRows(nsIFrame*                   aFrame,
                          nsTArray<nsTableRowFrame*>& aCollection)
{
  NS_PRECONDITION(aFrame, "null frame");
  int32_t numRows = 0;
  for (nsIFrame* childFrame : aFrame->PrincipalChildList()) {
    aCollection.AppendElement(static_cast<nsTableRowFrame*>(childFrame));
    numRows++;
  }
  return numRows;
}

void
nsTableFrame::InsertRowGroups(const nsFrameList::Slice& aRowGroups)
{
#ifdef DEBUG_TABLE_CELLMAP
  printf("=== insertRowGroupsBefore\n");
  Dump(true, false, true);
#endif
  nsTableCellMap* cellMap = GetCellMap();
  if (cellMap) {
    RowGroupArray orderedRowGroups;
    OrderRowGroups(orderedRowGroups);

    AutoTArray<nsTableRowFrame*, 8> rows;
    // Loop over the rowgroups and check if some of them are new, if they are
    // insert cellmaps in the order that is predefined by OrderRowGroups,
    // XXXbz this code is O(N*M) where N is number of new rowgroups
    // and M is number of rowgroups we have!
    uint32_t rgIndex;
    for (rgIndex = 0; rgIndex < orderedRowGroups.Length(); rgIndex++) {
      for (nsFrameList::Enumerator rowgroups(aRowGroups); !rowgroups.AtEnd();
           rowgroups.Next()) {
        if (orderedRowGroups[rgIndex] == rowgroups.get()) {
          nsTableRowGroupFrame* priorRG =
            (0 == rgIndex) ? nullptr : orderedRowGroups[rgIndex - 1];
          // create and add the cell map for the row group
          cellMap->InsertGroupCellMap(orderedRowGroups[rgIndex], priorRG);

          break;
        }
      }
    }
    cellMap->Synchronize(this);
    ResetRowIndices(aRowGroups);

    //now that the cellmaps are reordered too insert the rows
    for (rgIndex = 0; rgIndex < orderedRowGroups.Length(); rgIndex++) {
      for (nsFrameList::Enumerator rowgroups(aRowGroups); !rowgroups.AtEnd();
           rowgroups.Next()) {
        if (orderedRowGroups[rgIndex] == rowgroups.get()) {
          nsTableRowGroupFrame* priorRG =
            (0 == rgIndex) ? nullptr : orderedRowGroups[rgIndex - 1];
          // collect the new row frames in an array and add them to the table
          int32_t numRows = CollectRows(rowgroups.get(), rows);
          if (numRows > 0) {
            int32_t rowIndex = 0;
            if (priorRG) {
              int32_t priorNumRows = priorRG->GetRowCount();
              rowIndex = priorRG->GetStartRowIndex() + priorNumRows;
            }
            InsertRows(orderedRowGroups[rgIndex], rows, rowIndex, true);
            rows.Clear();
          }
          break;
        }
      }
    }

  }
#ifdef DEBUG_TABLE_CELLMAP
  printf("=== insertRowGroupsAfter\n");
  Dump(true, true, true);
#endif
}


/////////////////////////////////////////////////////////////////////////////
// Child frame enumeration

const nsFrameList&
nsTableFrame::GetChildList(ChildListID aListID) const
{
  if (aListID == kColGroupList) {
    return mColGroups;
  }
  return nsContainerFrame::GetChildList(aListID);
}

void
nsTableFrame::GetChildLists(nsTArray<ChildList>* aLists) const
{
  nsContainerFrame::GetChildLists(aLists);
  mColGroups.AppendIfNonempty(aLists, kColGroupList);
}

nsRect
nsDisplayTableItem::GetBounds(nsDisplayListBuilder* aBuilder, bool* aSnap) {
  *aSnap = false;
  return mFrame->GetVisualOverflowRectRelativeToSelf() + ToReferenceFrame();
}

void
nsDisplayTableItem::UpdateForFrameBackground(nsIFrame* aFrame)
{
  nsStyleContext *bgSC;
  if (!nsCSSRendering::FindBackground(aFrame, &bgSC))
    return;
  if (!bgSC->StyleBackground()->HasFixedBackground(aFrame))
    return;

  mPartHasFixedBackground = true;
}

nsDisplayItemGeometry*
nsDisplayTableItem::AllocateGeometry(nsDisplayListBuilder* aBuilder)
{
  return new nsDisplayTableItemGeometry(this, aBuilder,
      mFrame->GetOffsetTo(mFrame->PresContext()->PresShell()->GetRootFrame()));
}

void
nsDisplayTableItem::ComputeInvalidationRegion(nsDisplayListBuilder* aBuilder,
                                              const nsDisplayItemGeometry* aGeometry,
                                              nsRegion *aInvalidRegion)
{
  auto geometry =
    static_cast<const nsDisplayTableItemGeometry*>(aGeometry);

  bool invalidateForAttachmentFixed = false;
  if (mDrawsBackground && mPartHasFixedBackground) {
    nsPoint frameOffsetToViewport = mFrame->GetOffsetTo(
        mFrame->PresContext()->PresShell()->GetRootFrame());
    invalidateForAttachmentFixed =
        frameOffsetToViewport != geometry->mFrameOffsetToViewport;
  }

  if (invalidateForAttachmentFixed ||
      (aBuilder->ShouldSyncDecodeImages() &&
       geometry->ShouldInvalidateToSyncDecodeImages())) {
    bool snap;
    aInvalidRegion->Or(*aInvalidRegion, GetBounds(aBuilder, &snap));
  }

  nsDisplayItem::ComputeInvalidationRegion(aBuilder, aGeometry, aInvalidRegion);
}

// A display item that draws all collapsed borders for a table.
// At some point, we may want to find a nicer partitioning for dividing
// border-collapse segments into their own display items.
class nsDisplayTableBorderCollapse : public nsDisplayTableItem {
public:
  nsDisplayTableBorderCollapse(nsDisplayListBuilder* aBuilder,
                               nsTableFrame* aFrame)
    : nsDisplayTableItem(aBuilder, aFrame) {
    MOZ_COUNT_CTOR(nsDisplayTableBorderCollapse);
    }
#ifdef NS_BUILD_REFCNT_LOGGING
  virtual ~nsDisplayTableBorderCollapse() {
    MOZ_COUNT_DTOR(nsDisplayTableBorderCollapse);
  }
#endif

  virtual void Paint(nsDisplayListBuilder* aBuilder,
                     gfxContext* aCtx) override;
  virtual already_AddRefed<layers::Layer> BuildLayer(nsDisplayListBuilder* aBuilder,
                                                     LayerManager* aManager,
                                                     const ContainerLayerParameters& aContainerParameters) override;
  virtual bool CreateWebRenderCommands(mozilla::wr::DisplayListBuilder& aBuilder,
                                       const StackingContextHelper& aSc,
                                       nsTArray<WebRenderParentCommand>& aParentCommands,
                                       mozilla::layers::WebRenderLayerManager* aManager,
                                       nsDisplayListBuilder* aDisplayListBuilder) override;
  virtual LayerState GetLayerState(nsDisplayListBuilder* aBuilder,
                                   LayerManager* aManager,
                                   const ContainerLayerParameters& aParameters) override;
  NS_DISPLAY_DECL_NAME("TableBorderCollapse", TYPE_TABLE_BORDER_COLLAPSE)
};

void
nsDisplayTableBorderCollapse::Paint(nsDisplayListBuilder* aBuilder,
                                    gfxContext* aCtx)
{
  nsPoint pt = ToReferenceFrame();
  DrawTarget* drawTarget = aCtx->GetDrawTarget();

  gfxPoint devPixelOffset =
    nsLayoutUtils::PointToGfxPoint(pt, mFrame->PresContext()->AppUnitsPerDevPixel());

  // XXX we should probably get rid of this translation at some stage
  // But that would mean modifying PaintBCBorders, ugh
  AutoRestoreTransform autoRestoreTransform(drawTarget);
  drawTarget->SetTransform(
      drawTarget->GetTransform().PreTranslate(ToPoint(devPixelOffset)));

  static_cast<nsTableFrame*>(mFrame)->PaintBCBorders(*drawTarget, mVisibleRect - pt);
}

already_AddRefed<layers::Layer>
nsDisplayTableBorderCollapse::BuildLayer(nsDisplayListBuilder* aBuilder,
                                         LayerManager* aManager,
                                         const ContainerLayerParameters& aContainerParameters)
{
  return BuildDisplayItemLayer(aBuilder, aManager, aContainerParameters);
}

bool
nsDisplayTableBorderCollapse::CreateWebRenderCommands(mozilla::wr::DisplayListBuilder& aBuilder,
                                                      const StackingContextHelper& aSc,
                                                      nsTArray<WebRenderParentCommand>& aParentCommands,
                                                      mozilla::layers::WebRenderLayerManager* aManager,
                                                      nsDisplayListBuilder* aDisplayListBuilder)
{
  if (aManager->IsLayersFreeTransaction()) {
    ContainerLayerParameters parameter;
    if (GetLayerState(aDisplayListBuilder, aManager, parameter) != LAYER_ACTIVE) {
      return false;
    }
  }

  static_cast<nsTableFrame *>(mFrame)->CreateWebRenderCommandsForBCBorders(aBuilder,
                                                                          aSc,
                                                                          aParentCommands,
                                                                          ToReferenceFrame());
  return true;
}

LayerState
nsDisplayTableBorderCollapse::GetLayerState(nsDisplayListBuilder* aBuilder,
                                            LayerManager* aManager,
                                            const ContainerLayerParameters& aParameters)
{
  if (gfxPrefs::LayersAllowTable()) {
    return LAYER_ACTIVE;
  }

  return LAYER_NONE;
}

/* static */ void
nsTableFrame::GenericTraversal(nsDisplayListBuilder* aBuilder, nsFrame* aFrame,
                               const nsRect& aDirtyRect, const nsDisplayListSet& aLists)
{
  // This is similar to what nsContainerFrame::BuildDisplayListForNonBlockChildren
  // does, except that we allow the children's background and borders to go
  // in our BorderBackground list. This doesn't really affect background
  // painting --- the children won't actually draw their own backgrounds
  // because the nsTableFrame already drew them, unless a child has its own
  // stacking context, in which case the child won't use its passed-in
  // BorderBackground list anyway. It does affect cell borders though; this
  // lets us get cell borders into the nsTableFrame's BorderBackground list.
  for (nsIFrame* kid : aFrame->GetChildList(kColGroupList)) {
    aFrame->BuildDisplayListForChild(aBuilder, kid, aDirtyRect, aLists);
  }

  for (nsIFrame* kid : aFrame->PrincipalChildList()) {
    aFrame->BuildDisplayListForChild(aBuilder, kid, aDirtyRect, aLists);
  }
}

static void
PaintRowBackground(nsTableRowFrame* aRow,
                   nsIFrame* aFrame,
                   nsDisplayListBuilder* aBuilder,
                   const nsDisplayListSet& aLists,
                   const nsRect& aDirtyRect,
                   const nsPoint& aOffset = nsPoint())
{
  // Compute background rect by iterating all cell frame.
  for (nsTableCellFrame* cell = aRow->GetFirstCell(); cell; cell = cell->GetNextCell()) {
    auto cellRect = cell->GetRectRelativeToSelf() + cell->GetNormalPosition() + aOffset;
    if (!aDirtyRect.Intersects(cellRect)) {
      continue;
    }
    nsDisplayBackgroundImage::AppendBackgroundItemsToTop(aBuilder, aFrame, cellRect,
                                                         aLists.BorderBackground(),
                                                         true, nullptr,
                                                         aFrame->GetRectRelativeToSelf(),
                                                         cell);
  }
}

static void
PaintRowGroupBackground(nsTableRowGroupFrame* aRowGroup,
                        nsIFrame* aFrame,
                        nsDisplayListBuilder* aBuilder,
                        const nsDisplayListSet& aLists,
                        const nsRect& aDirtyRect)
{
  for (nsTableRowFrame* row = aRowGroup->GetFirstRow(); row; row = row->GetNextRow()) {
    if (!aDirtyRect.Intersects(nsRect(row->GetNormalPosition(), row->GetSize()))) {
      continue;
    }
    PaintRowBackground(row, aFrame, aBuilder, aLists, aDirtyRect, row->GetNormalPosition());
  }
}

static void
PaintRowGroupBackgroundByColIdx(nsTableRowGroupFrame* aRowGroup,
                                nsIFrame* aFrame,
                                nsDisplayListBuilder* aBuilder,
                                const nsDisplayListSet& aLists,
                                const nsRect& aDirtyRect,
                                const nsTArray<int32_t>& aColIdx,
                                const nsPoint& aOffset)
{
  for (nsTableRowFrame* row = aRowGroup->GetFirstRow(); row; row = row->GetNextRow()) {
    auto rowPos = row->GetNormalPosition() + aOffset;
    if (!aDirtyRect.Intersects(nsRect(rowPos, row->GetSize()))) {
      continue;
    }
    for (nsTableCellFrame* cell = row->GetFirstCell(); cell; cell = cell->GetNextCell()) {
      int32_t curColIdx;
      cell->GetColIndex(curColIdx);
      if (aColIdx.Contains(curColIdx)) {
        auto cellPos = cell->GetNormalPosition() + rowPos;
        auto cellRect = nsRect(cellPos, cell->GetSize());
        if (!aDirtyRect.Intersects(cellRect)) {
          continue;
        }
        nsDisplayBackgroundImage::AppendBackgroundItemsToTop(aBuilder, aFrame, cellRect,
                                                             aLists.BorderBackground(),
                                                             true, nullptr,
                                                             aFrame->GetRectRelativeToSelf(),
                                                             cell);
      }
    }
  }
}

static inline bool FrameHasBorder(nsIFrame* f)
{
  if (!f->StyleVisibility()->IsVisible()) {
    return false;
  }

  if (f->StyleBorder()->HasBorder()) {
    return true;
  }

  return false;
}

void nsTableFrame::CalcHasBCBorders()
{
  if (!IsBorderCollapse()) {
    SetHasBCBorders(false);
    return;
  }

  if (FrameHasBorder(this)) {
    SetHasBCBorders(true);
    return;
  }

  // Check col and col group has borders.
  for (nsIFrame* f : this->GetChildList(kColGroupList)) {
    if (FrameHasBorder(f)) {
      SetHasBCBorders(true);
      return;
    }

    nsTableColGroupFrame *colGroup = static_cast<nsTableColGroupFrame*>(f);
    for (nsTableColFrame* col = colGroup->GetFirstColumn(); col; col = col->GetNextCol()) {
      if (FrameHasBorder(col)) {
        SetHasBCBorders(true);
        return;
      }
    }
  }

  // check row group, row and cell has borders.
  RowGroupArray rowGroups;
  OrderRowGroups(rowGroups);
  for (nsTableRowGroupFrame* rowGroup : rowGroups) {
    if (FrameHasBorder(rowGroup)) {
      SetHasBCBorders(true);
      return;
    }

    for (nsTableRowFrame* row = rowGroup->GetFirstRow(); row; row = row->GetNextRow()) {
      if (FrameHasBorder(row)) {
        SetHasBCBorders(true);
        return;
      }

      for (nsTableCellFrame* cell = row->GetFirstCell(); cell; cell = cell->GetNextCell()) {
        if (FrameHasBorder(cell)) {
          SetHasBCBorders(true);
          return;
        }
      }
    }
  }

  SetHasBCBorders(false);
}

/* static */ void
nsTableFrame::DisplayGenericTablePart(nsDisplayListBuilder* aBuilder,
                                      nsFrame* aFrame,
                                      const nsRect& aDirtyRect,
                                      const nsDisplayListSet& aLists,
                                      DisplayGenericTablePartTraversal aTraversal)
{
  if (aFrame->IsVisibleForPainting(aBuilder)) {
    nsDisplayTableItem* currentItem = aBuilder->GetCurrentTableItem();
    // currentItem may be null, when none of the table parts have a
    // background or border
    if (currentItem) {
      currentItem->UpdateForFrameBackground(aFrame);
    }

    // Paint the outset box-shadows for the table frames
    bool hasBoxShadow = aFrame->StyleEffects()->mBoxShadow != nullptr;
    if (hasBoxShadow) {
      aLists.BorderBackground()->AppendNewToTop(
        new (aBuilder) nsDisplayBoxShadowOuter(aBuilder, aFrame));
    }

    if (aFrame->IsTableRowGroupFrame()) {
      nsTableRowGroupFrame* rowGroup = static_cast<nsTableRowGroupFrame*>(aFrame);
      PaintRowGroupBackground(rowGroup, aFrame, aBuilder, aLists, aDirtyRect);
    } else if (aFrame->IsTableRowFrame()) {
      nsTableRowFrame* row = static_cast<nsTableRowFrame*>(aFrame);
      PaintRowBackground(row, aFrame, aBuilder, aLists, aDirtyRect);
    } else if (aFrame->IsTableColGroupFrame()) {
      // Compute background rect by iterating all cell frame.
      nsTableColGroupFrame* colGroup = static_cast<nsTableColGroupFrame*>(aFrame);
      // Collecting column index.
      AutoTArray<int32_t, 1> colIdx;
      for (nsTableColFrame* col = colGroup->GetFirstColumn(); col; col = col->GetNextCol()) {
        colIdx.AppendElement(col->GetColIndex());
      }

      nsTableFrame* table = colGroup->GetTableFrame();
      RowGroupArray rowGroups;
      table->OrderRowGroups(rowGroups);
      for (nsTableRowGroupFrame* rowGroup : rowGroups) {
        auto offset = rowGroup->GetNormalPosition() - colGroup->GetNormalPosition();
        if (!aDirtyRect.Intersects(nsRect(offset, rowGroup->GetSize()))) {
          continue;
        }
        PaintRowGroupBackgroundByColIdx(rowGroup, aFrame, aBuilder, aLists, aDirtyRect, colIdx, offset);
      }
    } else if (aFrame->IsTableColFrame()) {
      // Compute background rect by iterating all cell frame.
      nsTableColFrame* col = static_cast<nsTableColFrame*>(aFrame);
      AutoTArray<int32_t, 1> colIdx;
      colIdx.AppendElement(col->GetColIndex());

      nsTableFrame* table = col->GetTableFrame();
      RowGroupArray rowGroups;
      table->OrderRowGroups(rowGroups);
      for (nsTableRowGroupFrame* rowGroup : rowGroups) {
        auto offset = rowGroup->GetNormalPosition() -
                      col->GetNormalPosition() -
                      col->GetTableColGroupFrame()->GetNormalPosition();
        if (!aDirtyRect.Intersects(nsRect(offset, rowGroup->GetSize()))) {
          continue;
        }
        PaintRowGroupBackgroundByColIdx(rowGroup, aFrame, aBuilder, aLists, aDirtyRect, colIdx, offset);
      }
    } else {
      nsDisplayBackgroundImage::AppendBackgroundItemsToTop(aBuilder, aFrame,
                                                           aFrame->GetRectRelativeToSelf(),
                                                           aLists.BorderBackground());
    }

    // Paint the inset box-shadows for the table frames
    if (hasBoxShadow) {
      aLists.BorderBackground()->AppendNewToTop(
        new (aBuilder) nsDisplayBoxShadowInner(aBuilder, aFrame));
    }
  }

  aTraversal(aBuilder, aFrame, aDirtyRect, aLists);

  if (aFrame->IsVisibleForPainting(aBuilder)) {
    if (aFrame->IsTableFrame()) {
      nsTableFrame* table = static_cast<nsTableFrame*>(aFrame);
      // In the collapsed border model, overlay all collapsed borders.
      if (table->IsBorderCollapse()) {
        if (table->HasBCBorders()) {
          aLists.BorderBackground()->AppendNewToTop(
            new (aBuilder) nsDisplayTableBorderCollapse(aBuilder, table));
        }
      } else {
        const nsStyleBorder* borderStyle = aFrame->StyleBorder();
        if (borderStyle->HasBorder()) {
          aLists.BorderBackground()->AppendNewToTop(
            new (aBuilder) nsDisplayBorder(aBuilder, table));
        }
      }
    }
  }

  aFrame->DisplayOutline(aBuilder, aLists);
}

// table paint code is concerned primarily with borders and bg color
// SEC: TODO: adjust the rect for captions
void
nsTableFrame::BuildDisplayList(nsDisplayListBuilder*   aBuilder,
                               const nsRect&           aDirtyRect,
                               const nsDisplayListSet& aLists)
{
  DO_GLOBAL_REFLOW_COUNT_DSP_COLOR("nsTableFrame", NS_RGB(255,128,255));

  DisplayGenericTablePart(aBuilder, this, aDirtyRect, aLists);
}

nsMargin
nsTableFrame::GetDeflationForBackground(nsPresContext* aPresContext) const
{
  if (eCompatibility_NavQuirks != aPresContext->CompatibilityMode() ||
      !IsBorderCollapse())
    return nsMargin(0,0,0,0);

  WritingMode wm = GetWritingMode();
  return GetOuterBCBorder(wm).GetPhysicalMargin(wm);
}

nsIFrame::LogicalSides
nsTableFrame::GetLogicalSkipSides(const ReflowInput* aReflowInput) const
{
  if (MOZ_UNLIKELY(StyleBorder()->mBoxDecorationBreak ==
                     StyleBoxDecorationBreak::Clone)) {
    return LogicalSides();
  }

  LogicalSides skip;
  // frame attribute was accounted for in nsHTMLTableElement::MapTableBorderInto
  // account for pagination
  if (nullptr != GetPrevInFlow()) {
    skip |= eLogicalSideBitsBStart;
  }
  if (nullptr != GetNextInFlow()) {
    skip |= eLogicalSideBitsBEnd;
  }
  return skip;
}

void
nsTableFrame::SetColumnDimensions(nscoord aBSize, WritingMode aWM,
                                  const LogicalMargin& aBorderPadding,
                                  const nsSize& aContainerSize)
{
  const nscoord colBSize = aBSize - (aBorderPadding.BStartEnd(aWM) +
                           GetRowSpacing(-1) + GetRowSpacing(GetRowCount()));
  int32_t colIdx = 0;
  LogicalPoint colGroupOrigin(aWM,
                              aBorderPadding.IStart(aWM) + GetColSpacing(-1),
                              aBorderPadding.BStart(aWM) + GetRowSpacing(-1));
  nsTableFrame* fif = static_cast<nsTableFrame*>(FirstInFlow());
  for (nsIFrame* colGroupFrame : mColGroups) {
    MOZ_ASSERT(colGroupFrame->IsTableColGroupFrame());
    // first we need to figure out the size of the colgroup
    int32_t groupFirstCol = colIdx;
    nscoord colGroupISize = 0;
    nscoord cellSpacingI = 0;
    const nsFrameList& columnList = colGroupFrame->PrincipalChildList();
    for (nsIFrame* colFrame : columnList) {
      if (mozilla::StyleDisplay::TableColumn ==
          colFrame->StyleDisplay()->mDisplay) {
        NS_ASSERTION(colIdx < GetColCount(), "invalid number of columns");
        cellSpacingI = GetColSpacing(colIdx);
        colGroupISize += fif->GetColumnISizeFromFirstInFlow(colIdx) +
                         cellSpacingI;
        ++colIdx;
      }
    }
    if (colGroupISize) {
      colGroupISize -= cellSpacingI;
    }

    LogicalRect colGroupRect(aWM, colGroupOrigin.I(aWM), colGroupOrigin.B(aWM),
                             colGroupISize, colBSize);
    colGroupFrame->SetRect(aWM, colGroupRect, aContainerSize);
    nsSize colGroupSize = colGroupFrame->GetSize();

    // then we can place the columns correctly within the group
    colIdx = groupFirstCol;
    LogicalPoint colOrigin(aWM);
    for (nsIFrame* colFrame : columnList) {
      if (mozilla::StyleDisplay::TableColumn ==
          colFrame->StyleDisplay()->mDisplay) {
        nscoord colISize = fif->GetColumnISizeFromFirstInFlow(colIdx);
        LogicalRect colRect(aWM, colOrigin.I(aWM), colOrigin.B(aWM),
                            colISize, colBSize);
        colFrame->SetRect(aWM, colRect, colGroupSize);
        cellSpacingI = GetColSpacing(colIdx);
        colOrigin.I(aWM) += colISize + cellSpacingI;
        ++colIdx;
      }
    }

    colGroupOrigin.I(aWM) += colGroupISize + cellSpacingI;
  }
}

// SEC: TODO need to worry about continuing frames prev/next in flow for splitting across pages.

// XXX this could be made more general to handle row modifications that change the
// table bsize, but first we need to scrutinize every Invalidate
void
nsTableFrame::ProcessRowInserted(nscoord aNewBSize)
{
  SetRowInserted(false); // reset the bit that got us here
  nsTableFrame::RowGroupArray rowGroups;
  OrderRowGroups(rowGroups);
  // find the row group containing the inserted row
  for (uint32_t rgIdx = 0; rgIdx < rowGroups.Length(); rgIdx++) {
    nsTableRowGroupFrame* rgFrame = rowGroups[rgIdx];
    NS_ASSERTION(rgFrame, "Must have rgFrame here");
    // find the row that was inserted first
    for (nsIFrame* childFrame : rgFrame->PrincipalChildList()) {
      nsTableRowFrame *rowFrame = do_QueryFrame(childFrame);
      if (rowFrame) {
        if (rowFrame->IsFirstInserted()) {
          rowFrame->SetFirstInserted(false);
          // damage the table from the 1st row inserted to the end of the table
          nsIFrame::InvalidateFrame();
          // XXXbz didn't we do this up front?  Why do we need to do it again?
          SetRowInserted(false);
          return; // found it, so leave
        }
      }
    }
  }
}

/* virtual */ void
nsTableFrame::MarkIntrinsicISizesDirty()
{
  nsITableLayoutStrategy* tls = LayoutStrategy();
  if (MOZ_UNLIKELY(!tls)) {
    // This is a FrameNeedsReflow() from nsBlockFrame::RemoveFrame()
    // walking up the ancestor chain in a table next-in-flow.  In this case
    // our original first-in-flow (which owns the TableLayoutStrategy) has
    // already been destroyed and unhooked from the flow chain and thusly
    // LayoutStrategy() returns null.  All the frames in the flow will be
    // destroyed so no need to mark anything dirty here.  See bug 595758.
    return;
  }
  tls->MarkIntrinsicISizesDirty();

  // XXXldb Call SetBCDamageArea?

  nsContainerFrame::MarkIntrinsicISizesDirty();
}

/* virtual */ nscoord
nsTableFrame::GetMinISize(gfxContext *aRenderingContext)
{
  if (NeedToCalcBCBorders())
    CalcBCBorders();

  ReflowColGroups(aRenderingContext);

  return LayoutStrategy()->GetMinISize(aRenderingContext);
}

/* virtual */ nscoord
nsTableFrame::GetPrefISize(gfxContext *aRenderingContext)
{
  if (NeedToCalcBCBorders())
    CalcBCBorders();

  ReflowColGroups(aRenderingContext);

  return LayoutStrategy()->GetPrefISize(aRenderingContext, false);
}

/* virtual */ nsIFrame::IntrinsicISizeOffsetData
nsTableFrame::IntrinsicISizeOffsets()
{
  IntrinsicISizeOffsetData result = nsContainerFrame::IntrinsicISizeOffsets();

  result.hMargin = 0;
  result.hPctMargin = 0;

  if (IsBorderCollapse()) {
    result.hPadding = 0;
    result.hPctPadding = 0;

    WritingMode wm = GetWritingMode();
    LogicalMargin outerBC = GetIncludedOuterBCBorder(wm);
    result.hBorder = outerBC.IStartEnd(wm);
  }

  return result;
}

/* virtual */
LogicalSize
nsTableFrame::ComputeSize(gfxContext*         aRenderingContext,
                          WritingMode         aWM,
                          const LogicalSize&  aCBSize,
                          nscoord             aAvailableISize,
                          const LogicalSize&  aMargin,
                          const LogicalSize&  aBorder,
                          const LogicalSize&  aPadding,
                          ComputeSizeFlags    aFlags)
{
  LogicalSize result =
    nsContainerFrame::ComputeSize(aRenderingContext, aWM,
                                  aCBSize, aAvailableISize,
                                  aMargin, aBorder, aPadding, aFlags);

  // XXX The code below doesn't make sense if the caller's writing mode
  // is orthogonal to this frame's. Not sure yet what should happen then;
  // for now, just bail out.
  if (aWM.IsVertical() != GetWritingMode().IsVertical()) {
    return result;
  }

  // If we're a container for font size inflation, then shrink
  // wrapping inside of us should not apply font size inflation.
  AutoMaybeDisableFontInflation an(this);

  // Tables never shrink below their min inline-size.
  nscoord minISize = GetMinISize(aRenderingContext);
  if (minISize > result.ISize(aWM)) {
    result.ISize(aWM) = minISize;
  }

  return result;
}

nscoord
nsTableFrame::TableShrinkISizeToFit(gfxContext *aRenderingContext,
                                    nscoord aISizeInCB)
{
  // If we're a container for font size inflation, then shrink
  // wrapping inside of us should not apply font size inflation.
  AutoMaybeDisableFontInflation an(this);

  nscoord result;
  nscoord minISize = GetMinISize(aRenderingContext);
  if (minISize > aISizeInCB) {
    result = minISize;
  } else {
    // Tables shrink inline-size to fit with a slightly different algorithm
    // from the one they use for their intrinsic isize (the difference
    // relates to handling of percentage isizes on columns).  So this
    // function differs from nsFrame::ShrinkWidthToFit by only the
    // following line.
    // Since we've already called GetMinISize, we don't need to do any
    // of the other stuff GetPrefISize does.
    nscoord prefISize =
      LayoutStrategy()->GetPrefISize(aRenderingContext, true);
    if (prefISize > aISizeInCB) {
      result = aISizeInCB;
    } else {
      result = prefISize;
    }
  }
  return result;
}

/* virtual */
LogicalSize
nsTableFrame::ComputeAutoSize(gfxContext*         aRenderingContext,
                              WritingMode         aWM,
                              const LogicalSize&  aCBSize,
                              nscoord             aAvailableISize,
                              const LogicalSize&  aMargin,
                              const LogicalSize&  aBorder,
                              const LogicalSize&  aPadding,
                              ComputeSizeFlags    aFlags)
{
  // Tables always shrink-wrap.
  nscoord cbBased = aAvailableISize - aMargin.ISize(aWM) - aBorder.ISize(aWM) -
                    aPadding.ISize(aWM);
  return LogicalSize(aWM, TableShrinkISizeToFit(aRenderingContext, cbBased),
                     NS_UNCONSTRAINEDSIZE);
}

// Return true if aParentReflowInput.frame or any of its ancestors within
// the containing table have non-auto bsize. (e.g. pct or fixed bsize)
bool
nsTableFrame::AncestorsHaveStyleBSize(const ReflowInput& aParentReflowInput)
{
  WritingMode wm = aParentReflowInput.GetWritingMode();
  for (const ReflowInput* rs = &aParentReflowInput;
       rs && rs->mFrame; rs = rs->mParentReflowInput) {
    LayoutFrameType frameType = rs->mFrame->Type();
    if (IS_TABLE_CELL(frameType) ||
        (LayoutFrameType::TableRow      == frameType) ||
        (LayoutFrameType::TableRowGroup == frameType)) {
      const nsStyleCoord &bsize = rs->mStylePosition->BSize(wm);
      // calc() with percentages treated like 'auto' on internal table elements
      if (bsize.GetUnit() != eStyleUnit_Auto &&
          (!bsize.IsCalcUnit() || !bsize.HasPercent())) {
        return true;
      }
    } else if (LayoutFrameType::Table == frameType) {
      // we reached the containing table, so always return
      return rs->mStylePosition->BSize(wm).GetUnit() != eStyleUnit_Auto;
    }
  }
  return false;
}

// See if a special block-size reflow needs to occur and if so,
// call RequestSpecialBSizeReflow
void
nsTableFrame::CheckRequestSpecialBSizeReflow(const ReflowInput& aReflowInput)
{
  NS_ASSERTION(IS_TABLE_CELL(aReflowInput.mFrame->Type()) ||
               aReflowInput.mFrame->IsTableRowFrame() ||
               aReflowInput.mFrame->IsTableRowGroupFrame() ||
               aReflowInput.mFrame->IsTableFrame(),
               "unexpected frame type");
  WritingMode wm = aReflowInput.GetWritingMode();
  if (!aReflowInput.mFrame->GetPrevInFlow() &&  // 1st in flow
      (NS_UNCONSTRAINEDSIZE == aReflowInput.ComputedBSize() ||  // no computed bsize
       0                    == aReflowInput.ComputedBSize()) &&
      eStyleUnit_Percent == aReflowInput.mStylePosition->BSize(wm).GetUnit() && // pct bsize
      nsTableFrame::AncestorsHaveStyleBSize(*aReflowInput.mParentReflowInput)) {
    nsTableFrame::RequestSpecialBSizeReflow(aReflowInput);
  }
}

// Notify the frame and its ancestors (up to the containing table) that a special
// bsize reflow will occur. During a special bsize reflow, a table, row group,
// row, or cell returns the last size it was reflowed at. However, the table may
// change the bsize of row groups, rows, cells in DistributeBSizeToRows after.
// And the row group can change the bsize of rows, cells in CalculateRowBSizes.
void
nsTableFrame::RequestSpecialBSizeReflow(const ReflowInput& aReflowInput)
{
  // notify the frame and its ancestors of the special reflow, stopping at the containing table
  for (const ReflowInput* rs = &aReflowInput; rs && rs->mFrame; rs = rs->mParentReflowInput) {
    LayoutFrameType frameType = rs->mFrame->Type();
    NS_ASSERTION(IS_TABLE_CELL(frameType) ||
                 LayoutFrameType::TableRow == frameType ||
                 LayoutFrameType::TableRowGroup == frameType ||
                 LayoutFrameType::Table == frameType,
                 "unexpected frame type");

    rs->mFrame->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
    if (LayoutFrameType::Table == frameType) {
      NS_ASSERTION(rs != &aReflowInput,
                   "should not request special bsize reflow for table");
      // always stop when we reach a table
      break;
    }
  }
}

/******************************************************************************************
 * Before reflow, intrinsic inline-size calculation is done using GetMinISize
 * and GetPrefISize.  This used to be known as pass 1 reflow.
 *
 * After the intrinsic isize calculation, the table determines the
 * column widths using BalanceColumnISizes() and
 * then reflows each child again with a constrained avail isize. This reflow is referred to
 * as the pass 2 reflow.
 *
 * A special bsize reflow (pass 3 reflow) can occur during an initial or resize reflow
 * if (a) a row group, row, cell, or a frame inside a cell has a percent bsize but no computed
 * bsize or (b) in paginated mode, a table has a bsize. (a) supports percent nested tables
 * contained inside cells whose bsizes aren't known until after the pass 2 reflow. (b) is
 * necessary because the table cannot split until after the pass 2 reflow. The mechanics of
 * the special bsize reflow (variety a) are as follows:
 *
 * 1) Each table related frame (table, row group, row, cell) implements NeedsSpecialReflow()
 *    to indicate that it should get the reflow. It does this when it has a percent bsize but
 *    no computed bsize by calling CheckRequestSpecialBSizeReflow(). This method calls
 *    RequestSpecialBSizeReflow() which calls SetNeedSpecialReflow() on its ancestors until
 *    it reaches the containing table and calls SetNeedToInitiateSpecialReflow() on it. For
 *    percent bsize frames inside cells, during DidReflow(), the cell's NotifyPercentBSize()
 *    is called (the cell is the reflow state's mPercentBSizeObserver in this case).
 *    NotifyPercentBSize() calls RequestSpecialBSizeReflow().
 *
 * XXX (jfkthame) This comment appears to be out of date; it refers to methods/flags
 *                that are no longer present in the code.
 * 2) After the pass 2 reflow, if the table's NeedToInitiateSpecialReflow(true) was called, it
 *    will do the special bsize reflow, setting the reflow state's mFlags.mSpecialBSizeReflow
 *    to true and mSpecialHeightInitiator to itself. It won't do this if IsPrematureSpecialHeightReflow()
 *    returns true because in that case another special bsize reflow will be coming along with the
 *    containing table as the mSpecialHeightInitiator. It is only relevant to do the reflow when
 *    the mSpecialHeightInitiator is the containing table, because if it is a remote ancestor, then
 *    appropriate bsizes will not be known.
 *
 * 3) Since the bsizes of the table, row groups, rows, and cells was determined during the pass 2
 *    reflow, they return their last desired sizes during the special bsize reflow. The reflow only
 *    permits percent bsize frames inside the cells to resize based on the cells bsize and that bsize
 *    was determined during the pass 2 reflow.
 *
 * So, in the case of deeply nested tables, all of the tables that were told to initiate a special
 * reflow will do so, but if a table is already in a special reflow, it won't inititate the reflow
 * until the current initiator is its containing table. Since these reflows are only received by
 * frames that need them and they don't cause any rebalancing of tables, the extra overhead is minimal.
 *
 * The type of special reflow that occurs during printing (variety b) follows the same mechanism except
 * that all frames will receive the reflow even if they don't really need them.
 *
 * Open issues with the special bsize reflow:
 *
 * 1) At some point there should be 2 kinds of special bsize reflows because (a) and (b) above are
 *    really quite different. This would avoid unnecessary reflows during printing.
 * 2) When a cell contains frames whose percent bsizes > 100%, there is data loss (see bug 115245).
 *    However, this can also occur if a cell has a fixed bsize and there is no special bsize reflow.
 *
 * XXXldb Special bsize reflow should really be its own method, not
 * part of nsIFrame::Reflow.  It should then call nsIFrame::Reflow on
 * the contents of the cells to do the necessary block-axis resizing.
 *
 ******************************************************************************************/

/* Layout the entire inner table. */
void
nsTableFrame::Reflow(nsPresContext*           aPresContext,
                     ReflowOutput&     aDesiredSize,
                     const ReflowInput& aReflowInput,
                     nsReflowStatus&          aStatus)
{
  MarkInReflow();
  DO_GLOBAL_REFLOW_COUNT("nsTableFrame");
  DISPLAY_REFLOW(aPresContext, this, aReflowInput, aDesiredSize, aStatus);
  bool isPaginated = aPresContext->IsPaginated();
  WritingMode wm = aReflowInput.GetWritingMode();

  aStatus.Reset();
  if (!GetPrevInFlow() && !mTableLayoutStrategy) {
    NS_ERROR("strategy should have been created in Init");
    return;
  }

  // see if collapsing borders need to be calculated
  if (!GetPrevInFlow() && IsBorderCollapse() && NeedToCalcBCBorders()) {
    CalcBCBorders();
  }

  aDesiredSize.ISize(wm) = aReflowInput.AvailableISize();

  // Check for an overflow list, and append any row group frames being pushed
  MoveOverflowToChildList();

  bool haveDesiredBSize = false;
  SetHaveReflowedColGroups(false);

  // Reflow the entire table (pass 2 and possibly pass 3). This phase is necessary during a
  // constrained initial reflow and other reflows which require either a strategy init or balance.
  // This isn't done during an unconstrained reflow, because it will occur later when the parent
  // reflows with a constrained isize.
  bool fixupKidPositions = false;
  if (NS_SUBTREE_DIRTY(this) ||
      aReflowInput.ShouldReflowAllKids() ||
      IsGeometryDirty() ||
      isPaginated ||
      aReflowInput.IsBResize()) {

    if (aReflowInput.ComputedBSize() != NS_UNCONSTRAINEDSIZE ||
        // Also check IsBResize(), to handle the first Reflow preceding a
        // special bsize Reflow, when we've already had a special bsize
        // Reflow (where ComputedBSize() would not be
        // NS_UNCONSTRAINEDSIZE, but without a style change in between).
        aReflowInput.IsBResize()) {
      // XXX Eventually, we should modify DistributeBSizeToRows to use
      // nsTableRowFrame::GetInitialBSize instead of nsIFrame::BSize().
      // That way, it will make its calculations based on internal table
      // frame bsizes as they are before they ever had any extra bsize
      // distributed to them.  In the meantime, this reflows all the
      // internal table frames, which restores them to their state before
      // DistributeBSizeToRows was called.
      SetGeometryDirty();
    }

    bool needToInitiateSpecialReflow = false;
    if (isPaginated) {
      // see if an extra reflow will be necessary in pagination mode
      // when there is a specified table bsize
      if (!GetPrevInFlow() &&
          NS_UNCONSTRAINEDSIZE != aReflowInput.AvailableBSize()) {
        nscoord tableSpecifiedBSize = CalcBorderBoxBSize(aReflowInput);
        if ((tableSpecifiedBSize > 0) &&
            (tableSpecifiedBSize != NS_UNCONSTRAINEDSIZE)) {
          needToInitiateSpecialReflow = true;
        }
      }
    } else {
      needToInitiateSpecialReflow =
        HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
    }
    nsIFrame* lastChildReflowed = nullptr;

    NS_ASSERTION(!aReflowInput.mFlags.mSpecialBSizeReflow,
                 "Shouldn't be in special bsize reflow here!");

    // do the pass 2 reflow unless this is a special bsize reflow and we will be
    // initiating a special bsize reflow
    // XXXldb I changed this.  Should I change it back?

    // if we need to initiate a special bsize reflow, then don't constrain the
    // bsize of the reflow before that
    nscoord availBSize = needToInitiateSpecialReflow
                         ? NS_UNCONSTRAINEDSIZE
                         : aReflowInput.AvailableBSize();

    ReflowTable(aDesiredSize, aReflowInput, availBSize,
                lastChildReflowed, aStatus);
    // If ComputedWidth is unconstrained, we may need to fix child positions
    // later (in vertical-rl mode) due to use of 0 as a dummy
    // containerSize.width during ReflowChildren.
    fixupKidPositions = wm.IsVerticalRL() &&
      aReflowInput.ComputedWidth() == NS_UNCONSTRAINEDSIZE;

    // reevaluate special bsize reflow conditions
    if (HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
      needToInitiateSpecialReflow = true;
    }

    // XXXldb Are all these conditions correct?
    if (needToInitiateSpecialReflow && aStatus.IsComplete()) {
      // XXXldb Do we need to set the IsBResize flag on any reflow states?

      ReflowInput &mutable_rs =
        const_cast<ReflowInput&>(aReflowInput);

      // distribute extra block-direction space to rows
      CalcDesiredBSize(aReflowInput, aDesiredSize);
      mutable_rs.mFlags.mSpecialBSizeReflow = true;

      ReflowTable(aDesiredSize, aReflowInput, aReflowInput.AvailableBSize(),
                  lastChildReflowed, aStatus);

      if (lastChildReflowed && aStatus.IsIncomplete()) {
        // if there is an incomplete child, then set the desired bsize
        // to include it but not the next one
        LogicalMargin borderPadding = GetChildAreaOffset(wm, &aReflowInput);
        aDesiredSize.BSize(wm) =
          borderPadding.BEnd(wm) + GetRowSpacing(GetRowCount()) +
          lastChildReflowed->GetNormalRect().YMost(); // XXX YMost should be B-flavored
      }
      haveDesiredBSize = true;

      mutable_rs.mFlags.mSpecialBSizeReflow = false;
    }
  }

  aDesiredSize.ISize(wm) = aReflowInput.ComputedISize() +
    aReflowInput.ComputedLogicalBorderPadding().IStartEnd(wm);
  if (!haveDesiredBSize) {
    CalcDesiredBSize(aReflowInput, aDesiredSize);
  }
  if (IsRowInserted()) {
    ProcessRowInserted(aDesiredSize.BSize(wm));
  }

  if (fixupKidPositions) {
    // If we didn't already know the containerSize (and so used zero during
    // ReflowChildren), then we need to update the block-position of our kids.
    for (nsIFrame* kid : mFrames) {
      kid->MovePositionBy(nsPoint(aDesiredSize.Width(), 0));
      RePositionViews(kid);
    }
  }

  // Calculate the overflow area contribution from our children. We couldn't
  // do this on the fly during ReflowChildren(), because in vertical-rl mode
  // with unconstrained width, we weren't placing them in their final positions
  // until the fixupKidPositions loop just above.
  for (nsIFrame* kid : mFrames) {
    ConsiderChildOverflow(aDesiredSize.mOverflowAreas, kid);
  }

  LogicalMargin borderPadding = GetChildAreaOffset(wm, &aReflowInput);
  SetColumnDimensions(aDesiredSize.BSize(wm), wm, borderPadding,
                      aDesiredSize.PhysicalSize());
  if (NeedToCollapse() &&
      (NS_UNCONSTRAINEDSIZE != aReflowInput.AvailableISize())) {
    AdjustForCollapsingRowsCols(aDesiredSize, wm, borderPadding);
  }

  // If there are any relatively-positioned table parts, we need to reflow their
  // absolutely-positioned descendants now that their dimensions are final.
  FixupPositionedTableParts(aPresContext, aDesiredSize, aReflowInput);

  // make sure the table overflow area does include the table rect.
  nsRect tableRect(0, 0, aDesiredSize.Width(), aDesiredSize.Height()) ;

  if (!ShouldApplyOverflowClipping(this, aReflowInput.mStyleDisplay)) {
    // collapsed border may leak out
    LogicalMargin bcMargin = GetExcludedOuterBCBorder(wm);
    tableRect.Inflate(bcMargin.GetPhysicalMargin(wm));
  }
  aDesiredSize.mOverflowAreas.UnionAllWith(tableRect);

  if (HasAnyStateBits(NS_FRAME_FIRST_REFLOW) ||
      nsSize(aDesiredSize.Width(), aDesiredSize.Height()) != mRect.Size()) {
      nsIFrame::InvalidateFrame();
  }

  FinishAndStoreOverflow(&aDesiredSize);
  NS_FRAME_SET_TRUNCATION(aStatus, aReflowInput, aDesiredSize);
}

void
nsTableFrame::FixupPositionedTableParts(nsPresContext*           aPresContext,
                                        ReflowOutput&     aDesiredSize,
                                        const ReflowInput& aReflowInput)
{
  FrameTArray* positionedParts = GetProperty(PositionedTablePartArray());
  if (!positionedParts) {
    return;
  }

  OverflowChangedTracker overflowTracker;
  overflowTracker.SetSubtreeRoot(this);

  for (size_t i = 0; i < positionedParts->Length(); ++i) {
    nsIFrame* positionedPart = positionedParts->ElementAt(i);

    // As we've already finished reflow, positionedParts's size and overflow
    // areas have already been assigned, so we just pull them back out.
    nsSize size(positionedPart->GetSize());
    ReflowOutput desiredSize(aReflowInput.GetWritingMode());
    desiredSize.Width() = size.width;
    desiredSize.Height() = size.height;
    desiredSize.mOverflowAreas = positionedPart->GetOverflowAreasRelativeToSelf();

    // Construct a dummy reflow state and reflow status.
    // XXX(seth): Note that the dummy reflow state doesn't have a correct
    // chain of parent reflow states. It also doesn't necessarily have a
    // correct containing block.
    WritingMode wm = positionedPart->GetWritingMode();
    LogicalSize availSize(wm, size);
    availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE;
    ReflowInput reflowInput(aPresContext, positionedPart,
                                  aReflowInput.mRenderingContext, availSize,
                                  ReflowInput::DUMMY_PARENT_REFLOW_STATE);
    nsReflowStatus reflowStatus;

    // Reflow absolutely-positioned descendants of the positioned part.
    // FIXME: Unconditionally using NS_UNCONSTRAINEDSIZE for the bsize and
    // ignoring any change to the reflow status aren't correct. We'll never
    // paginate absolutely positioned frames.
    nsFrame* positionedFrame = static_cast<nsFrame*>(positionedPart);
    positionedFrame->FinishReflowWithAbsoluteFrames(PresContext(),
                                                    desiredSize,
                                                    reflowInput,
                                                    reflowStatus,
                                                    true);

    // FinishReflowWithAbsoluteFrames has updated overflow on
    // |positionedPart|.  We need to make sure that update propagates
    // through the intermediate frames between it and this frame.
    nsIFrame* positionedFrameParent = positionedPart->GetParent();
    if (positionedFrameParent != this) {
      overflowTracker.AddFrame(positionedFrameParent,
        OverflowChangedTracker::CHILDREN_CHANGED);
    }
  }

  // Propagate updated overflow areas up the tree.
  overflowTracker.Flush();

  // Update our own overflow areas. (OverflowChangedTracker doesn't update the
  // subtree root itself.)
  aDesiredSize.SetOverflowAreasToDesiredBounds();
  nsLayoutUtils::UnionChildOverflow(this, aDesiredSize.mOverflowAreas);
}

bool
nsTableFrame::ComputeCustomOverflow(nsOverflowAreas& aOverflowAreas)
{
  // As above in Reflow, make sure the table overflow area includes the table
  // rect, and check for collapsed borders leaking out.
  if (!ShouldApplyOverflowClipping(this, StyleDisplay())) {
    nsRect bounds(nsPoint(0, 0), GetSize());
    WritingMode wm = GetWritingMode();
    LogicalMargin bcMargin = GetExcludedOuterBCBorder(wm);
    bounds.Inflate(bcMargin.GetPhysicalMargin(wm));

    aOverflowAreas.UnionAllWith(bounds);
  }
  return nsContainerFrame::ComputeCustomOverflow(aOverflowAreas);
}

void
nsTableFrame::ReflowTable(ReflowOutput&     aDesiredSize,
                          const ReflowInput& aReflowInput,
                          nscoord                  aAvailBSize,
                          nsIFrame*&               aLastChildReflowed,
                          nsReflowStatus&          aStatus)
{
  aLastChildReflowed = nullptr;

  if (!GetPrevInFlow()) {
    mTableLayoutStrategy->ComputeColumnISizes(aReflowInput);
  }
  // Constrain our reflow isize to the computed table isize (of the 1st in flow).
  // and our reflow bsize to our avail bsize minus border, padding, cellspacing
  WritingMode wm = aReflowInput.GetWritingMode();
  aDesiredSize.ISize(wm) = aReflowInput.ComputedISize() +
                     aReflowInput.ComputedLogicalBorderPadding().IStartEnd(wm);
  TableReflowInput reflowInput(aReflowInput,
                                 LogicalSize(wm, aDesiredSize.ISize(wm),
                                             aAvailBSize));
  ReflowChildren(reflowInput, aStatus, aLastChildReflowed,
                 aDesiredSize.mOverflowAreas);

  ReflowColGroups(aReflowInput.mRenderingContext);
}

nsIFrame*
nsTableFrame::GetFirstBodyRowGroupFrame()
{
  nsIFrame* headerFrame = nullptr;
  nsIFrame* footerFrame = nullptr;

  for (nsIFrame* kidFrame : mFrames) {
    const nsStyleDisplay* childDisplay = kidFrame->StyleDisplay();

    // We expect the header and footer row group frames to be first, and we only
    // allow one header and one footer
    if (mozilla::StyleDisplay::TableHeaderGroup == childDisplay->mDisplay) {
      if (headerFrame) {
        // We already have a header frame and so this header frame is treated
        // like an ordinary body row group frame
        return kidFrame;
      }
      headerFrame = kidFrame;

    } else if (mozilla::StyleDisplay::TableFooterGroup == childDisplay->mDisplay) {
      if (footerFrame) {
        // We already have a footer frame and so this footer frame is treated
        // like an ordinary body row group frame
        return kidFrame;
      }
      footerFrame = kidFrame;

    } else if (mozilla::StyleDisplay::TableRowGroup == childDisplay->mDisplay) {
      return kidFrame;
    }
  }

  return nullptr;
}

// Table specific version that takes into account repeated header and footer
// frames when continuing table frames
void
nsTableFrame::PushChildren(const RowGroupArray& aRowGroups,
                           int32_t aPushFrom)
{
  NS_PRECONDITION(aPushFrom > 0, "pushing first child");

  // extract the frames from the array into a sibling list
  nsFrameList frames;
  uint32_t childX;
  for (childX = aPushFrom; childX < aRowGroups.Length(); ++childX) {
    nsTableRowGroupFrame* rgFrame = aRowGroups[childX];
    if (!rgFrame->IsRepeatable()) {
      mFrames.RemoveFrame(rgFrame);
      frames.AppendFrame(nullptr, rgFrame);
    }
  }

  if (frames.IsEmpty()) {
    return;
  }

  nsTableFrame* nextInFlow = static_cast<nsTableFrame*>(GetNextInFlow());
  if (nextInFlow) {
    // Insert the frames after any repeated header and footer frames.
    nsIFrame* firstBodyFrame = nextInFlow->GetFirstBodyRowGroupFrame();
    nsIFrame* prevSibling = nullptr;
    if (firstBodyFrame) {
      prevSibling = firstBodyFrame->GetPrevSibling();
    }
    // When pushing and pulling frames we need to check for whether any
    // views need to be reparented.
    ReparentFrameViewList(frames, this, nextInFlow);
    nextInFlow->mFrames.InsertFrames(nextInFlow, prevSibling,
                                     frames);
  }
  else {
    // Add the frames to our overflow list.
    SetOverflowFrames(frames);
  }
}

// collapsing row groups, rows, col groups and cols are accounted for after both passes of
// reflow so that it has no effect on the calculations of reflow.
void
nsTableFrame::AdjustForCollapsingRowsCols(ReflowOutput& aDesiredSize,
                                          const WritingMode aWM,
                                          const LogicalMargin& aBorderPadding)
{
  nscoord bTotalOffset = 0; // total offset among all rows in all row groups

  // reset the bit, it will be set again if row/rowgroup or col/colgroup are
  // collapsed
  SetNeedToCollapse(false);

  // collapse the rows and/or row groups as necessary
  // Get the ordered children
  RowGroupArray rowGroups;
  OrderRowGroups(rowGroups);

  nsTableFrame* firstInFlow = static_cast<nsTableFrame*>(FirstInFlow());
  nscoord iSize = firstInFlow->GetCollapsedISize(aWM, aBorderPadding);
  nscoord rgISize = iSize - GetColSpacing(-1) -
                    GetColSpacing(GetColCount());
  nsOverflowAreas overflow;
  // Walk the list of children
  for (uint32_t childX = 0; childX < rowGroups.Length(); childX++) {
    nsTableRowGroupFrame* rgFrame = rowGroups[childX];
    NS_ASSERTION(rgFrame, "Must have row group frame here");
    bTotalOffset += rgFrame->CollapseRowGroupIfNecessary(bTotalOffset, rgISize,
                                                         aWM);
    ConsiderChildOverflow(overflow, rgFrame);
  }

  aDesiredSize.BSize(aWM) -= bTotalOffset;
  aDesiredSize.ISize(aWM) = iSize;
  overflow.UnionAllWith(nsRect(0, 0, aDesiredSize.Width(), aDesiredSize.Height()));
  FinishAndStoreOverflow(overflow,
                         nsSize(aDesiredSize.Width(), aDesiredSize.Height()));
}


nscoord
nsTableFrame::GetCollapsedISize(const WritingMode aWM,
                                const LogicalMargin& aBorderPadding)
{
  NS_ASSERTION(!GetPrevInFlow(), "GetCollapsedISize called on next in flow");
  nscoord iSize = GetColSpacing(GetColCount());
  iSize += aBorderPadding.IStartEnd(aWM);
  nsTableFrame* fif = static_cast<nsTableFrame*>(FirstInFlow());
  for (nsIFrame* groupFrame : mColGroups) {
    const nsStyleVisibility* groupVis = groupFrame->StyleVisibility();
    bool collapseGroup = (NS_STYLE_VISIBILITY_COLLAPSE == groupVis->mVisible);
    nsTableColGroupFrame* cgFrame = (nsTableColGroupFrame*)groupFrame;
    for (nsTableColFrame* colFrame = cgFrame->GetFirstColumn(); colFrame;
         colFrame = colFrame->GetNextCol()) {
      const nsStyleDisplay* colDisplay = colFrame->StyleDisplay();
      nscoord colIdx = colFrame->GetColIndex();
      if (mozilla::StyleDisplay::TableColumn == colDisplay->mDisplay) {
        const nsStyleVisibility* colVis = colFrame->StyleVisibility();
        bool collapseCol = (NS_STYLE_VISIBILITY_COLLAPSE == colVis->mVisible);
        nscoord colISize = fif->GetColumnISizeFromFirstInFlow(colIdx);
        if (!collapseGroup && !collapseCol) {
          iSize += colISize;
          if (ColumnHasCellSpacingBefore(colIdx)) {
            iSize += GetColSpacing(colIdx - 1);
          }
        }
        else {
          SetNeedToCollapse(true);
        }
      }
    }
  }
  return iSize;
}

/* virtual */ void
nsTableFrame::DidSetStyleContext(nsStyleContext* aOldStyleContext)
{
  nsContainerFrame::DidSetStyleContext(aOldStyleContext);

  if (!aOldStyleContext) //avoid this on init
    return;

  if (IsBorderCollapse() &&
      BCRecalcNeeded(aOldStyleContext, StyleContext())) {
    SetFullBCDamageArea();
  }

  //avoid this on init or nextinflow
  if (!mTableLayoutStrategy || GetPrevInFlow())
    return;

  bool isAuto = IsAutoLayout();
  if (isAuto != (LayoutStrategy()->GetType() == nsITableLayoutStrategy::Auto)) {
    nsITableLayoutStrategy* temp;
    if (isAuto)
      temp = new BasicTableLayoutStrategy(this);
    else
      temp = new FixedTableLayoutStrategy(this);

    if (temp) {
      delete mTableLayoutStrategy;
      mTableLayoutStrategy = temp;
    }
  }
}



void
nsTableFrame::AppendFrames(ChildListID     aListID,
                           nsFrameList&    aFrameList)
{
  NS_ASSERTION(aListID == kPrincipalList || aListID == kColGroupList,
               "unexpected child list");

  // Because we actually have two child lists, one for col group frames and one
  // for everything else, we need to look at each frame individually
  // XXX The frame construction code should be separating out child frames
  // based on the type, bug 343048.
  while (!aFrameList.IsEmpty()) {
    nsIFrame* f = aFrameList.FirstChild();
    aFrameList.RemoveFrame(f);

    // See what kind of frame we have
    const nsStyleDisplay* display = f->StyleDisplay();

    if (mozilla::StyleDisplay::TableColumnGroup == display->mDisplay) {
      if (MOZ_UNLIKELY(GetPrevInFlow())) {
        nsFrameList colgroupFrame(f, f);
        auto firstInFlow = static_cast<nsTableFrame*>(FirstInFlow());
        firstInFlow->AppendFrames(aListID, colgroupFrame);
        continue;
      }
      nsTableColGroupFrame* lastColGroup =
        nsTableColGroupFrame::GetLastRealColGroup(this);
      int32_t startColIndex = (lastColGroup)
        ? lastColGroup->GetStartColumnIndex() + lastColGroup->GetColCount() : 0;
      mColGroups.InsertFrame(this, lastColGroup, f);
      // Insert the colgroup and its cols into the table
      InsertColGroups(startColIndex,
                      nsFrameList::Slice(mColGroups, f, f->GetNextSibling()));
    } else if (IsRowGroup(display->mDisplay)) {
      DrainSelfOverflowList(); // ensure the last frame is in mFrames
      // Append the new row group frame to the sibling chain
      mFrames.AppendFrame(nullptr, f);

      // insert the row group and its rows into the table
      InsertRowGroups(nsFrameList::Slice(mFrames, f, nullptr));
    } else {
      // Nothing special to do, just add the frame to our child list
      NS_NOTREACHED("How did we get here?  Frame construction screwed up");
      mFrames.AppendFrame(nullptr, f);
    }
  }

#ifdef DEBUG_TABLE_CELLMAP
  printf("=== TableFrame::AppendFrames\n");
  Dump(true, true, true);
#endif
  PresContext()->PresShell()->FrameNeedsReflow(this, nsIPresShell::eTreeChange,
                                               NS_FRAME_HAS_DIRTY_CHILDREN);
  SetGeometryDirty();
}

// Needs to be at file scope or ArrayLength fails to compile.
struct ChildListInsertions {
  nsIFrame::ChildListID mID;
  nsFrameList mList;
};

void
nsTableFrame::InsertFrames(ChildListID     aListID,
                           nsIFrame*       aPrevFrame,
                           nsFrameList&    aFrameList)
{
  // The frames in aFrameList can be a mix of row group frames and col group
  // frames. The problem is that they should go in separate child lists so
  // we need to deal with that here...
  // XXX The frame construction code should be separating out child frames
  // based on the type, bug 343048.

  NS_ASSERTION(!aPrevFrame || aPrevFrame->GetParent() == this,
               "inserting after sibling frame with different parent");

  if ((aPrevFrame && !aPrevFrame->GetNextSibling()) ||
      (!aPrevFrame && GetChildList(aListID).IsEmpty())) {
    // Treat this like an append; still a workaround for bug 343048.
    AppendFrames(aListID, aFrameList);
    return;
  }

  // Collect ColGroupFrames into a separate list and insert those separately
  // from the other frames (bug 759249).
  ChildListInsertions insertions[2]; // ColGroup, other
  const nsStyleDisplay* display = aFrameList.FirstChild()->StyleDisplay();
  nsFrameList::FrameLinkEnumerator e(aFrameList);
  for (; !aFrameList.IsEmpty(); e.Next()) {
    nsIFrame* next = e.NextFrame();
    if (!next || next->StyleDisplay()->mDisplay != display->mDisplay) {
      nsFrameList head = aFrameList.ExtractHead(e);
      if (display->mDisplay == mozilla::StyleDisplay::TableColumnGroup) {
        insertions[0].mID = kColGroupList;
        insertions[0].mList.AppendFrames(nullptr, head);
      } else {
        insertions[1].mID = kPrincipalList;
        insertions[1].mList.AppendFrames(nullptr, head);
      }
      if (!next) {
        break;
      }
      display = next->StyleDisplay();
    }
  }
  for (uint32_t i = 0; i < ArrayLength(insertions); ++i) {
    // We pass aPrevFrame for both ColGroup and other frames since
    // HomogenousInsertFrames will only use it if it's a suitable
    // prev-sibling for the frames in the frame list.
    if (!insertions[i].mList.IsEmpty()) {
      HomogenousInsertFrames(insertions[i].mID, aPrevFrame,
                             insertions[i].mList);
    }
  }
}

void
nsTableFrame::HomogenousInsertFrames(ChildListID     aListID,
                                     nsIFrame*       aPrevFrame,
                                     nsFrameList&    aFrameList)
{
  // See what kind of frame we have
  const nsStyleDisplay* display = aFrameList.FirstChild()->StyleDisplay();
  bool isColGroup = mozilla::StyleDisplay::TableColumnGroup == display->mDisplay;
#ifdef DEBUG
  // Verify that either all siblings have display:table-column-group, or they
  // all have display values different from table-column-group.
  for (nsIFrame* frame : aFrameList) {
    auto nextDisplay = frame->StyleDisplay()->mDisplay;
    MOZ_ASSERT(isColGroup ==
               (nextDisplay == mozilla::StyleDisplay::TableColumnGroup),
               "heterogenous childlist");
  }
#endif
  if (MOZ_UNLIKELY(isColGroup && GetPrevInFlow())) {
    auto firstInFlow = static_cast<nsTableFrame*>(FirstInFlow());
    firstInFlow->AppendFrames(aListID, aFrameList);
    return;
  }
  if (aPrevFrame) {
    const nsStyleDisplay* prevDisplay = aPrevFrame->StyleDisplay();
    // Make sure they belong on the same frame list
    if ((display->mDisplay == mozilla::StyleDisplay::TableColumnGroup) !=
        (prevDisplay->mDisplay == mozilla::StyleDisplay::TableColumnGroup)) {
      // the previous frame is not valid, see comment at ::AppendFrames
      // XXXbz Using content indices here means XBL will get screwed
      // over...  Oh, well.
      nsIFrame* pseudoFrame = aFrameList.FirstChild();
      nsIContent* parentContent = GetContent();
      nsIContent* content = nullptr;
      aPrevFrame = nullptr;
      while (pseudoFrame  && (parentContent ==
                              (content = pseudoFrame->GetContent()))) {
        pseudoFrame = pseudoFrame->PrincipalChildList().FirstChild();
      }
      nsCOMPtr<nsIContent> container = content->GetParent();
      if (MOZ_LIKELY(container)) { // XXX need this null-check, see bug 411823.
        int32_t newIndex = container->IndexOf(content);
        nsIFrame* kidFrame;
        nsTableColGroupFrame* lastColGroup = nullptr;
        if (isColGroup) {
          kidFrame = mColGroups.FirstChild();
          lastColGroup = nsTableColGroupFrame::GetLastRealColGroup(this);
        }
        else {
          kidFrame = mFrames.FirstChild();
        }
        // Important: need to start at a value smaller than all valid indices
        int32_t lastIndex = -1;
        while (kidFrame) {
          if (isColGroup) {
            if (kidFrame == lastColGroup) {
              aPrevFrame = kidFrame; // there is no real colgroup after this one
              break;
            }
          }
          pseudoFrame = kidFrame;
          while (pseudoFrame  && (parentContent ==
                                  (content = pseudoFrame->GetContent()))) {
            pseudoFrame = pseudoFrame->PrincipalChildList().FirstChild();
          }
          int32_t index = container->IndexOf(content);
          if (index > lastIndex && index < newIndex) {
            lastIndex = index;
            aPrevFrame = kidFrame;
          }
          kidFrame = kidFrame->GetNextSibling();
        }
      }
    }
  }
  if (mozilla::StyleDisplay::TableColumnGroup == display->mDisplay) {
    NS_ASSERTION(aListID == kColGroupList, "unexpected child list");
    // Insert the column group frames
    const nsFrameList::Slice& newColgroups =
      mColGroups.InsertFrames(this, aPrevFrame, aFrameList);
    // find the starting col index for the first new col group
    int32_t startColIndex = 0;
    if (aPrevFrame) {
      nsTableColGroupFrame* prevColGroup =
        (nsTableColGroupFrame*)GetFrameAtOrBefore(this, aPrevFrame,
                                                  LayoutFrameType::TableColGroup);
      if (prevColGroup) {
        startColIndex = prevColGroup->GetStartColumnIndex() + prevColGroup->GetColCount();
      }
    }
    InsertColGroups(startColIndex, newColgroups);
  } else if (IsRowGroup(display->mDisplay)) {
    NS_ASSERTION(aListID == kPrincipalList, "unexpected child list");
    DrainSelfOverflowList(); // ensure aPrevFrame is in mFrames
    // Insert the frames in the sibling chain
    const nsFrameList::Slice& newRowGroups =
      mFrames.InsertFrames(nullptr, aPrevFrame, aFrameList);

    InsertRowGroups(newRowGroups);
  } else {
    NS_ASSERTION(aListID == kPrincipalList, "unexpected child list");
    NS_NOTREACHED("How did we even get here?");
    // Just insert the frame and don't worry about reflowing it
    mFrames.InsertFrames(nullptr, aPrevFrame, aFrameList);
    return;
  }

  PresContext()->PresShell()->FrameNeedsReflow(this, nsIPresShell::eTreeChange,
                                               NS_FRAME_HAS_DIRTY_CHILDREN);
  SetGeometryDirty();
#ifdef DEBUG_TABLE_CELLMAP
  printf("=== TableFrame::InsertFrames\n");
  Dump(true, true, true);
#endif
}

void
nsTableFrame::DoRemoveFrame(ChildListID     aListID,
                            nsIFrame*       aOldFrame)
{
  if (aListID == kColGroupList) {
    nsIFrame* nextColGroupFrame = aOldFrame->GetNextSibling();
    nsTableColGroupFrame* colGroup = (nsTableColGroupFrame*)aOldFrame;
    int32_t firstColIndex = colGroup->GetStartColumnIndex();
    int32_t lastColIndex  = firstColIndex + colGroup->GetColCount() - 1;
    mColGroups.DestroyFrame(aOldFrame);
    nsTableColGroupFrame::ResetColIndices(nextColGroupFrame, firstColIndex);
    // remove the cols from the table
    int32_t colIdx;
    for (colIdx = lastColIndex; colIdx >= firstColIndex; colIdx--) {
      nsTableColFrame* colFrame = mColFrames.SafeElementAt(colIdx);
      if (colFrame) {
        RemoveCol(colGroup, colIdx, true, false);
      }
    }

    // If we have some anonymous cols at the end already, we just
    // add more of them.
    if (!mColFrames.IsEmpty() &&
        mColFrames.LastElement() && // XXXbz is this ever null?
        mColFrames.LastElement()->GetColType() == eColAnonymousCell) {
      int32_t numAnonymousColsToAdd = GetColCount() - mColFrames.Length();
      if (numAnonymousColsToAdd > 0) {
        // this sets the child list, updates the col cache and cell map
        AppendAnonymousColFrames(numAnonymousColsToAdd);
      }
    } else {
      // All of our colframes correspond to actual <col> tags.  It's possible
      // that we still have at least as many <col> tags as we have logical
      // columns from cells, but we might have one less.  Handle the latter case
      // as follows: First ask the cellmap to drop its last col if it doesn't
      // have any actual cells in it.  Then call MatchCellMapToColCache to
      // append an anonymous column if it's needed; this needs to be after
      // RemoveColsAtEnd, since it will determine the need for a new column
      // frame based on the width of the cell map.
      nsTableCellMap* cellMap = GetCellMap();
      if (cellMap) { // XXXbz is this ever null?
        cellMap->RemoveColsAtEnd();
        MatchCellMapToColCache(cellMap);
      }
    }

  } else {
    NS_ASSERTION(aListID == kPrincipalList, "unexpected child list");
    nsTableRowGroupFrame* rgFrame =
      static_cast<nsTableRowGroupFrame*>(aOldFrame);
    // remove the row group from the cell map
    nsTableCellMap* cellMap = GetCellMap();
    if (cellMap) {
      cellMap->RemoveGroupCellMap(rgFrame);
    }

    // remove the row group frame from the sibling chain
    mFrames.DestroyFrame(aOldFrame);

    // the removal of a row group changes the cellmap, the columns might change
    if (cellMap) {
      cellMap->Synchronize(this);
      // Create an empty slice
      ResetRowIndices(nsFrameList::Slice(mFrames, nullptr, nullptr));
      TableArea damageArea;
      cellMap->RebuildConsideringCells(nullptr, nullptr, 0, 0, false, damageArea);

      static_cast<nsTableFrame*>(FirstInFlow())->MatchCellMapToColCache(cellMap);
    }
  }
}

void
nsTableFrame::RemoveFrame(ChildListID     aListID,
                          nsIFrame*       aOldFrame)
{
  NS_ASSERTION(aListID == kColGroupList ||
               mozilla::StyleDisplay::TableColumnGroup !=
                 aOldFrame->StyleDisplay()->mDisplay,
               "Wrong list name; use kColGroupList iff colgroup");
  nsIPresShell* shell = PresContext()->PresShell();
  nsTableFrame* lastParent = nullptr;
  while (aOldFrame) {
    nsIFrame* oldFrameNextContinuation = aOldFrame->GetNextContinuation();
    nsTableFrame* parent = static_cast<nsTableFrame*>(aOldFrame->GetParent());
    if (parent != lastParent) {
      parent->DrainSelfOverflowList();
    }
    parent->DoRemoveFrame(aListID, aOldFrame);
    aOldFrame = oldFrameNextContinuation;
    if (parent != lastParent) {
      // for now, just bail and recalc all of the collapsing borders
      // as the cellmap changes we need to recalc
      if (parent->IsBorderCollapse()) {
        parent->SetFullBCDamageArea();
      }
      parent->SetGeometryDirty();
      shell->FrameNeedsReflow(parent, nsIPresShell::eTreeChange,
                              NS_FRAME_HAS_DIRTY_CHILDREN);
      lastParent = parent;
    }
  }
#ifdef DEBUG_TABLE_CELLMAP
  printf("=== TableFrame::RemoveFrame\n");
  Dump(true, true, true);
#endif
}

/* virtual */ nsMargin
nsTableFrame::GetUsedBorder() const
{
  if (!IsBorderCollapse())
    return nsContainerFrame::GetUsedBorder();

  WritingMode wm = GetWritingMode();
  return GetIncludedOuterBCBorder(wm).GetPhysicalMargin(wm);
}

/* virtual */ nsMargin
nsTableFrame::GetUsedPadding() const
{
  if (!IsBorderCollapse())
    return nsContainerFrame::GetUsedPadding();

  return nsMargin(0,0,0,0);
}

/* virtual */ nsMargin
nsTableFrame::GetUsedMargin() const
{
  // The margin is inherited to the table wrapper frame via
  // the ::-moz-table-wrapper rule in ua.css.
  return nsMargin(0, 0, 0, 0);
}

NS_DECLARE_FRAME_PROPERTY_DELETABLE(TableBCProperty, BCPropertyData)

BCPropertyData*
nsTableFrame::GetBCProperty() const
{
  return GetProperty(TableBCProperty());
}

BCPropertyData*
nsTableFrame::GetOrCreateBCProperty()
{
  BCPropertyData* value = GetProperty(TableBCProperty());
  if (!value) {
    value = new BCPropertyData();
    SetProperty(TableBCProperty(), value);
  }

  return value;
}

static void
DivideBCBorderSize(BCPixelSize  aPixelSize,
                   BCPixelSize& aSmallHalf,
                   BCPixelSize& aLargeHalf)
{
  aSmallHalf = aPixelSize / 2;
  aLargeHalf = aPixelSize - aSmallHalf;
}

LogicalMargin
nsTableFrame::GetOuterBCBorder(const WritingMode aWM) const
{
  if (NeedToCalcBCBorders()) {
    const_cast<nsTableFrame*>(this)->CalcBCBorders();
  }

  int32_t p2t = nsPresContext::AppUnitsPerCSSPixel();
  BCPropertyData* propData = GetBCProperty();
  if (propData) {
    return LogicalMargin(aWM,
               BC_BORDER_START_HALF_COORD(p2t, propData->mBStartBorderWidth),
               BC_BORDER_END_HALF_COORD(p2t, propData->mIEndBorderWidth),
               BC_BORDER_END_HALF_COORD(p2t, propData->mBEndBorderWidth),
               BC_BORDER_START_HALF_COORD(p2t, propData->mIStartBorderWidth));
  }
  return LogicalMargin(aWM);
}

LogicalMargin
nsTableFrame::GetIncludedOuterBCBorder(const WritingMode aWM) const
{
  if (NeedToCalcBCBorders()) {
    const_cast<nsTableFrame*>(this)->CalcBCBorders();
  }

  int32_t p2t = nsPresContext::AppUnitsPerCSSPixel();
  BCPropertyData* propData = GetBCProperty();
  if (propData) {
    return LogicalMargin(aWM,
               BC_BORDER_START_HALF_COORD(p2t, propData->mBStartBorderWidth),
               BC_BORDER_END_HALF_COORD(p2t, propData->mIEndCellBorderWidth),
               BC_BORDER_END_HALF_COORD(p2t, propData->mBEndBorderWidth),
               BC_BORDER_START_HALF_COORD(p2t, propData->mIStartCellBorderWidth));
  }
  return LogicalMargin(aWM);
}

LogicalMargin
nsTableFrame::GetExcludedOuterBCBorder(const WritingMode aWM) const
{
  return GetOuterBCBorder(aWM) - GetIncludedOuterBCBorder(aWM);
}

static LogicalMargin
GetSeparateModelBorderPadding(const WritingMode aWM,
                              const ReflowInput* aReflowInput,
                              nsStyleContext* aStyleContext)
{
  // XXXbz Either we _do_ have a reflow state and then we can use its
  // mComputedBorderPadding or we don't and then we get the padding
  // wrong!
  const nsStyleBorder* border = aStyleContext->StyleBorder();
  LogicalMargin borderPadding(aWM, border->GetComputedBorder());
  if (aReflowInput) {
    borderPadding += aReflowInput->ComputedLogicalPadding();
  }
  return borderPadding;
}

LogicalMargin
nsTableFrame::GetChildAreaOffset(const WritingMode aWM,
                                 const ReflowInput* aReflowInput) const
{
  return IsBorderCollapse() ? GetIncludedOuterBCBorder(aWM) :
    GetSeparateModelBorderPadding(aWM, aReflowInput, mStyleContext);
}

void
nsTableFrame::InitChildReflowInput(ReflowInput& aReflowInput)
{
  nsMargin collapseBorder;
  nsMargin padding(0,0,0,0);
  nsMargin* pCollapseBorder = nullptr;
  nsPresContext* presContext = PresContext();
  if (IsBorderCollapse()) {
    nsTableRowGroupFrame* rgFrame =
       static_cast<nsTableRowGroupFrame*>(aReflowInput.mFrame);
    WritingMode wm = GetWritingMode();
    LogicalMargin border = rgFrame->GetBCBorderWidth(wm);
    collapseBorder = border.GetPhysicalMargin(wm);
    pCollapseBorder = &collapseBorder;
  }
  aReflowInput.Init(presContext, nullptr, pCollapseBorder, &padding);

  NS_ASSERTION(!mBits.mResizedColumns ||
               !aReflowInput.mParentReflowInput->mFlags.mSpecialBSizeReflow,
               "should not resize columns on special bsize reflow");
  if (mBits.mResizedColumns) {
    aReflowInput.SetIResize(true);
  }
}

// Position and size aKidFrame and update our reflow state. The origin of
// aKidRect is relative to the upper-left origin of our frame
void
nsTableFrame::PlaceChild(TableReflowInput&  aReflowInput,
                         nsIFrame*            aKidFrame,
                         nsPoint              aKidPosition,
                         ReflowOutput& aKidDesiredSize,
                         const nsRect&        aOriginalKidRect,
                         const nsRect&        aOriginalKidVisualOverflow)
{
  WritingMode wm = aReflowInput.reflowInput.GetWritingMode();
  bool isFirstReflow =
    aKidFrame->HasAnyStateBits(NS_FRAME_FIRST_REFLOW);

  // Place and size the child
  FinishReflowChild(aKidFrame, PresContext(), aKidDesiredSize, nullptr,
                    aKidPosition.x, aKidPosition.y, 0);

  InvalidateTableFrame(aKidFrame, aOriginalKidRect, aOriginalKidVisualOverflow,
                       isFirstReflow);

  // Adjust the running block-offset
  aReflowInput.bCoord += aKidDesiredSize.BSize(wm);

  // If our bsize is constrained, then update the available bsize
  if (NS_UNCONSTRAINEDSIZE != aReflowInput.availSize.BSize(wm)) {
    aReflowInput.availSize.BSize(wm) -= aKidDesiredSize.BSize(wm);
  }
}

void
nsTableFrame::OrderRowGroups(RowGroupArray& aChildren,
                             nsTableRowGroupFrame** aHead,
                             nsTableRowGroupFrame** aFoot) const
{
  aChildren.Clear();
  nsTableRowGroupFrame* head = nullptr;
  nsTableRowGroupFrame* foot = nullptr;

  nsIFrame* kidFrame = mFrames.FirstChild();
  while (kidFrame) {
    const nsStyleDisplay* kidDisplay = kidFrame->StyleDisplay();
    nsTableRowGroupFrame* rowGroup =
      static_cast<nsTableRowGroupFrame*>(kidFrame);

    switch (kidDisplay->mDisplay) {
    case mozilla::StyleDisplay::TableHeaderGroup:
      if (head) { // treat additional thead like tbody
        aChildren.AppendElement(rowGroup);
      }
      else {
        head = rowGroup;
      }
      break;
    case mozilla::StyleDisplay::TableFooterGroup:
      if (foot) { // treat additional tfoot like tbody
        aChildren.AppendElement(rowGroup);
      }
      else {
        foot = rowGroup;
      }
      break;
    case mozilla::StyleDisplay::TableRowGroup:
      aChildren.AppendElement(rowGroup);
      break;
    default:
      NS_NOTREACHED("How did this produce an nsTableRowGroupFrame?");
      // Just ignore it
      break;
    }
    // Get the next sibling but skip it if it's also the next-in-flow, since
    // a next-in-flow will not be part of the current table.
    while (kidFrame) {
      nsIFrame* nif = kidFrame->GetNextInFlow();
      kidFrame = kidFrame->GetNextSibling();
      if (kidFrame != nif)
        break;
    }
  }

  // put the thead first
  if (head) {
    aChildren.InsertElementAt(0, head);
  }
  if (aHead)
    *aHead = head;
  // put the tfoot after the last tbody
  if (foot) {
    aChildren.AppendElement(foot);
  }
  if (aFoot)
    *aFoot = foot;
}

nsTableRowGroupFrame*
nsTableFrame::GetTHead() const
{
  nsIFrame* kidFrame = mFrames.FirstChild();
  while (kidFrame) {
    if (kidFrame->StyleDisplay()->mDisplay ==
          mozilla::StyleDisplay::TableHeaderGroup) {
      return static_cast<nsTableRowGroupFrame*>(kidFrame);
    }

    // Get the next sibling but skip it if it's also the next-in-flow, since
    // a next-in-flow will not be part of the current table.
    while (kidFrame) {
      nsIFrame* nif = kidFrame->GetNextInFlow();
      kidFrame = kidFrame->GetNextSibling();
      if (kidFrame != nif)
        break;
    }
  }

  return nullptr;
}

nsTableRowGroupFrame*
nsTableFrame::GetTFoot() const
{
  nsIFrame* kidFrame = mFrames.FirstChild();
  while (kidFrame) {
    if (kidFrame->StyleDisplay()->mDisplay ==
          mozilla::StyleDisplay::TableFooterGroup) {
      return static_cast<nsTableRowGroupFrame*>(kidFrame);
    }

    // Get the next sibling but skip it if it's also the next-in-flow, since
    // a next-in-flow will not be part of the current table.
    while (kidFrame) {
      nsIFrame* nif = kidFrame->GetNextInFlow();
      kidFrame = kidFrame->GetNextSibling();
      if (kidFrame != nif)
        break;
    }
  }

  return nullptr;
}

static bool
IsRepeatable(nscoord aFrameHeight, nscoord aPageHeight)
{
  return aFrameHeight < (aPageHeight / 4);
}

nsresult
nsTableFrame::SetupHeaderFooterChild(const TableReflowInput& aReflowInput,
                                     nsTableRowGroupFrame* aFrame,
                                     nscoord* aDesiredHeight)
{
  nsPresContext* presContext = PresContext();
  nscoord pageHeight = presContext->GetPageSize().height;

  // Reflow the child with unconstrained height
  WritingMode wm = aFrame->GetWritingMode();
  LogicalSize availSize = aReflowInput.reflowInput.AvailableSize(wm);

  nsSize containerSize = availSize.GetPhysicalSize(wm);
  // XXX check for containerSize.* == NS_UNCONSTRAINEDSIZE

  availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE;
  ReflowInput kidReflowInput(presContext, aReflowInput.reflowInput,
                                   aFrame, availSize, nullptr,
                                   ReflowInput::CALLER_WILL_INIT);
  InitChildReflowInput(kidReflowInput);
  kidReflowInput.mFlags.mIsTopOfPage = true;
  ReflowOutput desiredSize(aReflowInput.reflowInput);
  desiredSize.ClearSize();
  nsReflowStatus status;
  ReflowChild(aFrame, presContext, desiredSize, kidReflowInput,
              wm, LogicalPoint(wm, aReflowInput.iCoord, aReflowInput.bCoord),
              containerSize, 0, status);
  // The child will be reflowed again "for real" so no need to place it now

  aFrame->SetRepeatable(IsRepeatable(desiredSize.Height(), pageHeight));
  *aDesiredHeight = desiredSize.Height();
  return NS_OK;
}

void
nsTableFrame::PlaceRepeatedFooter(TableReflowInput& aReflowInput,
                                  nsTableRowGroupFrame *aTfoot,
                                  nscoord aFooterHeight)
{
  nsPresContext* presContext = PresContext();
  WritingMode wm = aTfoot->GetWritingMode();
  LogicalSize kidAvailSize = aReflowInput.availSize;

  nsSize containerSize = kidAvailSize.GetPhysicalSize(wm);
  // XXX check for containerSize.* == NS_UNCONSTRAINEDSIZE

  kidAvailSize.BSize(wm) = aFooterHeight;
  ReflowInput footerReflowInput(presContext,
                                      aReflowInput.reflowInput,
                                      aTfoot, kidAvailSize,
                                      nullptr,
                                      ReflowInput::CALLER_WILL_INIT);
  InitChildReflowInput(footerReflowInput);
  aReflowInput.bCoord += GetRowSpacing(GetRowCount());

  nsRect origTfootRect = aTfoot->GetRect();
  nsRect origTfootVisualOverflow = aTfoot->GetVisualOverflowRect();

  nsReflowStatus footerStatus;
  ReflowOutput desiredSize(aReflowInput.reflowInput);
  desiredSize.ClearSize();
  LogicalPoint kidPosition(wm, aReflowInput.iCoord, aReflowInput.bCoord);
  ReflowChild(aTfoot, presContext, desiredSize, footerReflowInput,
              wm, kidPosition, containerSize, 0, footerStatus);
  footerReflowInput.ApplyRelativePositioning(&kidPosition, containerSize);

  PlaceChild(aReflowInput, aTfoot,
             // We subtract desiredSize.PhysicalSize() from containerSize here
             // to account for the fact that in RTL modes, the origin is
             // on the right-hand side so we're not simply converting a
             // point, we're also swapping the child's origin side.
             kidPosition.GetPhysicalPoint(wm, containerSize -
                                              desiredSize.PhysicalSize()),
             desiredSize, origTfootRect, origTfootVisualOverflow);
}

// Reflow the children based on the avail size and reason in aReflowInput
void
nsTableFrame::ReflowChildren(TableReflowInput& aReflowInput,
                             nsReflowStatus&     aStatus,
                             nsIFrame*&          aLastChildReflowed,
                             nsOverflowAreas&    aOverflowAreas)
{
  aStatus.Reset();
  aLastChildReflowed = nullptr;

  nsIFrame* prevKidFrame = nullptr;
  WritingMode wm = aReflowInput.reflowInput.GetWritingMode();
  NS_WARNING_ASSERTION(
    wm.IsVertical() ||
    NS_UNCONSTRAINEDSIZE != aReflowInput.reflowInput.ComputedWidth(),
    "shouldn't have unconstrained width in horizontal mode");
  nsSize containerSize =
    aReflowInput.reflowInput.ComputedSizeAsContainerIfConstrained();

  nsPresContext* presContext = PresContext();
  // XXXldb Should we be checking constrained height instead?
  // tables are not able to pull back children from its next inflow, so even
  // under paginated contexts tables are should not paginate if they are inside
  // column set
  bool isPaginated = presContext->IsPaginated() &&
                       NS_UNCONSTRAINEDSIZE != aReflowInput.availSize.BSize(wm) &&
                       aReflowInput.reflowInput.mFlags.mTableIsSplittable;

  // Tables currently (though we ought to fix this) only fragment in
  // paginated contexts, not in multicolumn contexts.  (See bug 888257.)
  // This is partly because they don't correctly handle incremental
  // layout when paginated.
  //
  // Since we propagate NS_FRAME_IS_DIRTY from parent to child at the
  // start of the parent's reflow (behavior that's new as of bug
  // 1308876), we can do things that are effectively incremental reflow
  // during paginated layout.  Since the table code doesn't handle this
  // correctly, we need to set the flag that says to reflow everything
  // within the table structure.
  if (presContext->IsPaginated()) {
    SetGeometryDirty();
  }

  aOverflowAreas.Clear();

  bool reflowAllKids = aReflowInput.reflowInput.ShouldReflowAllKids() ||
                         mBits.mResizedColumns ||
                         IsGeometryDirty();

  RowGroupArray rowGroups;
  nsTableRowGroupFrame *thead, *tfoot;
  OrderRowGroups(rowGroups, &thead, &tfoot);
  bool pageBreak = false;
  nscoord footerHeight = 0;

  // Determine the repeatablility of headers and footers, and also the desired
  // height of any repeatable footer.
  // The repeatability of headers on continued tables is handled
  // when they are created in nsCSSFrameConstructor::CreateContinuingTableFrame.
  // We handle the repeatability of footers again here because we need to
  // determine the footer's height anyway. We could perhaps optimize by
  // using the footer's prev-in-flow's height instead of reflowing it again,
  // but there's no real need.
  if (isPaginated) {
    if (thead && !GetPrevInFlow()) {
      nscoord desiredHeight;
      nsresult rv = SetupHeaderFooterChild(aReflowInput, thead, &desiredHeight);
      if (NS_FAILED(rv))
        return;
    }
    if (tfoot) {
      nsresult rv = SetupHeaderFooterChild(aReflowInput, tfoot, &footerHeight);
      if (NS_FAILED(rv))
        return;
    }
  }
   // if the child is a tbody in paginated mode reduce the height by a repeated footer
  bool allowRepeatedFooter = false;
  for (size_t childX = 0; childX < rowGroups.Length(); childX++) {
    nsIFrame* kidFrame = rowGroups[childX];
    nsTableRowGroupFrame* rowGroupFrame = rowGroups[childX];
    nscoord cellSpacingB = GetRowSpacing(rowGroupFrame->GetStartRowIndex()+
                                         rowGroupFrame->GetRowCount());
    // Get the frame state bits
    // See if we should only reflow the dirty child frames
    if (reflowAllKids ||
        NS_SUBTREE_DIRTY(kidFrame) ||
        (aReflowInput.reflowInput.mFlags.mSpecialBSizeReflow &&
         (isPaginated || kidFrame->HasAnyStateBits(
                          NS_FRAME_CONTAINS_RELATIVE_BSIZE)))) {
      if (pageBreak) {
        if (allowRepeatedFooter) {
          PlaceRepeatedFooter(aReflowInput, tfoot, footerHeight);
        }
        else if (tfoot && tfoot->IsRepeatable()) {
          tfoot->SetRepeatable(false);
        }
        PushChildren(rowGroups, childX);
        aStatus.Reset();
        aStatus.SetIncomplete();
        break;
      }

      LogicalSize kidAvailSize(aReflowInput.availSize);
      allowRepeatedFooter = false;
      if (isPaginated && (NS_UNCONSTRAINEDSIZE != kidAvailSize.BSize(wm))) {
        nsTableRowGroupFrame* kidRG =
          static_cast<nsTableRowGroupFrame*>(kidFrame);
        if (kidRG != thead && kidRG != tfoot && tfoot && tfoot->IsRepeatable()) {
          // the child is a tbody and there is a repeatable footer
          NS_ASSERTION(tfoot == rowGroups[rowGroups.Length() - 1], "Missing footer!");
          if (footerHeight + cellSpacingB < kidAvailSize.BSize(wm)) {
            allowRepeatedFooter = true;
            kidAvailSize.BSize(wm) -= footerHeight + cellSpacingB;
          }
        }
      }

      nsRect oldKidRect = kidFrame->GetRect();
      nsRect oldKidVisualOverflow = kidFrame->GetVisualOverflowRect();

      ReflowOutput desiredSize(aReflowInput.reflowInput);
      desiredSize.ClearSize();

      // Reflow the child into the available space
      ReflowInput kidReflowInput(presContext, aReflowInput.reflowInput,
                                       kidFrame,
                                       kidAvailSize,
                                       nullptr,
                                       ReflowInput::CALLER_WILL_INIT);
      InitChildReflowInput(kidReflowInput);

      // If this isn't the first row group, and the previous row group has a
      // nonzero YMost, then we can't be at the top of the page.
      // We ignore a repeated head row group in this check to avoid causing
      // infinite loops in some circumstances - see bug 344883.
      if (childX > ((thead && IsRepeatedFrame(thead)) ? 1u : 0u) &&
          (rowGroups[childX - 1]->GetNormalRect().YMost() > 0)) {
        kidReflowInput.mFlags.mIsTopOfPage = false;
      }
      aReflowInput.bCoord += cellSpacingB;
      if (NS_UNCONSTRAINEDSIZE != aReflowInput.availSize.BSize(wm)) {
        aReflowInput.availSize.BSize(wm) -= cellSpacingB;
      }
      // record the presence of a next in flow, it might get destroyed so we
      // need to reorder the row group array
      bool reorder = false;
      if (kidFrame->GetNextInFlow())
        reorder = true;

      LogicalPoint kidPosition(wm, aReflowInput.iCoord, aReflowInput.bCoord);
      ReflowChild(kidFrame, presContext, desiredSize, kidReflowInput,
                  wm, kidPosition, containerSize, 0, aStatus);
      kidReflowInput.ApplyRelativePositioning(&kidPosition, containerSize);

      if (reorder) {
        // reorder row groups the reflow may have changed the nextinflows
        OrderRowGroups(rowGroups, &thead, &tfoot);
        childX = rowGroups.IndexOf(kidFrame);
        if (childX == RowGroupArray::NoIndex) {
          // XXXbz can this happen?
          childX = rowGroups.Length();
        }
      }
      if (isPaginated && !aStatus.IsFullyComplete() &&
          ShouldAvoidBreakInside(aReflowInput.reflowInput)) {
        aStatus.SetInlineLineBreakBeforeAndReset();
        break;
      }
      // see if the rowgroup did not fit on this page might be pushed on
      // the next page
      if (isPaginated &&
          (aStatus.IsInlineBreakBefore() ||
           (aStatus.IsComplete() &&
            (NS_UNCONSTRAINEDSIZE != kidReflowInput.AvailableHeight()) &&
            kidReflowInput.AvailableHeight() < desiredSize.Height()))) {
        if (ShouldAvoidBreakInside(aReflowInput.reflowInput)) {
          aStatus.SetInlineLineBreakBeforeAndReset();
          break;
        }
        // if we are on top of the page place with dataloss
        if (kidReflowInput.mFlags.mIsTopOfPage) {
          if (childX+1 < rowGroups.Length()) {
            nsIFrame* nextRowGroupFrame = rowGroups[childX + 1];
            if (nextRowGroupFrame) {
              PlaceChild(aReflowInput, kidFrame,
                         kidPosition.GetPhysicalPoint(wm,
                           containerSize - desiredSize.PhysicalSize()),
                         desiredSize, oldKidRect, oldKidVisualOverflow);
              if (allowRepeatedFooter) {
                PlaceRepeatedFooter(aReflowInput, tfoot, footerHeight);
              }
              else if (tfoot && tfoot->IsRepeatable()) {
                tfoot->SetRepeatable(false);
              }
              aStatus.Reset();
              aStatus.SetIncomplete();
              PushChildren(rowGroups, childX + 1);
              aLastChildReflowed = kidFrame;
              break;
            }
          }
        }
        else { // we are not on top, push this rowgroup onto the next page
          if (prevKidFrame) { // we had a rowgroup before so push this
            if (allowRepeatedFooter) {
              PlaceRepeatedFooter(aReflowInput, tfoot, footerHeight);
            }
            else if (tfoot && tfoot->IsRepeatable()) {
              tfoot->SetRepeatable(false);
            }
            aStatus.Reset();
            aStatus.SetIncomplete();
            PushChildren(rowGroups, childX);
            aLastChildReflowed = prevKidFrame;
            break;
          }
          else { // we can't push so lets make clear how much space we need
            PlaceChild(aReflowInput, kidFrame,
                       kidPosition.GetPhysicalPoint(wm,
                         containerSize - desiredSize.PhysicalSize()),
                       desiredSize, oldKidRect, oldKidVisualOverflow);
            aLastChildReflowed = kidFrame;
            if (allowRepeatedFooter) {
              PlaceRepeatedFooter(aReflowInput, tfoot, footerHeight);
              aLastChildReflowed = tfoot;
            }
            break;
          }
        }
      }

      aLastChildReflowed   = kidFrame;

      pageBreak = false;
      // see if there is a page break after this row group or before the next one
      if (aStatus.IsComplete() && isPaginated &&
          (NS_UNCONSTRAINEDSIZE != kidReflowInput.AvailableHeight())) {
        nsIFrame* nextKid =
          (childX + 1 < rowGroups.Length()) ? rowGroups[childX + 1] : nullptr;
        pageBreak = PageBreakAfter(kidFrame, nextKid);
      }

      // Place the child
      PlaceChild(aReflowInput, kidFrame,
                 kidPosition.GetPhysicalPoint(wm, containerSize -
                                                  desiredSize.PhysicalSize()),
                 desiredSize, oldKidRect, oldKidVisualOverflow);

      // Remember where we just were in case we end up pushing children
      prevKidFrame = kidFrame;

      MOZ_ASSERT(!aStatus.IsIncomplete() || isPaginated,
                 "Table contents should only fragment in paginated contexts");

      // Special handling for incomplete children
      if (isPaginated && aStatus.IsIncomplete()) {
        nsIFrame* kidNextInFlow = kidFrame->GetNextInFlow();
        if (!kidNextInFlow) {
          // The child doesn't have a next-in-flow so create a continuing
          // frame. This hooks the child into the flow
          kidNextInFlow = presContext->PresShell()->FrameConstructor()->
            CreateContinuingFrame(presContext, kidFrame, this);

          // Insert the kid's new next-in-flow into our sibling list...
          mFrames.InsertFrame(nullptr, kidFrame, kidNextInFlow);
          // and in rowGroups after childX so that it will get pushed below.
          rowGroups.InsertElementAt(childX + 1,
                      static_cast<nsTableRowGroupFrame*>(kidNextInFlow));
        } else if (kidNextInFlow == kidFrame->GetNextSibling()) {
          // OrderRowGroups excludes NIFs in the child list from 'rowGroups'
          // so we deal with that here to make sure they get pushed.
          MOZ_ASSERT(!rowGroups.Contains(kidNextInFlow),
                     "OrderRowGroups must not put our NIF in 'rowGroups'");
          rowGroups.InsertElementAt(childX + 1,
                      static_cast<nsTableRowGroupFrame*>(kidNextInFlow));
        }

        // We've used up all of our available space so push the remaining
        // children.
        if (allowRepeatedFooter) {
          PlaceRepeatedFooter(aReflowInput, tfoot, footerHeight);
        }
        else if (tfoot && tfoot->IsRepeatable()) {
          tfoot->SetRepeatable(false);
        }

        nsIFrame* nextSibling = kidFrame->GetNextSibling();
        if (nextSibling) {
          PushChildren(rowGroups, childX + 1);
        }
        break;
      }
    }
    else { // it isn't being reflowed
      aReflowInput.bCoord += cellSpacingB;
      LogicalRect kidRect(wm, kidFrame->GetNormalRect(), containerSize);
      if (kidRect.BStart(wm) != aReflowInput.bCoord) {
        // invalidate the old position
        kidFrame->InvalidateFrameSubtree();
        // move to the new position
        kidFrame->MovePositionBy(wm, LogicalPoint(wm, 0, aReflowInput.bCoord -
                                                         kidRect.BStart(wm)));
        RePositionViews(kidFrame);
        // invalidate the new position
        kidFrame->InvalidateFrameSubtree();
      }
      aReflowInput.bCoord += kidRect.BSize(wm);

      // If our bsize is constrained then update the available bsize.
      if (NS_UNCONSTRAINEDSIZE != aReflowInput.availSize.BSize(wm)) {
        aReflowInput.availSize.BSize(wm) -= cellSpacingB + kidRect.BSize(wm);
      }
    }
  }

  // We've now propagated the column resizes and geometry changes to all
  // the children.
  mBits.mResizedColumns = false;
  ClearGeometryDirty();
}

void
nsTableFrame::ReflowColGroups(gfxContext *aRenderingContext)
{
  if (!GetPrevInFlow() && !HaveReflowedColGroups()) {
    ReflowOutput kidMet(GetWritingMode());
    nsPresContext *presContext = PresContext();
    for (nsIFrame* kidFrame : mColGroups) {
      if (NS_SUBTREE_DIRTY(kidFrame)) {
        // The column groups don't care about dimensions or reflow states.
        ReflowInput
          kidReflowInput(presContext, kidFrame, aRenderingContext,
                         LogicalSize(kidFrame->GetWritingMode()));
        nsReflowStatus cgStatus;
        ReflowChild(kidFrame, presContext, kidMet, kidReflowInput, 0, 0, 0,
                    cgStatus);
        FinishReflowChild(kidFrame, presContext, kidMet, nullptr, 0, 0, 0);
      }
    }
    SetHaveReflowedColGroups(true);
  }
}

void
nsTableFrame::CalcDesiredBSize(const ReflowInput& aReflowInput,
                               ReflowOutput& aDesiredSize)
{
  WritingMode wm = aReflowInput.GetWritingMode();
  nsTableCellMap* cellMap = GetCellMap();
  if (!cellMap) {
    NS_ERROR("never ever call me until the cell map is built!");
    aDesiredSize.BSize(wm) = 0;
    return;
  }
  LogicalMargin borderPadding = GetChildAreaOffset(wm, &aReflowInput);

  // get the natural bsize based on the last child's (row group) rect
  RowGroupArray rowGroups;
  OrderRowGroups(rowGroups);
  if (rowGroups.IsEmpty()) {
    // tables can be used as rectangular items without content
    nscoord tableSpecifiedBSize = CalcBorderBoxBSize(aReflowInput);
    if ((NS_UNCONSTRAINEDSIZE != tableSpecifiedBSize) &&
        (tableSpecifiedBSize > 0) &&
        eCompatibility_NavQuirks != PresContext()->CompatibilityMode()) {
          // empty tables should not have a size in quirks mode
      aDesiredSize.BSize(wm) = tableSpecifiedBSize;
    } else {
      aDesiredSize.BSize(wm) = 0;
    }
    return;
  }
  int32_t rowCount = cellMap->GetRowCount();
  int32_t colCount = cellMap->GetColCount();
  nscoord desiredBSize = borderPadding.BStartEnd(wm);
  if (rowCount > 0 && colCount > 0) {
    desiredBSize += GetRowSpacing(-1);
    for (uint32_t rgIdx = 0; rgIdx < rowGroups.Length(); rgIdx++) {
      desiredBSize += rowGroups[rgIdx]->BSize(wm) +
                       GetRowSpacing(rowGroups[rgIdx]->GetRowCount() +
                                     rowGroups[rgIdx]->GetStartRowIndex());
    }
  }

  // see if a specified table bsize requires dividing additional space to rows
  if (!GetPrevInFlow()) {
    nscoord tableSpecifiedBSize = CalcBorderBoxBSize(aReflowInput);
    if ((tableSpecifiedBSize > 0) &&
        (tableSpecifiedBSize != NS_UNCONSTRAINEDSIZE) &&
        (tableSpecifiedBSize > desiredBSize)) {
      // proportionately distribute the excess bsize to unconstrained rows in each
      // unconstrained row group.
      DistributeBSizeToRows(aReflowInput, tableSpecifiedBSize - desiredBSize);
      // this might have changed the overflow area incorporate the childframe overflow area.
      for (nsIFrame* kidFrame : mFrames) {
        ConsiderChildOverflow(aDesiredSize.mOverflowAreas, kidFrame);
      }
      desiredBSize = tableSpecifiedBSize;
    }
  }
  aDesiredSize.BSize(wm) = desiredBSize;
}

static
void ResizeCells(nsTableFrame& aTableFrame)
{
  nsTableFrame::RowGroupArray rowGroups;
  aTableFrame.OrderRowGroups(rowGroups);
  WritingMode wm = aTableFrame.GetWritingMode();
  ReflowOutput tableDesiredSize(wm);
  tableDesiredSize.SetSize(wm, aTableFrame.GetLogicalSize(wm));
  tableDesiredSize.SetOverflowAreasToDesiredBounds();

  for (uint32_t rgIdx = 0; rgIdx < rowGroups.Length(); rgIdx++) {
    nsTableRowGroupFrame* rgFrame = rowGroups[rgIdx];

    ReflowOutput groupDesiredSize(wm);
    groupDesiredSize.SetSize(wm, rgFrame->GetLogicalSize(wm));
    groupDesiredSize.SetOverflowAreasToDesiredBounds();

    nsTableRowFrame* rowFrame = rgFrame->GetFirstRow();
    while (rowFrame) {
      rowFrame->DidResize();
      rgFrame->ConsiderChildOverflow(groupDesiredSize.mOverflowAreas, rowFrame);
      rowFrame = rowFrame->GetNextRow();
    }
    rgFrame->FinishAndStoreOverflow(&groupDesiredSize);
    tableDesiredSize.mOverflowAreas.UnionWith(groupDesiredSize.mOverflowAreas +
                                              rgFrame->GetPosition());
  }
  aTableFrame.FinishAndStoreOverflow(&tableDesiredSize);
}

void
nsTableFrame::DistributeBSizeToRows(const ReflowInput& aReflowInput,
                                    nscoord                  aAmount)
{
  WritingMode wm = aReflowInput.GetWritingMode();
  LogicalMargin borderPadding = GetChildAreaOffset(wm, &aReflowInput);

  nsSize containerSize =
    aReflowInput.ComputedSizeAsContainerIfConstrained();

  RowGroupArray rowGroups;
  OrderRowGroups(rowGroups);

  nscoord amountUsed = 0;
  // distribute space to each pct bsize row whose row group doesn't have a computed
  // bsize, and base the pct on the table bsize. If the row group had a computed
  // bsize, then this was already done in nsTableRowGroupFrame::CalculateRowBSizes
  nscoord pctBasis = aReflowInput.ComputedBSize() - GetRowSpacing(-1, GetRowCount());
  nscoord bOriginRG = borderPadding.BStart(wm) + GetRowSpacing(0);
  nscoord bEndRG = bOriginRG;
  uint32_t rgIdx;
  for (rgIdx = 0; rgIdx < rowGroups.Length(); rgIdx++) {
    nsTableRowGroupFrame* rgFrame = rowGroups[rgIdx];
    nscoord amountUsedByRG = 0;
    nscoord bOriginRow = 0;
    LogicalRect rgNormalRect(wm, rgFrame->GetNormalRect(), containerSize);
    if (!rgFrame->HasStyleBSize()) {
      nsTableRowFrame* rowFrame = rgFrame->GetFirstRow();
      while (rowFrame) {
        // We don't know the final width of the rowGroupFrame yet, so use 0,0
        // as a dummy containerSize here; we'll adjust the row positions at
        // the end, after the rowGroup size is finalized.
        const nsSize dummyContainerSize;
        LogicalRect rowNormalRect(wm, rowFrame->GetNormalRect(),
                                  dummyContainerSize);
        nscoord cellSpacingB = GetRowSpacing(rowFrame->GetRowIndex());
        if ((amountUsed < aAmount) && rowFrame->HasPctBSize()) {
          nscoord pctBSize = rowFrame->GetInitialBSize(pctBasis);
          nscoord amountForRow = std::min(aAmount - amountUsed,
                                          pctBSize - rowNormalRect.BSize(wm));
          if (amountForRow > 0) {
            // XXXbz we don't need to move the row's b-position to bOriginRow?
            nsRect origRowRect = rowFrame->GetRect();
            nscoord newRowBSize = rowNormalRect.BSize(wm) + amountForRow;
            rowFrame->SetSize(wm, LogicalSize(wm, rowNormalRect.ISize(wm),
                              newRowBSize));
            bOriginRow += newRowBSize + cellSpacingB;
            bEndRG += newRowBSize + cellSpacingB;
            amountUsed += amountForRow;
            amountUsedByRG += amountForRow;
            //rowFrame->DidResize();
            nsTableFrame::RePositionViews(rowFrame);

            rgFrame->InvalidateFrameWithRect(origRowRect);
            rgFrame->InvalidateFrame();
          }
        }
        else {
          if (amountUsed > 0 && bOriginRow != rowNormalRect.BStart(wm) &&
              !HasAnyStateBits(NS_FRAME_FIRST_REFLOW)) {
            rowFrame->InvalidateFrameSubtree();
            rowFrame->MovePositionBy(wm, LogicalPoint(wm, 0, bOriginRow -
                                                    rowNormalRect.BStart(wm)));
            nsTableFrame::RePositionViews(rowFrame);
            rowFrame->InvalidateFrameSubtree();
          }
          bOriginRow += rowNormalRect.BSize(wm) + cellSpacingB;
          bEndRG += rowNormalRect.BSize(wm) + cellSpacingB;
        }
        rowFrame = rowFrame->GetNextRow();
      }
      if (amountUsed > 0) {
        if (rgNormalRect.BStart(wm) != bOriginRG) {
          rgFrame->InvalidateFrameSubtree();
        }

        nsRect origRgNormalRect = rgFrame->GetRect();
        nsRect origRgVisualOverflow = rgFrame->GetVisualOverflowRect();

        rgFrame->MovePositionBy(wm, LogicalPoint(wm, 0, bOriginRG -
                                                 rgNormalRect.BStart(wm)));
        rgFrame->SetSize(wm, LogicalSize(wm, rgNormalRect.ISize(wm),
                                rgNormalRect.BSize(wm) + amountUsedByRG));

        nsTableFrame::InvalidateTableFrame(rgFrame, origRgNormalRect,
                                           origRgVisualOverflow, false);
      }
    }
    else if (amountUsed > 0 && bOriginRG != rgNormalRect.BStart(wm)) {
      rgFrame->InvalidateFrameSubtree();
      rgFrame->MovePositionBy(wm, LogicalPoint(wm, 0, bOriginRG -
                                               rgNormalRect.BStart(wm)));
      // Make sure child views are properly positioned
      nsTableFrame::RePositionViews(rgFrame);
      rgFrame->InvalidateFrameSubtree();
    }
    bOriginRG = bEndRG;
  }

  if (amountUsed >= aAmount) {
    ResizeCells(*this);
    return;
  }

  // get the first row without a style bsize where its row group has an
  // unconstrained bsize
  nsTableRowGroupFrame* firstUnStyledRG  = nullptr;
  nsTableRowFrame*      firstUnStyledRow = nullptr;
  for (rgIdx = 0; rgIdx < rowGroups.Length() && !firstUnStyledRG; rgIdx++) {
    nsTableRowGroupFrame* rgFrame = rowGroups[rgIdx];
    if (!rgFrame->HasStyleBSize()) {
      nsTableRowFrame* rowFrame = rgFrame->GetFirstRow();
      while (rowFrame) {
        if (!rowFrame->HasStyleBSize()) {
          firstUnStyledRG = rgFrame;
          firstUnStyledRow = rowFrame;
          break;
        }
        rowFrame = rowFrame->GetNextRow();
      }
    }
  }

  nsTableRowFrame* lastEligibleRow = nullptr;
  // Accumulate the correct divisor. This will be the total bsize of all
  // unstyled rows inside unstyled row groups, unless there are none, in which
  // case, it will be number of all rows. If the unstyled rows don't have a
  // bsize, divide the space equally among them.
  nscoord divisor = 0;
  int32_t eligibleRows = 0;
  bool expandEmptyRows = false;

  if (!firstUnStyledRow) {
    // there is no unstyled row
    divisor = GetRowCount();
  }
  else {
    for (rgIdx = 0; rgIdx < rowGroups.Length(); rgIdx++) {
      nsTableRowGroupFrame* rgFrame = rowGroups[rgIdx];
      if (!firstUnStyledRG || !rgFrame->HasStyleBSize()) {
        nsTableRowFrame* rowFrame = rgFrame->GetFirstRow();
        while (rowFrame) {
          if (!firstUnStyledRG || !rowFrame->HasStyleBSize()) {
            NS_ASSERTION(rowFrame->BSize(wm) >= 0,
                         "negative row frame block-size");
            divisor += rowFrame->BSize(wm);
            eligibleRows++;
            lastEligibleRow = rowFrame;
          }
          rowFrame = rowFrame->GetNextRow();
        }
      }
    }
    if (divisor <= 0) {
      if (eligibleRows > 0) {
        expandEmptyRows = true;
      }
      else {
        NS_ERROR("invalid divisor");
        return;
      }
    }
  }
  // allocate the extra bsize to the unstyled row groups and rows
  nscoord bSizeToDistribute = aAmount - amountUsed;
  bOriginRG = borderPadding.BStart(wm) + GetRowSpacing(-1);
  bEndRG = bOriginRG;
  for (rgIdx = 0; rgIdx < rowGroups.Length(); rgIdx++) {
    nsTableRowGroupFrame* rgFrame = rowGroups[rgIdx];
    nscoord amountUsedByRG = 0;
    nscoord bOriginRow = 0;
    LogicalRect rgNormalRect(wm, rgFrame->GetNormalRect(), containerSize);
    nsRect rgVisualOverflow = rgFrame->GetVisualOverflowRect();
    // see if there is an eligible row group or we distribute to all rows
    if (!firstUnStyledRG || !rgFrame->HasStyleBSize() || !eligibleRows) {
      for (nsTableRowFrame* rowFrame = rgFrame->GetFirstRow();
           rowFrame; rowFrame = rowFrame->GetNextRow()) {
        nscoord cellSpacingB = GetRowSpacing(rowFrame->GetRowIndex());
        // We don't know the final width of the rowGroupFrame yet, so use 0,0
        // as a dummy containerSize here; we'll adjust the row positions at
        // the end, after the rowGroup size is finalized.
        const nsSize dummyContainerSize;
        LogicalRect rowNormalRect(wm, rowFrame->GetNormalRect(),
                                  dummyContainerSize);
        nsRect rowVisualOverflow = rowFrame->GetVisualOverflowRect();
        // see if there is an eligible row or we distribute to all rows
        if (!firstUnStyledRow || !rowFrame->HasStyleBSize() || !eligibleRows) {
          float ratio;
          if (eligibleRows) {
            if (!expandEmptyRows) {
              // The amount of additional space each row gets is proportional
              // to its bsize
              ratio = float(rowNormalRect.BSize(wm)) / float(divisor);
            } else {
              // empty rows get all the same additional space
              ratio = 1.0f / float(eligibleRows);
            }
          }
          else {
            // all rows get the same additional space
            ratio = 1.0f / float(divisor);
          }
          // give rows their additional space, except for the last row which
          // gets the remainder
          nscoord amountForRow =
            (rowFrame == lastEligibleRow)
              ? aAmount - amountUsed
              : NSToCoordRound(((float)(bSizeToDistribute)) * ratio);
          amountForRow = std::min(amountForRow, aAmount - amountUsed);

          if (bOriginRow != rowNormalRect.BStart(wm)) {
            rowFrame->InvalidateFrameSubtree();
          }

          // update the row bsize
          nsRect origRowRect = rowFrame->GetRect();
          nscoord newRowBSize = rowNormalRect.BSize(wm) + amountForRow;
          rowFrame->MovePositionBy(wm, LogicalPoint(wm, 0, bOriginRow -
                                                    rowNormalRect.BStart(wm)));
          rowFrame->SetSize(wm, LogicalSize(wm, rowNormalRect.ISize(wm),
                                            newRowBSize));

          bOriginRow += newRowBSize + cellSpacingB;
          bEndRG += newRowBSize + cellSpacingB;

          amountUsed += amountForRow;
          amountUsedByRG += amountForRow;
          NS_ASSERTION((amountUsed <= aAmount), "invalid row allocation");
          //rowFrame->DidResize();
          nsTableFrame::RePositionViews(rowFrame);

          nsTableFrame::InvalidateTableFrame(rowFrame, origRowRect,
                                             rowVisualOverflow, false);
        }
        else {
          if (amountUsed > 0 && bOriginRow != rowNormalRect.BStart(wm)) {
            rowFrame->InvalidateFrameSubtree();
            rowFrame->MovePositionBy(wm, LogicalPoint(wm, 0, bOriginRow -
                                                    rowNormalRect.BStart(wm)));
            nsTableFrame::RePositionViews(rowFrame);
            rowFrame->InvalidateFrameSubtree();
          }
          bOriginRow += rowNormalRect.BSize(wm) + cellSpacingB;
          bEndRG += rowNormalRect.BSize(wm) + cellSpacingB;
        }
      }

      if (amountUsed > 0) {
        if (rgNormalRect.BStart(wm) != bOriginRG) {
          rgFrame->InvalidateFrameSubtree();
        }

        nsRect origRgNormalRect = rgFrame->GetRect();
        rgFrame->MovePositionBy(wm, LogicalPoint(wm, 0, bOriginRG -
                                                 rgNormalRect.BStart(wm)));
        rgFrame->SetSize(wm, LogicalSize(wm, rgNormalRect.ISize(wm),
                                rgNormalRect.BSize(wm) + amountUsedByRG));

        nsTableFrame::InvalidateTableFrame(rgFrame, origRgNormalRect,
                                           rgVisualOverflow, false);
      }

      // For vertical-rl mode, we needed to position the rows relative to the
      // right-hand (block-start) side of the group; but we couldn't do that
      // above, as we didn't know the rowGroupFrame's final block size yet.
      // So we used a dummyContainerSize of 0,0 earlier, placing the rows to
      // the left of the rowGroupFrame's (physical) origin. Now we move them
      // all rightwards by its final width.
      if (wm.IsVerticalRL()) {
        nscoord rgWidth = rgFrame->GetSize().width;
        for (nsTableRowFrame* rowFrame = rgFrame->GetFirstRow();
             rowFrame; rowFrame = rowFrame->GetNextRow()) {
          rowFrame->InvalidateFrameSubtree();
          rowFrame->MovePositionBy(nsPoint(rgWidth, 0));
          nsTableFrame::RePositionViews(rowFrame);
          rowFrame->InvalidateFrameSubtree();
        }
      }
    }
    else if (amountUsed > 0 && bOriginRG != rgNormalRect.BStart(wm)) {
      rgFrame->InvalidateFrameSubtree();
      rgFrame->MovePositionBy(wm, LogicalPoint(wm, 0, bOriginRG -
                                               rgNormalRect.BStart(wm)));
      // Make sure child views are properly positioned
      nsTableFrame::RePositionViews(rgFrame);
      rgFrame->InvalidateFrameSubtree();
    }
    bOriginRG = bEndRG;
  }

  ResizeCells(*this);
}

nscoord
nsTableFrame::GetColumnISizeFromFirstInFlow(int32_t aColIndex)
{
  MOZ_ASSERT(this == FirstInFlow());
  nsTableColFrame* colFrame = GetColFrame(aColIndex);
  return colFrame ? colFrame->GetFinalISize() : 0;
}

nscoord
nsTableFrame::GetColSpacing()
{
  if (IsBorderCollapse())
    return 0;

  return StyleTableBorder()->mBorderSpacingCol;
}

// XXX: could cache this.  But be sure to check style changes if you do!
nscoord
nsTableFrame::GetColSpacing(int32_t aColIndex)
{
  NS_ASSERTION(aColIndex >= -1 && aColIndex <= GetColCount(),
               "Column index exceeds the bounds of the table");
  // Index is irrelevant for ordinary tables.  We check that it falls within
  // appropriate bounds to increase confidence of correctness in situations
  // where it does matter.
  return GetColSpacing();
}

nscoord
nsTableFrame::GetColSpacing(int32_t aStartColIndex,
                            int32_t aEndColIndex)
{
  NS_ASSERTION(aStartColIndex >= -1 && aStartColIndex <= GetColCount(),
               "Start column index exceeds the bounds of the table");
  NS_ASSERTION(aEndColIndex >= -1 && aEndColIndex <= GetColCount(),
               "End column index exceeds the bounds of the table");
  NS_ASSERTION(aStartColIndex <= aEndColIndex,
               "End index must not be less than start index");
  // Only one possible value so just multiply it out. Tables where index
  // matters will override this function
  return GetColSpacing() * (aEndColIndex - aStartColIndex);
}

nscoord
nsTableFrame::GetRowSpacing()
{
  if (IsBorderCollapse())
    return 0;

  return StyleTableBorder()->mBorderSpacingRow;
}

// XXX: could cache this. But be sure to check style changes if you do!
nscoord
nsTableFrame::GetRowSpacing(int32_t aRowIndex)
{
  NS_ASSERTION(aRowIndex >= -1 && aRowIndex <= GetRowCount(),
               "Row index exceeds the bounds of the table");
  // Index is irrelevant for ordinary tables.  We check that it falls within
  // appropriate bounds to increase confidence of correctness in situations
  // where it does matter.
  return GetRowSpacing();
}

nscoord
nsTableFrame::GetRowSpacing(int32_t aStartRowIndex,
                            int32_t aEndRowIndex)
{
  NS_ASSERTION(aStartRowIndex >= -1 && aStartRowIndex <= GetRowCount(),
               "Start row index exceeds the bounds of the table");
  NS_ASSERTION(aEndRowIndex >= -1 && aEndRowIndex <= GetRowCount(),
               "End row index exceeds the bounds of the table");
  NS_ASSERTION(aStartRowIndex <= aEndRowIndex,
               "End index must not be less than start index");
  // Only one possible value so just multiply it out. Tables where index
  // matters will override this function
  return GetRowSpacing() * (aEndRowIndex - aStartRowIndex);
}

/* virtual */ nscoord
nsTableFrame::GetLogicalBaseline(WritingMode aWM) const
{
  nscoord baseline;
  if (!GetNaturalBaselineBOffset(aWM, BaselineSharingGroup::eFirst, &baseline)) {
    baseline = BSize(aWM);
  }
  return baseline;
}

/* virtual */ bool
nsTableFrame::GetNaturalBaselineBOffset(WritingMode aWM,
                                        BaselineSharingGroup aBaselineGroup,
                                        nscoord*             aBaseline) const
{
  RowGroupArray orderedRowGroups;
  OrderRowGroups(orderedRowGroups);
  // XXX not sure if this should be the size of the containing block instead.
  nsSize containerSize = mRect.Size();
  auto TableBaseline = [aWM, containerSize] (nsTableRowGroupFrame* aRowGroup,
                                             nsTableRowFrame* aRow) {
    nscoord rgBStart = LogicalRect(aWM, aRowGroup->GetNormalRect(),
                                   containerSize).BStart(aWM);
    nscoord rowBStart = LogicalRect(aWM, aRow->GetNormalRect(),
                                    containerSize).BStart(aWM);
    return rgBStart + rowBStart + aRow->GetRowBaseline(aWM);
  };
  if (aBaselineGroup == BaselineSharingGroup::eFirst) {
    for (uint32_t rgIndex = 0; rgIndex < orderedRowGroups.Length(); rgIndex++) {
      nsTableRowGroupFrame* rgFrame = orderedRowGroups[rgIndex];
      nsTableRowFrame* row = rgFrame->GetFirstRow();
      if (row) {
        *aBaseline = TableBaseline(rgFrame, row);
        return true;
      }
    }
  } else {
    for (uint32_t rgIndex = orderedRowGroups.Length(); rgIndex-- > 0;) {
      nsTableRowGroupFrame* rgFrame = orderedRowGroups[rgIndex];
      nsTableRowFrame* row = rgFrame->GetLastRow();
      if (row) {
        *aBaseline = BSize(aWM) - TableBaseline(rgFrame, row);
        return true;
      }
    }
  }
  return false;
}

/* ----- global methods ----- */

nsTableFrame*
NS_NewTableFrame(nsIPresShell* aPresShell, nsStyleContext* aContext)
{
  return new (aPresShell) nsTableFrame(aContext);
}

NS_IMPL_FRAMEARENA_HELPERS(nsTableFrame)

nsTableFrame*
nsTableFrame::GetTableFrame(nsIFrame* aFrame)
{
  for (nsIFrame* ancestor = aFrame->GetParent(); ancestor;
       ancestor = ancestor->GetParent()) {
    if (ancestor->IsTableFrame()) {
      return static_cast<nsTableFrame*>(ancestor);
    }
  }
  MOZ_CRASH("unable to find table parent");
  return nullptr;
}

nsTableFrame*
nsTableFrame::GetTableFramePassingThrough(nsIFrame* aMustPassThrough,
                                          nsIFrame* aFrame,
                                          bool* aDidPassThrough)
{
  MOZ_ASSERT(aMustPassThrough == aFrame ||
             nsLayoutUtils::IsProperAncestorFrame(aMustPassThrough, aFrame),
             "aMustPassThrough should be an ancestor");

  // Retrieve the table frame, and check if we hit aMustPassThrough on the
  // way.
  *aDidPassThrough = false;
  nsTableFrame* tableFrame = nullptr;
  for (nsIFrame* ancestor = aFrame; ancestor; ancestor = ancestor->GetParent()) {
    if (ancestor == aMustPassThrough) {
      *aDidPassThrough = true;
    }
    if (ancestor->IsTableFrame()) {
      tableFrame = static_cast<nsTableFrame*>(ancestor);
      break;
    }
  }

  MOZ_ASSERT(tableFrame, "Should have a table frame here");
  return tableFrame;
}

bool
nsTableFrame::IsAutoBSize(WritingMode aWM)
{
  const nsStyleCoord &bsize = StylePosition()->BSize(aWM);
  // Don't consider calc() here like this quirk for percent.
  return bsize.GetUnit() == eStyleUnit_Auto ||
         (bsize.GetUnit() == eStyleUnit_Percent &&
          bsize.GetPercentValue() <= 0.0f);
}

nscoord
nsTableFrame::CalcBorderBoxBSize(const ReflowInput& aState)
{
  nscoord bSize = aState.ComputedBSize();
  if (NS_AUTOHEIGHT != bSize) {
    WritingMode wm = aState.GetWritingMode();
    LogicalMargin borderPadding = GetChildAreaOffset(wm, &aState);
    bSize += borderPadding.BStartEnd(wm);
  }
  bSize = std::max(0, bSize);

  return bSize;
}

bool
nsTableFrame::IsAutoLayout()
{
  if (StyleTable()->mLayoutStrategy == NS_STYLE_TABLE_LAYOUT_AUTO)
    return true;
  // a fixed-layout inline-table must have a inline size
  // and tables with inline size set to '-moz-max-content' must be
  // auto-layout (at least as long as
  // FixedTableLayoutStrategy::GetPrefISize returns nscoord_MAX)
  const nsStyleCoord &iSize = StylePosition()->ISize(GetWritingMode());
  return (iSize.GetUnit() == eStyleUnit_Auto) ||
         (iSize.GetUnit() == eStyleUnit_Enumerated &&
          iSize.GetIntValue() == NS_STYLE_WIDTH_MAX_CONTENT);
}

#ifdef DEBUG_FRAME_DUMP
nsresult
nsTableFrame::GetFrameName(nsAString& aResult) const
{
  return MakeFrameName(NS_LITERAL_STRING("Table"), aResult);
}
#endif

// Find the closet sibling before aPriorChildFrame (including aPriorChildFrame) that
// is of type aChildType
nsIFrame*
nsTableFrame::GetFrameAtOrBefore(nsIFrame* aParentFrame,
                                 nsIFrame* aPriorChildFrame,
                                 LayoutFrameType aChildType)
{
  nsIFrame* result = nullptr;
  if (!aPriorChildFrame) {
    return result;
  }
  if (aChildType == aPriorChildFrame->Type()) {
    return aPriorChildFrame;
  }

  // aPriorChildFrame is not of type aChildType, so we need start from
  // the beginnng and find the closest one
  nsIFrame* lastMatchingFrame = nullptr;
  nsIFrame* childFrame = aParentFrame->PrincipalChildList().FirstChild();
  while (childFrame && (childFrame != aPriorChildFrame)) {
    if (aChildType == childFrame->Type()) {
      lastMatchingFrame = childFrame;
    }
    childFrame = childFrame->GetNextSibling();
  }
  return lastMatchingFrame;
}

#ifdef DEBUG
void
nsTableFrame::DumpRowGroup(nsIFrame* aKidFrame)
{
  if (!aKidFrame)
    return;

  for (nsIFrame* cFrame : aKidFrame->PrincipalChildList()) {
    nsTableRowFrame *rowFrame = do_QueryFrame(cFrame);
    if (rowFrame) {
      printf("row(%d)=%p ", rowFrame->GetRowIndex(),
             static_cast<void*>(rowFrame));
      for (nsIFrame* childFrame : cFrame->PrincipalChildList()) {
        nsTableCellFrame *cellFrame = do_QueryFrame(childFrame);
        if (cellFrame) {
          int32_t colIndex;
          cellFrame->GetColIndex(colIndex);
          printf("cell(%d)=%p ", colIndex, static_cast<void*>(childFrame));
        }
      }
      printf("\n");
    }
    else {
      DumpRowGroup(rowFrame);
    }
  }
}

void
nsTableFrame::Dump(bool            aDumpRows,
                   bool            aDumpCols,
                   bool            aDumpCellMap)
{
  printf("***START TABLE DUMP*** \n");
  // dump the columns widths array
  printf("mColWidths=");
  int32_t numCols = GetColCount();
  int32_t colIdx;
  nsTableFrame* fif = static_cast<nsTableFrame*>(FirstInFlow());
  for (colIdx = 0; colIdx < numCols; colIdx++) {
    printf("%d ", fif->GetColumnISizeFromFirstInFlow(colIdx));
  }
  printf("\n");

  if (aDumpRows) {
    nsIFrame* kidFrame = mFrames.FirstChild();
    while (kidFrame) {
      DumpRowGroup(kidFrame);
      kidFrame = kidFrame->GetNextSibling();
    }
  }

  if (aDumpCols) {
	  // output col frame cache
    printf("\n col frame cache ->");
	   for (colIdx = 0; colIdx < numCols; colIdx++) {
      nsTableColFrame* colFrame = mColFrames.ElementAt(colIdx);
      if (0 == (colIdx % 8)) {
        printf("\n");
      }
      printf ("%d=%p ", colIdx, static_cast<void*>(colFrame));
      nsTableColType colType = colFrame->GetColType();
      switch (colType) {
      case eColContent:
        printf(" content ");
        break;
      case eColAnonymousCol:
        printf(" anonymous-column ");
        break;
      case eColAnonymousColGroup:
        printf(" anonymous-colgroup ");
        break;
      case eColAnonymousCell:
        printf(" anonymous-cell ");
        break;
      }
    }
    printf("\n colgroups->");
    for (nsIFrame* childFrame : mColGroups) {
      if (LayoutFrameType::TableColGroup == childFrame->Type()) {
        nsTableColGroupFrame* colGroupFrame = (nsTableColGroupFrame *)childFrame;
        colGroupFrame->Dump(1);
      }
    }
    for (colIdx = 0; colIdx < numCols; colIdx++) {
      printf("\n");
      nsTableColFrame* colFrame = GetColFrame(colIdx);
      colFrame->Dump(1);
    }
  }
  if (aDumpCellMap) {
    nsTableCellMap* cellMap = GetCellMap();
    cellMap->Dump();
  }
  printf(" ***END TABLE DUMP*** \n");
}
#endif

bool
nsTableFrame::ColumnHasCellSpacingBefore(int32_t aColIndex) const
{
  // Since fixed-layout tables should not have their column sizes change
  // as they load, we assume that all columns are significant.
  if (LayoutStrategy()->GetType() == nsITableLayoutStrategy::Fixed)
    return true;
  // the first column is always significant
  if (aColIndex == 0)
    return true;
  nsTableCellMap* cellMap = GetCellMap();
  if (!cellMap)
    return false;
  return cellMap->GetNumCellsOriginatingInCol(aColIndex) > 0;
}

/********************************************************************************
 * Collapsing Borders
 *
 *  The CSS spec says to resolve border conflicts in this order:
 *  1) any border with the style HIDDEN wins
 *  2) the widest border with a style that is not NONE wins
 *  3) the border styles are ranked in this order, highest to lowest precedence:
 *     double, solid, dashed, dotted, ridge, outset, groove, inset
 *  4) borders that are of equal width and style (differ only in color) have this precedence:
 *     cell, row, rowgroup, col, colgroup, table
 *  5) if all border styles are NONE, then that's the computed border style.
 *******************************************************************************/

#ifdef DEBUG
#define VerifyNonNegativeDamageRect(r)                                  \
  NS_ASSERTION((r).StartCol() >= 0, "negative col index");              \
  NS_ASSERTION((r).StartRow() >= 0, "negative row index");              \
  NS_ASSERTION((r).ColCount() >= 0, "negative cols damage");            \
  NS_ASSERTION((r).RowCount() >= 0, "negative rows damage");
#define VerifyDamageRect(r)                                             \
  VerifyNonNegativeDamageRect(r);                                       \
  NS_ASSERTION((r).EndCol() <= GetColCount(),                           \
               "cols damage extends outside table");                    \
  NS_ASSERTION((r).EndRow() <= GetRowCount(),                           \
               "rows damage extends outside table");
#endif

void
nsTableFrame::AddBCDamageArea(const TableArea& aValue)
{
  NS_ASSERTION(IsBorderCollapse(), "invalid AddBCDamageArea call");
#ifdef DEBUG
  VerifyDamageRect(aValue);
#endif

  SetNeedToCalcBCBorders(true);
  SetNeedToCalcHasBCBorders(true);
  // Get the property
  BCPropertyData* value = GetOrCreateBCProperty();
  if (value) {
#ifdef DEBUG
    VerifyNonNegativeDamageRect(value->mDamageArea);
#endif
    // Clamp the old damage area to the current table area in case it shrunk.
    int32_t cols = GetColCount();
    if (value->mDamageArea.EndCol() > cols) {
      if (value->mDamageArea.StartCol() > cols) {
        value->mDamageArea.StartCol() = cols;
        value->mDamageArea.ColCount() = 0;
      }
      else {
        value->mDamageArea.ColCount() = cols - value->mDamageArea.StartCol();
      }
    }
    int32_t rows = GetRowCount();
    if (value->mDamageArea.EndRow() > rows) {
      if (value->mDamageArea.StartRow() > rows) {
        value->mDamageArea.StartRow() = rows;
        value->mDamageArea.RowCount() = 0;
      }
      else {
        value->mDamageArea.RowCount() = rows - value->mDamageArea.StartRow();
      }
    }

    // Construct a union of the new and old damage areas.
    value->mDamageArea.UnionArea(value->mDamageArea, aValue);
  }
}


void
nsTableFrame::SetFullBCDamageArea()
{
  NS_ASSERTION(IsBorderCollapse(), "invalid SetFullBCDamageArea call");

  SetNeedToCalcBCBorders(true);
  SetNeedToCalcHasBCBorders(true);

  BCPropertyData* value = GetOrCreateBCProperty();
  if (value) {
    value->mDamageArea = TableArea(0, 0, GetColCount(), GetRowCount());
  }
}


/* BCCellBorder represents a border segment which can be either an inline-dir
 * or a block-dir segment. For each segment we need to know the color, width,
 * style, who owns it and how long it is in cellmap coordinates.
 * Ownership of these segments is important to calculate which corners should
 * be bevelled. This structure has dual use, its used first to compute the
 * dominant border for inline-dir and block-dir segments and to store the
 * preliminary computed border results in the BCCellBorders structure.
 * This temporary storage is not symmetric with respect to inline-dir and
 * block-dir border segments, its always column oriented. For each column in
 * the cellmap there is a temporary stored block-dir and inline-dir segment.
 * XXX_Bernd this asymmetry is the root of those rowspan bc border errors
 */
struct BCCellBorder
{
  BCCellBorder() { Reset(0, 1); }
  void Reset(uint32_t aRowIndex, uint32_t aRowSpan);
  nscolor       color;    // border segment color
  BCPixelSize   width;    // border segment width in pixel coordinates !!
  uint8_t       style;    // border segment style, possible values are defined
                          // in nsStyleConsts.h as NS_STYLE_BORDER_STYLE_*
  BCBorderOwner owner;    // border segment owner, possible values are defined
                          // in celldata.h. In the cellmap for each border
                          // segment we store the owner and later when
                          // painting we know the owner and can retrieve the
                          // style info from the corresponding frame
  int32_t       rowIndex; // rowIndex of temporary stored inline-dir border
                          // segments relative to the table
  int32_t       rowSpan;  // row span of temporary stored inline-dir border
                          // segments
};

void
BCCellBorder::Reset(uint32_t aRowIndex,
                    uint32_t aRowSpan)
{
  style = NS_STYLE_BORDER_STYLE_NONE;
  color = 0;
  width = 0;
  owner = eTableOwner;
  rowIndex = aRowIndex;
  rowSpan  = aRowSpan;
}

class BCMapCellIterator;

/*****************************************************************
 *  BCMapCellInfo
 * This structure stores information about the cellmap and all involved
 * table related frames that are used during the computation of winning borders
 * in CalcBCBorders so that they do need to be looked up again and again when
 * iterating over the cells.
 ****************************************************************/
struct BCMapCellInfo
{
  explicit BCMapCellInfo(nsTableFrame* aTableFrame);
  void ResetCellInfo();
  void SetInfo(nsTableRowFrame*   aNewRow,
               int32_t            aColIndex,
               BCCellData*        aCellData,
               BCMapCellIterator* aIter,
               nsCellMap*         aCellMap = nullptr);
  // The BCMapCellInfo has functions to set the continous
  // border widths (see nsTablePainter.cpp for a description of the continous
  // borders concept). The widths are computed inside these functions based on
  // the current position inside the table and the cached frames that correspond
  // to this position. The widths are stored in member variables of the internal
  // table frames.
  void SetTableBStartIStartContBCBorder();
  void SetRowGroupIStartContBCBorder();
  void SetRowGroupIEndContBCBorder();
  void SetRowGroupBEndContBCBorder();
  void SetRowIStartContBCBorder();
  void SetRowIEndContBCBorder();
  void SetColumnBStartIEndContBCBorder();
  void SetColumnBEndContBCBorder();
  void SetColGroupBEndContBCBorder();
  void SetInnerRowGroupBEndContBCBorder(const nsIFrame* aNextRowGroup,
                                        nsTableRowFrame* aNextRow);

  // functions to set the border widths on the table related frames, where the
  // knowledge about the current position in the table is used.
  void SetTableBStartBorderWidth(BCPixelSize aWidth);
  void SetTableIStartBorderWidth(int32_t aRowB, BCPixelSize aWidth);
  void SetTableIEndBorderWidth(int32_t aRowB, BCPixelSize aWidth);
  void SetTableBEndBorderWidth(BCPixelSize aWidth);
  void SetIStartBorderWidths(BCPixelSize aWidth);
  void SetIEndBorderWidths(BCPixelSize aWidth);
  void SetBStartBorderWidths(BCPixelSize aWidth);
  void SetBEndBorderWidths(BCPixelSize aWidth);

  // functions to compute the borders; they depend on the
  // knowledge about the current position in the table. The edge functions
  // should be called if a table edge is involved, otherwise the internal
  // functions should be called.
  BCCellBorder GetBStartEdgeBorder();
  BCCellBorder GetBEndEdgeBorder();
  BCCellBorder GetIStartEdgeBorder();
  BCCellBorder GetIEndEdgeBorder();
  BCCellBorder GetIEndInternalBorder();
  BCCellBorder GetIStartInternalBorder();
  BCCellBorder GetBStartInternalBorder();
  BCCellBorder GetBEndInternalBorder();

  // functions to set the internal position information
  void SetColumn(int32_t aColX);
  // Increment the row as we loop over the rows of a rowspan
  void IncrementRow(bool aResetToBStartRowOfCell = false);

  // Helper functions to get extent of the cell
  int32_t GetCellEndRowIndex() const;
  int32_t GetCellEndColIndex() const;

  // storage of table information
  nsTableFrame*         mTableFrame;
  int32_t               mNumTableRows;
  int32_t               mNumTableCols;
  BCPropertyData*       mTableBCData;
  WritingMode           mTableWM;

  // a cell can only belong to one rowgroup
  nsTableRowGroupFrame* mRowGroup;

  // a cell with a rowspan has a bstart and a bend row, and rows in between
  nsTableRowFrame*      mStartRow;
  nsTableRowFrame*      mEndRow;
  nsTableRowFrame*      mCurrentRowFrame;

  // a cell with a colspan has an istart and iend column and columns in between
  // they can belong to different colgroups
  nsTableColGroupFrame* mColGroup;
  nsTableColGroupFrame* mCurrentColGroupFrame;

  nsTableColFrame*      mStartCol;
  nsTableColFrame*      mEndCol;
  nsTableColFrame*      mCurrentColFrame;

  // cell information
  BCCellData*           mCellData;
  nsBCTableCellFrame*   mCell;

  int32_t               mRowIndex;
  int32_t               mRowSpan;
  int32_t               mColIndex;
  int32_t               mColSpan;

  // flags to describe the position of the cell with respect to the row- and
  // colgroups, for instance mRgAtStart documents that the bStart cell border hits
  // a rowgroup border
  bool                  mRgAtStart;
  bool                  mRgAtEnd;
  bool                  mCgAtStart;
  bool                  mCgAtEnd;

};


BCMapCellInfo::BCMapCellInfo(nsTableFrame* aTableFrame)
  : mTableFrame(aTableFrame)
  , mNumTableRows(aTableFrame->GetRowCount())
  , mNumTableCols(aTableFrame->GetColCount())
  , mTableBCData(mTableFrame->GetProperty(TableBCProperty()))
  , mTableWM(aTableFrame->StyleContext())
{
  ResetCellInfo();
}

void
BCMapCellInfo::ResetCellInfo()
{
  mCellData  = nullptr;
  mRowGroup  = nullptr;
  mStartRow  = nullptr;
  mEndRow    = nullptr;
  mColGroup  = nullptr;
  mStartCol  = nullptr;
  mEndCol    = nullptr;
  mCell      = nullptr;
  mRowIndex  = mRowSpan = mColIndex = mColSpan = 0;
  mRgAtStart = mRgAtEnd = mCgAtStart = mCgAtEnd = false;
}

inline int32_t
BCMapCellInfo::GetCellEndRowIndex() const
{
  return mRowIndex + mRowSpan - 1;
}

inline int32_t
BCMapCellInfo::GetCellEndColIndex() const
{
  return mColIndex + mColSpan - 1;
}


class BCMapCellIterator
{
public:
  BCMapCellIterator(nsTableFrame* aTableFrame,
                    const TableArea& aDamageArea);

  void First(BCMapCellInfo& aMapCellInfo);

  void Next(BCMapCellInfo& aMapCellInfo);

  void PeekIEnd(BCMapCellInfo& aRefInfo,
                uint32_t       aRowIndex,
                BCMapCellInfo& aAjaInfo);

  void PeekBEnd(BCMapCellInfo& aRefInfo,
                uint32_t       aColIndex,
                BCMapCellInfo& aAjaInfo);

  bool IsNewRow() { return mIsNewRow; }

  nsTableRowFrame* GetPrevRow() const { return mPrevRow; }
  nsTableRowFrame* GetCurrentRow() const { return mRow; }
  nsTableRowGroupFrame* GetCurrentRowGroup() const { return mRowGroup; }

  int32_t    mRowGroupStart;
  int32_t    mRowGroupEnd;
  bool       mAtEnd;
  nsCellMap* mCellMap;

private:
  bool SetNewRow(nsTableRowFrame* row = nullptr);
  bool SetNewRowGroup(bool aFindFirstDamagedRow);

  nsTableFrame*         mTableFrame;
  nsTableCellMap*       mTableCellMap;
  nsTableFrame::RowGroupArray mRowGroups;
  nsTableRowGroupFrame* mRowGroup;
  int32_t               mRowGroupIndex;
  uint32_t              mNumTableRows;
  nsTableRowFrame*      mRow;
  nsTableRowFrame*      mPrevRow;
  bool                  mIsNewRow;
  int32_t               mRowIndex;
  uint32_t              mNumTableCols;
  int32_t               mColIndex;
  nsPoint               mAreaStart; // These are not really points in the usual
  nsPoint               mAreaEnd;   // sense; they're column/row coordinates
                                    // in the cell map.
};

BCMapCellIterator::BCMapCellIterator(nsTableFrame* aTableFrame,
                                     const TableArea& aDamageArea)
  : mTableFrame(aTableFrame)
{
  mTableCellMap  = aTableFrame->GetCellMap();

  mAreaStart.x   = aDamageArea.StartCol();
  mAreaStart.y   = aDamageArea.StartRow();
  mAreaEnd.x     = aDamageArea.EndCol() - 1;
  mAreaEnd.y     = aDamageArea.EndRow() - 1;

  mNumTableRows  = mTableFrame->GetRowCount();
  mRow           = nullptr;
  mRowIndex      = 0;
  mNumTableCols  = mTableFrame->GetColCount();
  mColIndex      = 0;
  mRowGroupIndex = -1;

  // Get the ordered row groups
  aTableFrame->OrderRowGroups(mRowGroups);

  mAtEnd = true; // gets reset when First() is called
}

// fill fields that we need for border collapse computation on a given cell
void
BCMapCellInfo::SetInfo(nsTableRowFrame*   aNewRow,
                       int32_t            aColIndex,
                       BCCellData*        aCellData,
                       BCMapCellIterator* aIter,
                       nsCellMap*         aCellMap)
{
  // fill the cell information
  mCellData = aCellData;
  mColIndex = aColIndex;

  // initialize the row information if it was not previously set for cells in
  // this row
  mRowIndex = 0;
  if (aNewRow) {
    mStartRow = aNewRow;
    mRowIndex = aNewRow->GetRowIndex();
  }

  // fill cell frame info and row information
  mCell      = nullptr;
  mRowSpan   = 1;
  mColSpan   = 1;
  if (aCellData) {
    mCell = static_cast<nsBCTableCellFrame*>(aCellData->GetCellFrame());
    if (mCell) {
      if (!mStartRow) {
        mStartRow = mCell->GetTableRowFrame();
        if (!mStartRow) ABORT0();
        mRowIndex = mStartRow->GetRowIndex();
      }
      mColSpan = mTableFrame->GetEffectiveColSpan(*mCell, aCellMap);
      mRowSpan = mTableFrame->GetEffectiveRowSpan(*mCell, aCellMap);
    }
  }

  if (!mStartRow) {
    mStartRow = aIter->GetCurrentRow();
  }
  if (1 == mRowSpan) {
    mEndRow = mStartRow;
  }
  else {
    mEndRow = mStartRow->GetNextRow();
    if (mEndRow) {
      for (int32_t span = 2; mEndRow && span < mRowSpan; span++) {
        mEndRow = mEndRow->GetNextRow();
      }
      NS_ASSERTION(mEndRow, "spanned row not found");
    }
    else {
      NS_ERROR("error in cell map");
      mRowSpan = 1;
      mEndRow = mStartRow;
    }
  }
  // row group frame info
  // try to reuse the rgStart and rgEnd from the iterator as calls to
  // GetRowCount() are computationally expensive and should be avoided if
  // possible
  uint32_t rgStart  = aIter->mRowGroupStart;
  uint32_t rgEnd    = aIter->mRowGroupEnd;
  mRowGroup = mStartRow->GetTableRowGroupFrame();
  if (mRowGroup != aIter->GetCurrentRowGroup()) {
    rgStart = mRowGroup->GetStartRowIndex();
    rgEnd   = rgStart + mRowGroup->GetRowCount() - 1;
  }
  uint32_t rowIndex = mStartRow->GetRowIndex();
  mRgAtStart = rgStart == rowIndex;
  mRgAtEnd = rgEnd == rowIndex + mRowSpan - 1;

   // col frame info
  mStartCol = mTableFrame->GetColFrame(aColIndex);
  if (!mStartCol) ABORT0();

  mEndCol = mStartCol;
  if (mColSpan > 1) {
    nsTableColFrame* colFrame = mTableFrame->GetColFrame(aColIndex +
                                                         mColSpan -1);
    if (!colFrame) ABORT0();
    mEndCol = colFrame;
  }

  // col group frame info
  mColGroup = mStartCol->GetTableColGroupFrame();
  int32_t cgStart = mColGroup->GetStartColumnIndex();
  int32_t cgEnd = std::max(0, cgStart + mColGroup->GetColCount() - 1);
  mCgAtStart = cgStart == aColIndex;
  mCgAtEnd = cgEnd == aColIndex + mColSpan - 1;
}

bool
BCMapCellIterator::SetNewRow(nsTableRowFrame* aRow)
{
  mAtEnd   = true;
  mPrevRow = mRow;
  if (aRow) {
    mRow = aRow;
  }
  else if (mRow) {
    mRow = mRow->GetNextRow();
  }
  if (mRow) {
    mRowIndex = mRow->GetRowIndex();
    // get to the first entry with an originating cell
    int32_t rgRowIndex = mRowIndex - mRowGroupStart;
    if (uint32_t(rgRowIndex) >= mCellMap->mRows.Length())
      ABORT1(false);
    const nsCellMap::CellDataArray& row = mCellMap->mRows[rgRowIndex];

    for (mColIndex = mAreaStart.x; mColIndex <= mAreaEnd.x; mColIndex++) {
      CellData* cellData = row.SafeElementAt(mColIndex);
      if (!cellData) { // add a dead cell data
        TableArea damageArea;
        cellData = mCellMap->AppendCell(*mTableCellMap, nullptr, rgRowIndex,
                                        false, 0, damageArea);
        if (!cellData) ABORT1(false);
      }
      if (cellData && (cellData->IsOrig() || cellData->IsDead())) {
        break;
      }
    }
    mIsNewRow = true;
    mAtEnd    = false;
  }
  else ABORT1(false);

  return !mAtEnd;
}

bool
BCMapCellIterator::SetNewRowGroup(bool aFindFirstDamagedRow)
{
  mAtEnd = true;
  int32_t numRowGroups = mRowGroups.Length();
  mCellMap = nullptr;
  for (mRowGroupIndex++; mRowGroupIndex < numRowGroups; mRowGroupIndex++) {
    mRowGroup = mRowGroups[mRowGroupIndex];
    int32_t rowCount = mRowGroup->GetRowCount();
    mRowGroupStart = mRowGroup->GetStartRowIndex();
    mRowGroupEnd   = mRowGroupStart + rowCount - 1;
    if (rowCount > 0) {
      mCellMap = mTableCellMap->GetMapFor(mRowGroup, mCellMap);
      if (!mCellMap) ABORT1(false);
      nsTableRowFrame* firstRow = mRowGroup->GetFirstRow();
      if (aFindFirstDamagedRow) {
        if ((mAreaStart.y >= mRowGroupStart) && (mAreaStart.y <= mRowGroupEnd)) {
          // the damage area starts in the row group
          if (aFindFirstDamagedRow) {
            // find the correct first damaged row
            int32_t numRows = mAreaStart.y - mRowGroupStart;
            for (int32_t i = 0; i < numRows; i++) {
              firstRow = firstRow->GetNextRow();
              if (!firstRow) ABORT1(false);
            }
          }
        }
        else {
          continue;
        }
      }
      if (SetNewRow(firstRow)) { // sets mAtEnd
        break;
      }
    }
  }

  return !mAtEnd;
}

void
BCMapCellIterator::First(BCMapCellInfo& aMapInfo)
{
  aMapInfo.ResetCellInfo();

  SetNewRowGroup(true); // sets mAtEnd
  while (!mAtEnd) {
    if ((mAreaStart.y >= mRowGroupStart) && (mAreaStart.y <= mRowGroupEnd)) {
      BCCellData* cellData =
        static_cast<BCCellData*>(mCellMap->GetDataAt(mAreaStart.y -
                                                     mRowGroupStart,
                                                     mAreaStart.x));
      if (cellData && (cellData->IsOrig() || cellData->IsDead())) {
        aMapInfo.SetInfo(mRow, mAreaStart.x, cellData, this);
        return;
      }
      else {
        NS_ASSERTION(((0 == mAreaStart.x) && (mRowGroupStart == mAreaStart.y)) ,
                     "damage area expanded incorrectly");
      }
    }
    SetNewRowGroup(true); // sets mAtEnd
  }
}

void
BCMapCellIterator::Next(BCMapCellInfo& aMapInfo)
{
  if (mAtEnd) ABORT0();
  aMapInfo.ResetCellInfo();

  mIsNewRow = false;
  mColIndex++;
  while ((mRowIndex <= mAreaEnd.y) && !mAtEnd) {
    for (; mColIndex <= mAreaEnd.x; mColIndex++) {
      int32_t rgRowIndex = mRowIndex - mRowGroupStart;
      BCCellData* cellData =
         static_cast<BCCellData*>(mCellMap->GetDataAt(rgRowIndex, mColIndex));
      if (!cellData) { // add a dead cell data
        TableArea damageArea;
        cellData =
          static_cast<BCCellData*>(mCellMap->AppendCell(*mTableCellMap, nullptr,
                                                        rgRowIndex, false, 0,
                                                        damageArea));
        if (!cellData) ABORT0();
      }
      if (cellData && (cellData->IsOrig() || cellData->IsDead())) {
        aMapInfo.SetInfo(mRow, mColIndex, cellData, this);
        return;
      }
    }
    if (mRowIndex >= mRowGroupEnd) {
      SetNewRowGroup(false); // could set mAtEnd
    }
    else {
      SetNewRow(); // could set mAtEnd
    }
  }
  mAtEnd = true;
}

void
BCMapCellIterator::PeekIEnd(BCMapCellInfo& aRefInfo,
                            uint32_t       aRowIndex,
                            BCMapCellInfo& aAjaInfo)
{
  aAjaInfo.ResetCellInfo();
  int32_t colIndex = aRefInfo.mColIndex + aRefInfo.mColSpan;
  uint32_t rgRowIndex = aRowIndex - mRowGroupStart;

  BCCellData* cellData =
    static_cast<BCCellData*>(mCellMap->GetDataAt(rgRowIndex, colIndex));
  if (!cellData) { // add a dead cell data
    NS_ASSERTION(colIndex < mTableCellMap->GetColCount(), "program error");
    TableArea damageArea;
    cellData =
      static_cast<BCCellData*>(mCellMap->AppendCell(*mTableCellMap, nullptr,
                                                    rgRowIndex, false, 0,
                                                    damageArea));
    if (!cellData) ABORT0();
  }
  nsTableRowFrame* row = nullptr;
  if (cellData->IsRowSpan()) {
    rgRowIndex -= cellData->GetRowSpanOffset();
    cellData =
      static_cast<BCCellData*>(mCellMap->GetDataAt(rgRowIndex, colIndex));
    if (!cellData)
      ABORT0();
  }
  else {
    row = mRow;
  }
  aAjaInfo.SetInfo(row, colIndex, cellData, this);
}

void
BCMapCellIterator::PeekBEnd(BCMapCellInfo& aRefInfo,
                            uint32_t       aColIndex,
                            BCMapCellInfo& aAjaInfo)
{
  aAjaInfo.ResetCellInfo();
  int32_t rowIndex = aRefInfo.mRowIndex + aRefInfo.mRowSpan;
  int32_t rgRowIndex = rowIndex - mRowGroupStart;
  nsTableRowGroupFrame* rg = mRowGroup;
  nsCellMap* cellMap = mCellMap;
  nsTableRowFrame* nextRow = nullptr;
  if (rowIndex > mRowGroupEnd) {
    int32_t nextRgIndex = mRowGroupIndex;
    do {
      nextRgIndex++;
      rg = mRowGroups.SafeElementAt(nextRgIndex);
      if (rg) {
        cellMap = mTableCellMap->GetMapFor(rg, cellMap); if (!cellMap) ABORT0();
        rgRowIndex = 0;
        nextRow = rg->GetFirstRow();
      }
    }
    while (rg && !nextRow);
    if(!rg) return;
  }
  else {
    // get the row within the same row group
    nextRow = mRow;
    for (int32_t i = 0; i < aRefInfo.mRowSpan; i++) {
      nextRow = nextRow->GetNextRow(); if (!nextRow) ABORT0();
    }
  }

  BCCellData* cellData =
    static_cast<BCCellData*>(cellMap->GetDataAt(rgRowIndex, aColIndex));
  if (!cellData) { // add a dead cell data
    NS_ASSERTION(rgRowIndex < cellMap->GetRowCount(), "program error");
    TableArea damageArea;
    cellData =
      static_cast<BCCellData*>(cellMap->AppendCell(*mTableCellMap, nullptr,
                                                   rgRowIndex, false, 0,
                                                   damageArea));
    if (!cellData) ABORT0();
  }
  if (cellData->IsColSpan()) {
    aColIndex -= cellData->GetColSpanOffset();
    cellData =
      static_cast<BCCellData*>(cellMap->GetDataAt(rgRowIndex, aColIndex));
  }
  aAjaInfo.SetInfo(nextRow, aColIndex, cellData, this, cellMap);
}

// Assign priorities to border styles. For example, styleToPriority(NS_STYLE_BORDER_STYLE_SOLID)
// will return the priority of NS_STYLE_BORDER_STYLE_SOLID.
static uint8_t styleToPriority[13] = { 0,  // NS_STYLE_BORDER_STYLE_NONE
                                       2,  // NS_STYLE_BORDER_STYLE_GROOVE
                                       4,  // NS_STYLE_BORDER_STYLE_RIDGE
                                       5,  // NS_STYLE_BORDER_STYLE_DOTTED
                                       6,  // NS_STYLE_BORDER_STYLE_DASHED
                                       7,  // NS_STYLE_BORDER_STYLE_SOLID
                                       8,  // NS_STYLE_BORDER_STYLE_DOUBLE
                                       1,  // NS_STYLE_BORDER_STYLE_INSET
                                       3,  // NS_STYLE_BORDER_STYLE_OUTSET
                                       9 };// NS_STYLE_BORDER_STYLE_HIDDEN
// priority rules follow CSS 2.1 spec
// 'hidden', 'double', 'solid', 'dashed', 'dotted', 'ridge', 'outset', 'groove',
// and the lowest: 'inset'. none is even weaker
#define CELL_CORNER true

/** return the border style, border color and optionally the width in
  * pixel for a given frame and side
  * @param aFrame           - query the info for this frame
  * @param aTableWM         - the writing-mode of the frame
  * @param aSide            - the side of the frame
  * @param aStyle           - the border style
  * @param aColor           - the border color
  * @param aWidth           - the border width in px
  */
static void
GetColorAndStyle(const nsIFrame* aFrame,
                 WritingMode aTableWM,
                 LogicalSide aSide,
                 uint8_t* aStyle,
                 nscolor* aColor,
                 BCPixelSize* aWidth = nullptr)
{
  NS_PRECONDITION(aFrame, "null frame");
  NS_PRECONDITION(aStyle && aColor, "null argument");
  // initialize out arg
  *aColor = 0;
  if (aWidth) {
    *aWidth = 0;
  }

  const nsStyleBorder* styleData = aFrame->StyleBorder();
  mozilla::Side physicalSide = aTableWM.PhysicalSide(aSide);
  *aStyle = styleData->GetBorderStyle(physicalSide);

  if ((NS_STYLE_BORDER_STYLE_NONE == *aStyle) ||
      (NS_STYLE_BORDER_STYLE_HIDDEN == *aStyle)) {
    return;
  }
  *aColor = aFrame->StyleContext()->
    GetVisitedDependentColor(nsStyleBorder::BorderColorFieldFor(physicalSide));

  if (aWidth) {
    nscoord width = styleData->GetComputedBorderWidth(physicalSide);
    *aWidth = nsPresContext::AppUnitsToIntCSSPixels(width);
  }
}

/** coerce the paint style as required by CSS2.1
  * @param aFrame           - query the info for this frame
  * @param aTableWM         - the writing mode of the frame
  * @param aSide            - the side of the frame
  * @param aStyle           - the border style
  * @param aColor           - the border color
  */
static void
GetPaintStyleInfo(const nsIFrame* aFrame,
                  WritingMode aTableWM,
                  LogicalSide aSide,
                  uint8_t* aStyle,
                  nscolor* aColor)
{
  GetColorAndStyle(aFrame, aTableWM, aSide, aStyle, aColor);
  if (NS_STYLE_BORDER_STYLE_INSET == *aStyle) {
    *aStyle = NS_STYLE_BORDER_STYLE_RIDGE;
  } else if (NS_STYLE_BORDER_STYLE_OUTSET == *aStyle) {
    *aStyle = NS_STYLE_BORDER_STYLE_GROOVE;
  }
}

class nsDelayedCalcBCBorders : public Runnable {
public:
  explicit nsDelayedCalcBCBorders(nsIFrame* aFrame)
    : mozilla::Runnable("nsDelayedCalcBCBorders")
    , mFrame(aFrame)
  {
  }

  NS_IMETHOD Run() override {
    if (mFrame) {
      nsTableFrame* tableFrame = static_cast <nsTableFrame*>(mFrame.GetFrame());
      if (tableFrame->NeedToCalcBCBorders()) {
        tableFrame->CalcBCBorders();
      }
    }
    return NS_OK;
  }
private:
  WeakFrame mFrame;
};

bool
nsTableFrame::BCRecalcNeeded(nsStyleContext* aOldStyleContext,
                             nsStyleContext* aNewStyleContext)
{
  // Attention: the old style context is the one we're forgetting,
  // and hence possibly completely bogus for GetStyle* purposes.
  // We use PeekStyleData instead.

  const nsStyleBorder* oldStyleData = aOldStyleContext->PeekStyleBorder();
  if (!oldStyleData)
    return false;

  const nsStyleBorder* newStyleData = aNewStyleContext->StyleBorder();
  nsChangeHint change = newStyleData->CalcDifference(*oldStyleData);
  if (!change)
    return false;
  if (change & nsChangeHint_NeedReflow)
    return true; // the caller only needs to mark the bc damage area
  if (change & nsChangeHint_RepaintFrame) {
    // we need to recompute the borders and the caller needs to mark
    // the bc damage area
    // XXX In principle this should only be necessary for border style changes
    // However the bc painting code tries to maximize the drawn border segments
    // so it stores in the cellmap where a new border segment starts and this
    // introduces a unwanted cellmap data dependence on color
    nsCOMPtr<nsIRunnable> evt = new nsDelayedCalcBCBorders(this);
    nsresult rv =
      GetContent()->OwnerDoc()->Dispatch("nsDelayedCalcBCBorders",
                                         TaskCategory::Other, evt.forget());
    return NS_SUCCEEDED(rv);
  }
  return false;
}


// Compare two border segments, this comparison depends whether the two
// segments meet at a corner and whether the second segment is inline-dir.
// The return value is whichever of aBorder1 or aBorder2 dominates.
static const BCCellBorder&
CompareBorders(bool                aIsCorner, // Pass true for corner calculations
               const BCCellBorder& aBorder1,
               const BCCellBorder& aBorder2,
               bool                aSecondIsInlineDir,
               bool*               aFirstDominates = nullptr)
{
  bool firstDominates = true;

  if (NS_STYLE_BORDER_STYLE_HIDDEN == aBorder1.style) {
    firstDominates = (aIsCorner) ? false : true;
  }
  else if (NS_STYLE_BORDER_STYLE_HIDDEN == aBorder2.style) {
    firstDominates = (aIsCorner) ? true : false;
  }
  else if (aBorder1.width < aBorder2.width) {
    firstDominates = false;
  }
  else if (aBorder1.width == aBorder2.width) {
    if (styleToPriority[aBorder1.style] < styleToPriority[aBorder2.style]) {
      firstDominates = false;
    }
    else if (styleToPriority[aBorder1.style] == styleToPriority[aBorder2.style]) {
      if (aBorder1.owner == aBorder2.owner) {
        firstDominates = !aSecondIsInlineDir;
      }
      else if (aBorder1.owner < aBorder2.owner) {
        firstDominates = false;
      }
    }
  }

  if (aFirstDominates)
    *aFirstDominates = firstDominates;

  if (firstDominates)
    return aBorder1;
  return aBorder2;
}

/** calc the dominant border by considering the table, row/col group, row/col,
  * cell.
  * Depending on whether the side is block-dir or inline-dir and whether
  * adjacent frames are taken into account the ownership of a single border
  * segment is defined. The return value is the dominating border
  * The cellmap stores only bstart and istart borders for each cellmap position.
  * If the cell border is owned by the cell that is istart-wards of the border
  * it will be an adjacent owner aka eAjaCellOwner. See celldata.h for the other
  * scenarios with a adjacent owner.
  * @param xxxFrame         - the frame for style information, might be zero if
  *                           it should not be considered
  * @param aTableWM         - the writing mode of the frame
  * @param aSide            - side of the frames that should be considered
  * @param aAja             - the border comparison takes place from the point of
  *                           a frame that is adjacent to the cellmap entry, for
  *                           when a cell owns its lower border it will be the
  *                           adjacent owner as in the cellmap only bstart and
  *                           istart borders are stored.
  */
static BCCellBorder
CompareBorders(const nsIFrame*  aTableFrame,
               const nsIFrame*  aColGroupFrame,
               const nsIFrame*  aColFrame,
               const nsIFrame*  aRowGroupFrame,
               const nsIFrame*  aRowFrame,
               const nsIFrame*  aCellFrame,
               WritingMode      aTableWM,
               LogicalSide      aSide,
               bool             aAja)
{
  BCCellBorder border, tempBorder;
  bool inlineAxis = IsBlock(aSide);

  // start with the table as dominant if present
  if (aTableFrame) {
    GetColorAndStyle(aTableFrame, aTableWM, aSide,
                     &border.style, &border.color, &border.width);
    border.owner = eTableOwner;
    if (NS_STYLE_BORDER_STYLE_HIDDEN == border.style) {
      return border;
    }
  }
  // see if the colgroup is dominant
  if (aColGroupFrame) {
    GetColorAndStyle(aColGroupFrame, aTableWM, aSide,
                     &tempBorder.style, &tempBorder.color, &tempBorder.width);
    tempBorder.owner = aAja && !inlineAxis ? eAjaColGroupOwner : eColGroupOwner;
    // pass here and below false for aSecondIsInlineDir as it is only used for corner calculations.
    border = CompareBorders(!CELL_CORNER, border, tempBorder, false);
    if (NS_STYLE_BORDER_STYLE_HIDDEN == border.style) {
      return border;
    }
  }
  // see if the col is dominant
  if (aColFrame) {
    GetColorAndStyle(aColFrame, aTableWM, aSide,
                     &tempBorder.style, &tempBorder.color, &tempBorder.width);
    tempBorder.owner = aAja && !inlineAxis ? eAjaColOwner : eColOwner;
    border = CompareBorders(!CELL_CORNER, border, tempBorder, false);
    if (NS_STYLE_BORDER_STYLE_HIDDEN == border.style) {
      return border;
    }
  }
  // see if the rowgroup is dominant
  if (aRowGroupFrame) {
    GetColorAndStyle(aRowGroupFrame, aTableWM, aSide,
                     &tempBorder.style, &tempBorder.color, &tempBorder.width);
    tempBorder.owner = aAja && inlineAxis ? eAjaRowGroupOwner : eRowGroupOwner;
    border = CompareBorders(!CELL_CORNER, border, tempBorder, false);
    if (NS_STYLE_BORDER_STYLE_HIDDEN == border.style) {
      return border;
    }
  }
  // see if the row is dominant
  if (aRowFrame) {
    GetColorAndStyle(aRowFrame, aTableWM, aSide,
                     &tempBorder.style, &tempBorder.color, &tempBorder.width);
    tempBorder.owner = aAja && inlineAxis ? eAjaRowOwner : eRowOwner;
    border = CompareBorders(!CELL_CORNER, border, tempBorder, false);
    if (NS_STYLE_BORDER_STYLE_HIDDEN == border.style) {
      return border;
    }
  }
  // see if the cell is dominant
  if (aCellFrame) {
    GetColorAndStyle(aCellFrame, aTableWM, aSide,
                     &tempBorder.style, &tempBorder.color, &tempBorder.width);
    tempBorder.owner = aAja ? eAjaCellOwner : eCellOwner;
    border = CompareBorders(!CELL_CORNER, border, tempBorder, false);
  }
  return border;
}

static bool
Perpendicular(mozilla::LogicalSide aSide1,
              mozilla::LogicalSide aSide2)
{
  return IsInline(aSide1) != IsInline(aSide2);
}

// XXX allocate this as number-of-cols+1 instead of number-of-cols+1 * number-of-rows+1
struct BCCornerInfo
{
  BCCornerInfo() { ownerColor = 0; ownerWidth = subWidth = ownerElem = subSide =
                   subElem = hasDashDot = numSegs = bevel = 0; ownerSide = eLogicalSideBStart;
                   ownerStyle = 0xFF; subStyle = NS_STYLE_BORDER_STYLE_SOLID;  }
  void Set(mozilla::LogicalSide aSide,
           BCCellBorder  border);

  void Update(mozilla::LogicalSide aSide,
              BCCellBorder  border);

  nscolor   ownerColor;     // color of borderOwner
  uint16_t  ownerWidth;     // pixel width of borderOwner
  uint16_t  subWidth;       // pixel width of the largest border intersecting the border perpendicular
                            // to ownerSide
  uint32_t  ownerSide:2;    // LogicalSide (e.g eLogicalSideBStart, etc) of the border
                            // owning the corner relative to the corner
  uint32_t  ownerElem:3;    // elem type (e.g. eTable, eGroup, etc) owning the corner
  uint32_t  ownerStyle:8;   // border style of ownerElem
  uint32_t  subSide:2;      // side of border with subWidth relative to the corner
  uint32_t  subElem:3;      // elem type (e.g. eTable, eGroup, etc) of sub owner
  uint32_t  subStyle:8;     // border style of subElem
  uint32_t  hasDashDot:1;   // does a dashed, dotted segment enter the corner, they cannot be beveled
  uint32_t  numSegs:3;      // number of segments entering corner
  uint32_t  bevel:1;        // is the corner beveled (uses the above two fields together with subWidth)
  uint32_t  unused:1;
};

void
BCCornerInfo::Set(mozilla::LogicalSide aSide,
                  BCCellBorder  aBorder)
{
  ownerElem  = aBorder.owner;
  ownerStyle = aBorder.style;
  ownerWidth = aBorder.width;
  ownerColor = aBorder.color;
  ownerSide  = aSide;
  hasDashDot = 0;
  numSegs    = 0;
  if (aBorder.width > 0) {
    numSegs++;
    hasDashDot = (NS_STYLE_BORDER_STYLE_DASHED == aBorder.style) ||
                 (NS_STYLE_BORDER_STYLE_DOTTED == aBorder.style);
  }
  bevel      = 0;
  subWidth   = 0;
  // the following will get set later
  subSide    = IsInline(aSide) ? eLogicalSideBStart : eLogicalSideIStart;
  subElem    = eTableOwner;
  subStyle   = NS_STYLE_BORDER_STYLE_SOLID;
}

void
BCCornerInfo::Update(mozilla::LogicalSide aSide,
                     BCCellBorder  aBorder)
{
  bool existingWins = false;
  if (0xFF == ownerStyle) { // initial value indiating that it hasn't been set yet
    Set(aSide, aBorder);
  }
  else {
    bool isInline = IsInline(aSide); // relative to the corner
    BCCellBorder oldBorder, tempBorder;
    oldBorder.owner  = (BCBorderOwner) ownerElem;
    oldBorder.style =  ownerStyle;
    oldBorder.width =  ownerWidth;
    oldBorder.color =  ownerColor;

    LogicalSide oldSide  = LogicalSide(ownerSide);

    tempBorder = CompareBorders(CELL_CORNER, oldBorder, aBorder, isInline, &existingWins);

    ownerElem  = tempBorder.owner;
    ownerStyle = tempBorder.style;
    ownerWidth = tempBorder.width;
    ownerColor = tempBorder.color;
    if (existingWins) { // existing corner is dominant
      if (::Perpendicular(LogicalSide(ownerSide), aSide)) {
        // see if the new sub info replaces the old
        BCCellBorder subBorder;
        subBorder.owner = (BCBorderOwner) subElem;
        subBorder.style =  subStyle;
        subBorder.width =  subWidth;
        subBorder.color = 0; // we are not interested in subBorder color
        bool firstWins;

        tempBorder = CompareBorders(CELL_CORNER, subBorder, aBorder, isInline, &firstWins);

        subElem  = tempBorder.owner;
        subStyle = tempBorder.style;
        subWidth = tempBorder.width;
        if (!firstWins) {
          subSide = aSide;
        }
      }
    }
    else { // input args are dominant
      ownerSide = aSide;
      if (::Perpendicular(oldSide, LogicalSide(ownerSide))) {
        subElem  = oldBorder.owner;
        subStyle = oldBorder.style;
        subWidth = oldBorder.width;
        subSide  = oldSide;
      }
    }
    if (aBorder.width > 0) {
      numSegs++;
      if (!hasDashDot && ((NS_STYLE_BORDER_STYLE_DASHED == aBorder.style) ||
                          (NS_STYLE_BORDER_STYLE_DOTTED == aBorder.style))) {
        hasDashDot = 1;
      }
    }

    // bevel the corner if only two perpendicular non dashed/dotted segments enter the corner
    bevel = (2 == numSegs) && (subWidth > 1) && (0 == hasDashDot);
  }
}

struct BCCorners
{
  BCCorners(int32_t aNumCorners,
            int32_t aStartIndex);

  ~BCCorners() { delete [] corners; }

  BCCornerInfo& operator [](int32_t i) const
  { NS_ASSERTION((i >= startIndex) && (i <= endIndex), "program error");
    return corners[clamped(i, startIndex, endIndex) - startIndex]; }

  int32_t       startIndex;
  int32_t       endIndex;
  BCCornerInfo* corners;
};

BCCorners::BCCorners(int32_t aNumCorners,
                     int32_t aStartIndex)
{
  NS_ASSERTION((aNumCorners > 0) && (aStartIndex >= 0), "program error");
  startIndex = aStartIndex;
  endIndex   = aStartIndex + aNumCorners - 1;
  corners    = new BCCornerInfo[aNumCorners];
}


struct BCCellBorders
{
  BCCellBorders(int32_t aNumBorders,
                int32_t aStartIndex);

  ~BCCellBorders() { delete [] borders; }

  BCCellBorder& operator [](int32_t i) const
  { NS_ASSERTION((i >= startIndex) && (i <= endIndex), "program error");
    return borders[clamped(i, startIndex, endIndex) - startIndex]; }

  int32_t       startIndex;
  int32_t       endIndex;
  BCCellBorder* borders;
};

BCCellBorders::BCCellBorders(int32_t aNumBorders,
                             int32_t aStartIndex)
{
  NS_ASSERTION((aNumBorders > 0) && (aStartIndex >= 0), "program error");
  startIndex = aStartIndex;
  endIndex   = aStartIndex + aNumBorders - 1;
  borders    = new BCCellBorder[aNumBorders];
}

// this function sets the new border properties and returns true if the border
// segment will start a new segment and not be accumulated into the previous
// segment.
static bool
SetBorder(const BCCellBorder&   aNewBorder,
          BCCellBorder&         aBorder)
{
  bool changed = (aNewBorder.style != aBorder.style) ||
                   (aNewBorder.width != aBorder.width) ||
                   (aNewBorder.color != aBorder.color);
  aBorder.color        = aNewBorder.color;
  aBorder.width        = aNewBorder.width;
  aBorder.style        = aNewBorder.style;
  aBorder.owner        = aNewBorder.owner;

  return changed;
}

// this function will set the inline-dir border. It will return true if the
// existing segment will not be continued. Having a block-dir owner of a corner
// should also start a new segment.
static bool
SetInlineDirBorder(const BCCellBorder& aNewBorder,
                   const BCCornerInfo& aCorner,
                   BCCellBorder&       aBorder)
{
  bool startSeg = ::SetBorder(aNewBorder, aBorder);
  if (!startSeg) {
    startSeg = !IsInline(LogicalSide(aCorner.ownerSide));
  }
  return startSeg;
}

// Make the damage area larger on the top and bottom by at least one row and on the left and right
// at least one column. This is done so that adjacent elements are part of the border calculations.
// The extra segments and borders outside the actual damage area will not be updated in the cell map,
// because they in turn would need info from adjacent segments outside the damage area to be accurate.
void
nsTableFrame::ExpandBCDamageArea(TableArea& aArea) const
{
  int32_t numRows = GetRowCount();
  int32_t numCols = GetColCount();

  int32_t dStartX = aArea.StartCol();
  int32_t dEndX   = aArea.EndCol() - 1;
  int32_t dStartY = aArea.StartRow();
  int32_t dEndY   = aArea.EndRow() - 1;

  // expand the damage area in each direction
  if (dStartX > 0) {
    dStartX--;
  }
  if (dEndX < (numCols - 1)) {
    dEndX++;
  }
  if (dStartY > 0) {
    dStartY--;
  }
  if (dEndY < (numRows - 1)) {
    dEndY++;
  }
  // Check the damage area so that there are no cells spanning in or out. If there are any then
  // make the damage area as big as the table, similarly to the way the cell map decides whether
  // to rebuild versus expand. This could be optimized to expand to the smallest area that contains
  // no spanners, but it may not be worth the effort in general, and it would need to be done in the
  // cell map as well.
  bool haveSpanner = false;
  if ((dStartX > 0) || (dEndX < (numCols - 1)) || (dStartY > 0) || (dEndY < (numRows - 1))) {
    nsTableCellMap* tableCellMap = GetCellMap(); if (!tableCellMap) ABORT0();
    // Get the ordered row groups
    RowGroupArray rowGroups;
    OrderRowGroups(rowGroups);

    // Scope outside loop to be used as hint.
    nsCellMap* cellMap = nullptr;
    for (uint32_t rgIdx = 0; rgIdx < rowGroups.Length(); rgIdx++) {
      nsTableRowGroupFrame* rgFrame = rowGroups[rgIdx];
      int32_t rgStartY = rgFrame->GetStartRowIndex();
      int32_t rgEndY   = rgStartY + rgFrame->GetRowCount() - 1;
      if (dEndY < rgStartY)
        break;
      cellMap = tableCellMap->GetMapFor(rgFrame, cellMap);
      if (!cellMap) ABORT0();
      // check for spanners from above and below
      if ((dStartY > 0) && (dStartY >= rgStartY) && (dStartY <= rgEndY)) {
        if (uint32_t(dStartY - rgStartY) >= cellMap->mRows.Length())
          ABORT0();
        const nsCellMap::CellDataArray& row =
          cellMap->mRows[dStartY - rgStartY];
        for (int32_t x = dStartX; x <= dEndX; x++) {
          CellData* cellData = row.SafeElementAt(x);
          if (cellData && (cellData->IsRowSpan())) {
             haveSpanner = true;
             break;
          }
        }
        if (dEndY < rgEndY) {
          if (uint32_t(dEndY + 1 - rgStartY) >= cellMap->mRows.Length())
            ABORT0();
          const nsCellMap::CellDataArray& row2 =
            cellMap->mRows[dEndY + 1 - rgStartY];
          for (int32_t x = dStartX; x <= dEndX; x++) {
            CellData* cellData = row2.SafeElementAt(x);
            if (cellData && (cellData->IsRowSpan())) {
              haveSpanner = true;
              break;
            }
          }
        }
      }
      // check for spanners on the left and right
      int32_t iterStartY = -1;
      int32_t iterEndY   = -1;
      if ((dStartY >= rgStartY) && (dStartY <= rgEndY)) {
        // the damage area starts in the row group
        iterStartY = dStartY;
        iterEndY   = std::min(dEndY, rgEndY);
      }
      else if ((dEndY >= rgStartY) && (dEndY <= rgEndY)) {
        // the damage area ends in the row group
        iterStartY = rgStartY;
        iterEndY   = dEndY;
      }
      else if ((rgStartY >= dStartY) && (rgEndY <= dEndY)) {
        // the damage area contains the row group
        iterStartY = rgStartY;
        iterEndY   = rgEndY;
      }
      if ((iterStartY >= 0) && (iterEndY >= 0)) {
        for (int32_t y = iterStartY; y <= iterEndY; y++) {
          if (uint32_t(y - rgStartY) >= cellMap->mRows.Length())
            ABORT0();
          const nsCellMap::CellDataArray& row =
            cellMap->mRows[y - rgStartY];
          CellData* cellData = row.SafeElementAt(dStartX);
          if (cellData && (cellData->IsColSpan())) {
            haveSpanner = true;
            break;
          }
          if (dEndX < (numCols - 1)) {
            cellData = row.SafeElementAt(dEndX + 1);
            if (cellData && (cellData->IsColSpan())) {
              haveSpanner = true;
              break;
            }
          }
        }
      }
    }
  }
  if (haveSpanner) {
    // make the damage area the whole table
    aArea.StartCol() = 0;
    aArea.StartRow() = 0;
    aArea.ColCount() = numCols;
    aArea.RowCount() = numRows;
  }
  else {
    aArea.StartCol() = dStartX;
    aArea.StartRow() = dStartY;
    aArea.ColCount() = 1 + dEndX - dStartX;
    aArea.RowCount() = 1 + dEndY - dStartY;
  }
}


#define ADJACENT    true
#define INLINE_DIR  true

void
BCMapCellInfo::SetTableBStartIStartContBCBorder()
{
  BCCellBorder currentBorder;
  //calculate continuous top first row & rowgroup border: special case
  //because it must include the table in the collapse
  if (mStartRow) {
    currentBorder = CompareBorders(mTableFrame, nullptr, nullptr, mRowGroup,
                                   mStartRow, nullptr, mTableWM,
                                   eLogicalSideBStart, !ADJACENT);
    mStartRow->SetContinuousBCBorderWidth(eLogicalSideBStart,
                                          currentBorder.width);
  }
  if (mCgAtEnd && mColGroup) {
    //calculate continuous top colgroup border once per colgroup
    currentBorder = CompareBorders(mTableFrame, mColGroup, nullptr, mRowGroup,
                                   mStartRow, nullptr, mTableWM,
                                   eLogicalSideBStart, !ADJACENT);
    mColGroup->SetContinuousBCBorderWidth(eLogicalSideBStart,
                                          currentBorder.width);
  }
  if (0 == mColIndex) {
    currentBorder = CompareBorders(mTableFrame, mColGroup, mStartCol, nullptr,
                                   nullptr, nullptr, mTableWM,
                                   eLogicalSideIStart, !ADJACENT);
    mTableFrame->SetContinuousIStartBCBorderWidth(currentBorder.width);
  }
}

void
BCMapCellInfo::SetRowGroupIStartContBCBorder()
{
  BCCellBorder currentBorder;
  //get row group continuous borders
  if (mRgAtEnd && mRowGroup) { //once per row group, so check for bottom
     currentBorder = CompareBorders(mTableFrame, mColGroup, mStartCol,
                                    mRowGroup, nullptr, nullptr, mTableWM,
                                    eLogicalSideIStart, !ADJACENT);
     mRowGroup->SetContinuousBCBorderWidth(eLogicalSideIStart,
                                           currentBorder.width);
  }
}

void
BCMapCellInfo::SetRowGroupIEndContBCBorder()
{
  BCCellBorder currentBorder;
  //get row group continuous borders
  if (mRgAtEnd && mRowGroup) { //once per mRowGroup, so check for bottom
    currentBorder = CompareBorders(mTableFrame, mColGroup, mEndCol, mRowGroup,
                                   nullptr, nullptr, mTableWM, eLogicalSideIEnd,
                                   ADJACENT);
    mRowGroup->SetContinuousBCBorderWidth(eLogicalSideIEnd,
                                          currentBorder.width);
  }
}

void
BCMapCellInfo::SetColumnBStartIEndContBCBorder()
{
  BCCellBorder currentBorder;
  //calculate column continuous borders
  //we only need to do this once, so we'll do it only on the first row
  currentBorder = CompareBorders(mTableFrame, mCurrentColGroupFrame,
                                 mCurrentColFrame, mRowGroup, mStartRow,
                                 nullptr, mTableWM, eLogicalSideBStart,
                                 !ADJACENT);
  mCurrentColFrame->SetContinuousBCBorderWidth(eLogicalSideBStart,
                                               currentBorder.width);
  if (mNumTableCols == GetCellEndColIndex() + 1) {
    currentBorder = CompareBorders(mTableFrame, mCurrentColGroupFrame,
                                   mCurrentColFrame, nullptr, nullptr, nullptr,
                                   mTableWM, eLogicalSideIEnd, !ADJACENT);
  }
  else {
    currentBorder = CompareBorders(nullptr, mCurrentColGroupFrame,
                                   mCurrentColFrame, nullptr,nullptr, nullptr,
                                   mTableWM, eLogicalSideIEnd, !ADJACENT);
  }
  mCurrentColFrame->SetContinuousBCBorderWidth(eLogicalSideIEnd,
                                               currentBorder.width);
}

void
BCMapCellInfo::SetColumnBEndContBCBorder()
{
  BCCellBorder currentBorder;
  //get col continuous border
  currentBorder = CompareBorders(mTableFrame, mCurrentColGroupFrame,
                                 mCurrentColFrame, mRowGroup, mEndRow,
                                 nullptr, mTableWM, eLogicalSideBEnd, ADJACENT);
  mCurrentColFrame->SetContinuousBCBorderWidth(eLogicalSideBEnd,
                                               currentBorder.width);
}

void
BCMapCellInfo::SetColGroupBEndContBCBorder()
{
  BCCellBorder currentBorder;
  if (mColGroup) {
    currentBorder = CompareBorders(mTableFrame, mColGroup, nullptr, mRowGroup,
                                   mEndRow, nullptr, mTableWM,
                                   eLogicalSideBEnd, ADJACENT);
    mColGroup->SetContinuousBCBorderWidth(eLogicalSideBEnd, currentBorder.width);
  }
}

void
BCMapCellInfo::SetRowGroupBEndContBCBorder()
{
  BCCellBorder currentBorder;
  if (mRowGroup) {
    currentBorder = CompareBorders(mTableFrame, nullptr, nullptr, mRowGroup,
                                   mEndRow, nullptr, mTableWM,
                                   eLogicalSideBEnd, ADJACENT);
    mRowGroup->SetContinuousBCBorderWidth(eLogicalSideBEnd, currentBorder.width);
  }
}

void
BCMapCellInfo::SetInnerRowGroupBEndContBCBorder(const nsIFrame* aNextRowGroup,
                                                nsTableRowFrame* aNextRow)
{
  BCCellBorder currentBorder, adjacentBorder;

  const nsIFrame* rowgroup = mRgAtEnd ? mRowGroup : nullptr;
  currentBorder = CompareBorders(nullptr, nullptr, nullptr, rowgroup, mEndRow,
                                 nullptr, mTableWM, eLogicalSideBEnd, ADJACENT);

  adjacentBorder = CompareBorders(nullptr, nullptr, nullptr, aNextRowGroup,
                                  aNextRow, nullptr, mTableWM, eLogicalSideBStart,
                                  !ADJACENT);
  currentBorder = CompareBorders(false, currentBorder, adjacentBorder,
                                 INLINE_DIR);
  if (aNextRow) {
    aNextRow->SetContinuousBCBorderWidth(eLogicalSideBStart,
                                         currentBorder.width);
  }
  if (mRgAtEnd && mRowGroup) {
    mRowGroup->SetContinuousBCBorderWidth(eLogicalSideBEnd, currentBorder.width);
  }
}

void
BCMapCellInfo::SetRowIStartContBCBorder()
{
  //get row continuous borders
  if (mCurrentRowFrame) {
    BCCellBorder currentBorder;
    currentBorder = CompareBorders(mTableFrame, mColGroup, mStartCol,
                                   mRowGroup, mCurrentRowFrame, nullptr,
                                   mTableWM, eLogicalSideIStart, !ADJACENT);
    mCurrentRowFrame->SetContinuousBCBorderWidth(eLogicalSideIStart,
                                                 currentBorder.width);
  }
}

void
BCMapCellInfo::SetRowIEndContBCBorder()
{
  if (mCurrentRowFrame) {
    BCCellBorder currentBorder;
    currentBorder = CompareBorders(mTableFrame, mColGroup, mEndCol, mRowGroup,
                                   mCurrentRowFrame, nullptr, mTableWM,
                                   eLogicalSideIEnd, ADJACENT);
    mCurrentRowFrame->SetContinuousBCBorderWidth(eLogicalSideIEnd,
                                                 currentBorder.width);
  }
}
void
BCMapCellInfo::SetTableBStartBorderWidth(BCPixelSize aWidth)
{
  mTableBCData->mBStartBorderWidth = std::max(mTableBCData->mBStartBorderWidth,
                                              aWidth);
}

void
BCMapCellInfo::SetTableIStartBorderWidth(int32_t aRowB, BCPixelSize aWidth)
{
  // update the iStart first cell border
  if (aRowB == 0) {
    mTableBCData->mIStartCellBorderWidth = aWidth;
  }
  mTableBCData->mIStartBorderWidth = std::max(mTableBCData->mIStartBorderWidth,
                                              aWidth);
}

void
BCMapCellInfo::SetTableIEndBorderWidth(int32_t aRowB, BCPixelSize aWidth)