js/src/jit/CodeGenerator.cpp
author Tom Schuster <evilpies@gmail.com>
Fri, 15 May 2015 20:53:03 +0200
changeset 244122 9f7b7d427d1c0dda0ce792f9ab345a388258c14a
parent 243082 5a277f82ff59abfbc05e4a92da72f5e3233661ee
child 244467 261cadb8301573f6ed2314b3d05f47c1da8b2b4c
permissions -rw-r--r--
Bug 1059908 - Introduce a CONSTRUCTOR flag and make getter/setter/method non-constructable. r=efaust

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "jit/CodeGenerator.h"

#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/SizePrintfMacros.h"

#include "jslibmath.h"
#include "jsmath.h"
#include "jsnum.h"
#include "jsprf.h"

#include "asmjs/AsmJSModule.h"
#include "builtin/Eval.h"
#include "builtin/TypedObject.h"
#include "gc/Nursery.h"
#include "irregexp/NativeRegExpMacroAssembler.h"
#include "jit/BaselineCompiler.h"
#include "jit/IonBuilder.h"
#include "jit/IonCaches.h"
#include "jit/IonOptimizationLevels.h"
#include "jit/JitcodeMap.h"
#include "jit/JitSpewer.h"
#include "jit/Linker.h"
#include "jit/Lowering.h"
#include "jit/MIRGenerator.h"
#include "jit/MoveEmitter.h"
#include "jit/RangeAnalysis.h"
#include "vm/MatchPairs.h"
#include "vm/RegExpStatics.h"
#include "vm/TraceLogging.h"

#include "jsboolinlines.h"

#include "jit/shared/CodeGenerator-shared-inl.h"
#include "vm/Interpreter-inl.h"

using namespace js;
using namespace js::jit;

using mozilla::DebugOnly;
using mozilla::FloatingPoint;
using mozilla::Maybe;
using mozilla::NegativeInfinity;
using mozilla::PositiveInfinity;
using JS::GenericNaN;

namespace js {
namespace jit {

// This out-of-line cache is used to do a double dispatch including it-self and
// the wrapped IonCache.
class OutOfLineUpdateCache :
  public OutOfLineCodeBase<CodeGenerator>,
  public IonCacheVisitor
{
  private:
    LInstruction* lir_;
    size_t cacheIndex_;
    AddCacheState state_;

  public:
    OutOfLineUpdateCache(LInstruction* lir, size_t cacheIndex)
      : lir_(lir),
        cacheIndex_(cacheIndex)
    { }

    void bind(MacroAssembler* masm) {
        // The binding of the initial jump is done in
        // CodeGenerator::visitOutOfLineCache.
    }

    size_t getCacheIndex() const {
        return cacheIndex_;
    }
    LInstruction* lir() const {
        return lir_;
    }
    AddCacheState& state() {
        return state_;
    }

    void accept(CodeGenerator* codegen) {
        codegen->visitOutOfLineCache(this);
    }

    // ICs' visit functions delegating the work to the CodeGen visit funtions.
#define VISIT_CACHE_FUNCTION(op)                                        \
    void visit##op##IC(CodeGenerator* codegen) {                        \
        CodeGenerator::DataPtr<op##IC> ic(codegen, getCacheIndex());    \
        codegen->visit##op##IC(this, ic);                        \
    }

    IONCACHE_KIND_LIST(VISIT_CACHE_FUNCTION)
#undef VISIT_CACHE_FUNCTION
};

// This function is declared here because it needs to instantiate an
// OutOfLineUpdateCache, but we want to keep it visible inside the
// CodeGeneratorShared such as we can specialize inline caches in function of
// the architecture.
void
CodeGeneratorShared::addCache(LInstruction* lir, size_t cacheIndex)
{
    if (cacheIndex == SIZE_MAX) {
        masm.setOOM();
        return;
    }

    DataPtr<IonCache> cache(this, cacheIndex);
    MInstruction* mir = lir->mirRaw()->toInstruction();
    if (mir->resumePoint())
        cache->setScriptedLocation(mir->block()->info().script(),
                                   mir->resumePoint()->pc());
    else
        cache->setIdempotent();

    OutOfLineUpdateCache* ool = new(alloc()) OutOfLineUpdateCache(lir, cacheIndex);
    addOutOfLineCode(ool, mir);

    // OOL-specific state depends on the type of cache.
    cache->initializeAddCacheState(lir, &ool->state());

    cache->emitInitialJump(masm, ool->state());
    masm.bind(ool->rejoin());
}

void
CodeGenerator::visitOutOfLineCache(OutOfLineUpdateCache* ool)
{
    DataPtr<IonCache> cache(this, ool->getCacheIndex());

    // Register the location of the OOL path in the IC.
    cache->setFallbackLabel(masm.labelForPatch());
    cache->bindInitialJump(masm, ool->state());

    // Dispatch to ICs' accept functions.
    cache->accept(this, ool);
}

StringObject*
MNewStringObject::templateObj() const {
    return &templateObj_->as<StringObject>();
}

CodeGenerator::CodeGenerator(MIRGenerator* gen, LIRGraph* graph, MacroAssembler* masm)
  : CodeGeneratorSpecific(gen, graph, masm)
  , ionScriptLabels_(gen->alloc())
  , scriptCounts_(nullptr)
  , simdRefreshTemplatesDuringLink_(0)
{
}

CodeGenerator::~CodeGenerator()
{
    MOZ_ASSERT_IF(!gen->compilingAsmJS(), masm.numAsmJSAbsoluteLinks() == 0);
    js_delete(scriptCounts_);
}

typedef bool (*StringToNumberFn)(ExclusiveContext*, JSString*, double*);
static const VMFunction StringToNumberInfo = FunctionInfo<StringToNumberFn>(StringToNumber);

void
CodeGenerator::visitValueToInt32(LValueToInt32* lir)
{
    ValueOperand operand = ToValue(lir, LValueToInt32::Input);
    Register output = ToRegister(lir->output());
    FloatRegister temp = ToFloatRegister(lir->tempFloat());

    MDefinition* input;
    if (lir->mode() == LValueToInt32::NORMAL)
        input = lir->mirNormal()->input();
    else
        input = lir->mirTruncate()->input();

    Label fails;
    if (lir->mode() == LValueToInt32::TRUNCATE) {
        OutOfLineCode* oolDouble = oolTruncateDouble(temp, output, lir->mir());

        // We can only handle strings in truncation contexts, like bitwise
        // operations.
        Label* stringEntry;
        Label* stringRejoin;
        Register stringReg;
        if (input->mightBeType(MIRType_String)) {
            stringReg = ToRegister(lir->temp());
            OutOfLineCode* oolString = oolCallVM(StringToNumberInfo, lir, (ArgList(), stringReg),
                                                 StoreFloatRegisterTo(temp));
            stringEntry = oolString->entry();
            stringRejoin = oolString->rejoin();
        } else {
            stringReg = InvalidReg;
            stringEntry = nullptr;
            stringRejoin = nullptr;
        }

        masm.truncateValueToInt32(operand, input, stringEntry, stringRejoin, oolDouble->entry(),
                                  stringReg, temp, output, &fails);
        masm.bind(oolDouble->rejoin());
    } else {
        masm.convertValueToInt32(operand, input, temp, output, &fails,
                                 lir->mirNormal()->canBeNegativeZero(),
                                 lir->mirNormal()->conversion());
    }

    bailoutFrom(&fails, lir->snapshot());
}

void
CodeGenerator::visitValueToDouble(LValueToDouble* lir)
{
    MToDouble* mir = lir->mir();
    ValueOperand operand = ToValue(lir, LValueToDouble::Input);
    FloatRegister output = ToFloatRegister(lir->output());

    Register tag = masm.splitTagForTest(operand);

    Label isDouble, isInt32, isBool, isNull, isUndefined, done;
    bool hasBoolean = false, hasNull = false, hasUndefined = false;

    masm.branchTestDouble(Assembler::Equal, tag, &isDouble);
    masm.branchTestInt32(Assembler::Equal, tag, &isInt32);

    if (mir->conversion() != MToFPInstruction::NumbersOnly) {
        masm.branchTestBoolean(Assembler::Equal, tag, &isBool);
        masm.branchTestUndefined(Assembler::Equal, tag, &isUndefined);
        hasBoolean = true;
        hasUndefined = true;
        if (mir->conversion() != MToFPInstruction::NonNullNonStringPrimitives) {
            masm.branchTestNull(Assembler::Equal, tag, &isNull);
            hasNull = true;
        }
    }

    bailout(lir->snapshot());

    if (hasNull) {
        masm.bind(&isNull);
        masm.loadConstantDouble(0.0, output);
        masm.jump(&done);
    }

    if (hasUndefined) {
        masm.bind(&isUndefined);
        masm.loadConstantDouble(GenericNaN(), output);
        masm.jump(&done);
    }

    if (hasBoolean) {
        masm.bind(&isBool);
        masm.boolValueToDouble(operand, output);
        masm.jump(&done);
    }

    masm.bind(&isInt32);
    masm.int32ValueToDouble(operand, output);
    masm.jump(&done);

    masm.bind(&isDouble);
    masm.unboxDouble(operand, output);
    masm.bind(&done);
}

void
CodeGenerator::visitValueToFloat32(LValueToFloat32* lir)
{
    MToFloat32* mir = lir->mir();
    ValueOperand operand = ToValue(lir, LValueToFloat32::Input);
    FloatRegister output = ToFloatRegister(lir->output());

    Register tag = masm.splitTagForTest(operand);

    Label isDouble, isInt32, isBool, isNull, isUndefined, done;
    bool hasBoolean = false, hasNull = false, hasUndefined = false;

    masm.branchTestDouble(Assembler::Equal, tag, &isDouble);
    masm.branchTestInt32(Assembler::Equal, tag, &isInt32);

    if (mir->conversion() != MToFPInstruction::NumbersOnly) {
        masm.branchTestBoolean(Assembler::Equal, tag, &isBool);
        masm.branchTestUndefined(Assembler::Equal, tag, &isUndefined);
        hasBoolean = true;
        hasUndefined = true;
        if (mir->conversion() != MToFPInstruction::NonNullNonStringPrimitives) {
            masm.branchTestNull(Assembler::Equal, tag, &isNull);
            hasNull = true;
        }
    }

    bailout(lir->snapshot());

    if (hasNull) {
        masm.bind(&isNull);
        masm.loadConstantFloat32(0.0f, output);
        masm.jump(&done);
    }

    if (hasUndefined) {
        masm.bind(&isUndefined);
        masm.loadConstantFloat32(float(GenericNaN()), output);
        masm.jump(&done);
    }

    if (hasBoolean) {
        masm.bind(&isBool);
        masm.boolValueToFloat32(operand, output);
        masm.jump(&done);
    }

    masm.bind(&isInt32);
    masm.int32ValueToFloat32(operand, output);
    masm.jump(&done);

    masm.bind(&isDouble);
    // ARM and MIPS may not have a double register available if we've
    // allocated output as a float32.
#if defined(JS_CODEGEN_ARM) || defined(JS_CODEGEN_MIPS)
    masm.unboxDouble(operand, ScratchDoubleReg);
    masm.convertDoubleToFloat32(ScratchDoubleReg, output);
#else
    masm.unboxDouble(operand, output);
    masm.convertDoubleToFloat32(output, output);
#endif
    masm.bind(&done);
}

void
CodeGenerator::visitInt32ToDouble(LInt32ToDouble* lir)
{
    masm.convertInt32ToDouble(ToRegister(lir->input()), ToFloatRegister(lir->output()));
}

void
CodeGenerator::visitFloat32ToDouble(LFloat32ToDouble* lir)
{
    masm.convertFloat32ToDouble(ToFloatRegister(lir->input()), ToFloatRegister(lir->output()));
}

void
CodeGenerator::visitDoubleToFloat32(LDoubleToFloat32* lir)
{
    masm.convertDoubleToFloat32(ToFloatRegister(lir->input()), ToFloatRegister(lir->output()));
}

void
CodeGenerator::visitInt32ToFloat32(LInt32ToFloat32* lir)
{
    masm.convertInt32ToFloat32(ToRegister(lir->input()), ToFloatRegister(lir->output()));
}

void
CodeGenerator::visitDoubleToInt32(LDoubleToInt32* lir)
{
    Label fail;
    FloatRegister input = ToFloatRegister(lir->input());
    Register output = ToRegister(lir->output());
    masm.convertDoubleToInt32(input, output, &fail, lir->mir()->canBeNegativeZero());
    bailoutFrom(&fail, lir->snapshot());
}

void
CodeGenerator::visitFloat32ToInt32(LFloat32ToInt32* lir)
{
    Label fail;
    FloatRegister input = ToFloatRegister(lir->input());
    Register output = ToRegister(lir->output());
    masm.convertFloat32ToInt32(input, output, &fail, lir->mir()->canBeNegativeZero());
    bailoutFrom(&fail, lir->snapshot());
}

void
CodeGenerator::emitOOLTestObject(Register objreg,
                                 Label* ifEmulatesUndefined,
                                 Label* ifDoesntEmulateUndefined,
                                 Register scratch)
{
    saveVolatile(scratch);
    masm.setupUnalignedABICall(1, scratch);
    masm.passABIArg(objreg);
    masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, js::EmulatesUndefined));
    masm.storeCallResult(scratch);
    restoreVolatile(scratch);

    masm.branchIfTrueBool(scratch, ifEmulatesUndefined);
    masm.jump(ifDoesntEmulateUndefined);
}

// Base out-of-line code generator for all tests of the truthiness of an
// object, where the object might not be truthy.  (Recall that per spec all
// objects are truthy, but we implement the JSCLASS_EMULATES_UNDEFINED class
// flag to permit objects to look like |undefined| in certain contexts,
// including in object truthiness testing.)  We check truthiness inline except
// when we're testing it on a proxy (or if TI guarantees us that the specified
// object will never emulate |undefined|), in which case out-of-line code will
// call EmulatesUndefined for a conclusive answer.
class OutOfLineTestObject : public OutOfLineCodeBase<CodeGenerator>
{
    Register objreg_;
    Register scratch_;

    Label* ifEmulatesUndefined_;
    Label* ifDoesntEmulateUndefined_;

#ifdef DEBUG
    bool initialized() { return ifEmulatesUndefined_ != nullptr; }
#endif

  public:
    OutOfLineTestObject()
#ifdef DEBUG
      : ifEmulatesUndefined_(nullptr), ifDoesntEmulateUndefined_(nullptr)
#endif
    { }

    void accept(CodeGenerator* codegen) final override {
        MOZ_ASSERT(initialized());
        codegen->emitOOLTestObject(objreg_, ifEmulatesUndefined_, ifDoesntEmulateUndefined_,
                                   scratch_);
    }

    // Specify the register where the object to be tested is found, labels to
    // jump to if the object is truthy or falsy, and a scratch register for
    // use in the out-of-line path.
    void setInputAndTargets(Register objreg, Label* ifEmulatesUndefined, Label* ifDoesntEmulateUndefined,
                            Register scratch)
    {
        MOZ_ASSERT(!initialized());
        MOZ_ASSERT(ifEmulatesUndefined);
        objreg_ = objreg;
        scratch_ = scratch;
        ifEmulatesUndefined_ = ifEmulatesUndefined;
        ifDoesntEmulateUndefined_ = ifDoesntEmulateUndefined;
    }
};

// A subclass of OutOfLineTestObject containing two extra labels, for use when
// the ifTruthy/ifFalsy labels are needed in inline code as well as out-of-line
// code.  The user should bind these labels in inline code, and specify them as
// targets via setInputAndTargets, as appropriate.
class OutOfLineTestObjectWithLabels : public OutOfLineTestObject
{
    Label label1_;
    Label label2_;

  public:
    OutOfLineTestObjectWithLabels() { }

    Label* label1() { return &label1_; }
    Label* label2() { return &label2_; }
};

void
CodeGenerator::testObjectEmulatesUndefinedKernel(Register objreg,
                                                 Label* ifEmulatesUndefined,
                                                 Label* ifDoesntEmulateUndefined,
                                                 Register scratch, OutOfLineTestObject* ool)
{
    ool->setInputAndTargets(objreg, ifEmulatesUndefined, ifDoesntEmulateUndefined, scratch);

    // Perform a fast-path check of the object's class flags if the object's
    // not a proxy.  Let out-of-line code handle the slow cases that require
    // saving registers, making a function call, and restoring registers.
    masm.branchTestObjectTruthy(false, objreg, scratch, ool->entry(), ifEmulatesUndefined);
}

void
CodeGenerator::branchTestObjectEmulatesUndefined(Register objreg,
                                                 Label* ifEmulatesUndefined,
                                                 Label* ifDoesntEmulateUndefined,
                                                 Register scratch, OutOfLineTestObject* ool)
{
    MOZ_ASSERT(!ifDoesntEmulateUndefined->bound(),
               "ifDoesntEmulateUndefined will be bound to the fallthrough path");

    testObjectEmulatesUndefinedKernel(objreg, ifEmulatesUndefined, ifDoesntEmulateUndefined,
                                      scratch, ool);
    masm.bind(ifDoesntEmulateUndefined);
}

void
CodeGenerator::testObjectEmulatesUndefined(Register objreg,
                                           Label* ifEmulatesUndefined,
                                           Label* ifDoesntEmulateUndefined,
                                           Register scratch, OutOfLineTestObject* ool)
{
    testObjectEmulatesUndefinedKernel(objreg, ifEmulatesUndefined, ifDoesntEmulateUndefined,
                                      scratch, ool);
    masm.jump(ifDoesntEmulateUndefined);
}

void
CodeGenerator::testValueTruthyKernel(const ValueOperand& value,
                                     const LDefinition* scratch1, const LDefinition* scratch2,
                                     FloatRegister fr,
                                     Label* ifTruthy, Label* ifFalsy,
                                     OutOfLineTestObject* ool,
                                     MDefinition* valueMIR)
{
    // Count the number of possible type tags we might have, so we'll know when
    // we've checked them all and hence can avoid emitting a tag check for the
    // last one.  In particular, whenever tagCount is 1 that means we've tried
    // all but one of them already so we know exactly what's left based on the
    // mightBe* booleans.
    bool mightBeUndefined = valueMIR->mightBeType(MIRType_Undefined);
    bool mightBeNull = valueMIR->mightBeType(MIRType_Null);
    bool mightBeBoolean = valueMIR->mightBeType(MIRType_Boolean);
    bool mightBeInt32 = valueMIR->mightBeType(MIRType_Int32);
    bool mightBeObject = valueMIR->mightBeType(MIRType_Object);
    bool mightBeString = valueMIR->mightBeType(MIRType_String);
    bool mightBeSymbol = valueMIR->mightBeType(MIRType_Symbol);
    bool mightBeDouble = valueMIR->mightBeType(MIRType_Double);
    int tagCount = int(mightBeUndefined) + int(mightBeNull) +
        int(mightBeBoolean) + int(mightBeInt32) + int(mightBeObject) +
        int(mightBeString) + int(mightBeSymbol) + int(mightBeDouble);

    MOZ_ASSERT_IF(!valueMIR->emptyResultTypeSet(), tagCount > 0);

    // If we know we're null or undefined, we're definitely falsy, no
    // need to even check the tag.
    if (int(mightBeNull) + int(mightBeUndefined) == tagCount) {
        masm.jump(ifFalsy);
        return;
    }

    Register tag = masm.splitTagForTest(value);

    if (mightBeUndefined) {
        MOZ_ASSERT(tagCount > 1);
        masm.branchTestUndefined(Assembler::Equal, tag, ifFalsy);
        --tagCount;
    }

    if (mightBeNull) {
        MOZ_ASSERT(tagCount > 1);
        masm.branchTestNull(Assembler::Equal, tag, ifFalsy);
        --tagCount;
    }

    if (mightBeBoolean) {
        MOZ_ASSERT(tagCount != 0);
        Label notBoolean;
        if (tagCount != 1)
            masm.branchTestBoolean(Assembler::NotEqual, tag, &notBoolean);
        masm.branchTestBooleanTruthy(false, value, ifFalsy);
        if (tagCount != 1)
            masm.jump(ifTruthy);
        // Else just fall through to truthiness.
        masm.bind(&notBoolean);
        --tagCount;
    }

    if (mightBeInt32) {
        MOZ_ASSERT(tagCount != 0);
        Label notInt32;
        if (tagCount != 1)
            masm.branchTestInt32(Assembler::NotEqual, tag, &notInt32);
        masm.branchTestInt32Truthy(false, value, ifFalsy);
        if (tagCount != 1)
            masm.jump(ifTruthy);
        // Else just fall through to truthiness.
        masm.bind(&notInt32);
        --tagCount;
    }

    if (mightBeObject) {
        MOZ_ASSERT(tagCount != 0);
        if (ool) {
            Label notObject;

            if (tagCount != 1)
                masm.branchTestObject(Assembler::NotEqual, tag, &notObject);

            Register objreg = masm.extractObject(value, ToRegister(scratch1));
            testObjectEmulatesUndefined(objreg, ifFalsy, ifTruthy, ToRegister(scratch2), ool);

            masm.bind(&notObject);
        } else {
            if (tagCount != 1)
                masm.branchTestObject(Assembler::Equal, tag, ifTruthy);
            // Else just fall through to truthiness.
        }
        --tagCount;
    } else {
        MOZ_ASSERT(!ool,
                   "We better not have an unused OOL path, since the code generator will try to "
                   "generate code for it but we never set up its labels, which will cause null "
                   "derefs of those labels.");
    }

    if (mightBeString) {
        // Test if a string is non-empty.
        MOZ_ASSERT(tagCount != 0);
        Label notString;
        if (tagCount != 1)
            masm.branchTestString(Assembler::NotEqual, tag, &notString);
        masm.branchTestStringTruthy(false, value, ifFalsy);
        if (tagCount != 1)
            masm.jump(ifTruthy);
        // Else just fall through to truthiness.
        masm.bind(&notString);
        --tagCount;
    }

    if (mightBeSymbol) {
        // All symbols are truthy.
        MOZ_ASSERT(tagCount != 0);
        if (tagCount != 1)
            masm.branchTestSymbol(Assembler::Equal, tag, ifTruthy);
        // Else fall through to ifTruthy.
        --tagCount;
    }

    if (mightBeDouble) {
        MOZ_ASSERT(tagCount == 1);
        // If we reach here the value is a double.
        masm.unboxDouble(value, fr);
        masm.branchTestDoubleTruthy(false, fr, ifFalsy);
        --tagCount;
    }

    MOZ_ASSERT(tagCount == 0);

    // Fall through for truthy.
}

void
CodeGenerator::testValueTruthy(const ValueOperand& value,
                               const LDefinition* scratch1, const LDefinition* scratch2,
                               FloatRegister fr,
                               Label* ifTruthy, Label* ifFalsy,
                               OutOfLineTestObject* ool,
                               MDefinition* valueMIR)
{
    testValueTruthyKernel(value, scratch1, scratch2, fr, ifTruthy, ifFalsy, ool, valueMIR);
    masm.jump(ifTruthy);
}

Label*
CodeGenerator::getJumpLabelForBranch(MBasicBlock* block)
{
    // Skip past trivial blocks.
    block = skipTrivialBlocks(block);

    if (!labelForBackedgeWithImplicitCheck(block))
        return block->lir()->label();

    // We need to use a patchable jump for this backedge, but want to treat
    // this as a normal label target to simplify codegen. Efficiency isn't so
    // important here as these tests are extremely unlikely to be used in loop
    // backedges, so emit inline code for the patchable jump. Heap allocating
    // the label allows it to be used by out of line blocks.
    Label* res = alloc().lifoAlloc()->new_<Label>();
    Label after;
    masm.jump(&after);
    masm.bind(res);
    jumpToBlock(block);
    masm.bind(&after);
    return res;
}

void
CodeGenerator::visitTestOAndBranch(LTestOAndBranch* lir)
{
    MIRType inputType = lir->mir()->input()->type();
    MOZ_ASSERT(inputType == MIRType_ObjectOrNull || lir->mir()->operandMightEmulateUndefined(),
               "If the object couldn't emulate undefined, this should have been folded.");

    Label* truthy = getJumpLabelForBranch(lir->ifTruthy());
    Label* falsy = getJumpLabelForBranch(lir->ifFalsy());
    Register input = ToRegister(lir->input());

    if (lir->mir()->operandMightEmulateUndefined()) {
        if (inputType == MIRType_ObjectOrNull)
            masm.branchTestPtr(Assembler::Zero, input, input, falsy);

        OutOfLineTestObject* ool = new(alloc()) OutOfLineTestObject();
        addOutOfLineCode(ool, lir->mir());

        testObjectEmulatesUndefined(input, falsy, truthy, ToRegister(lir->temp()), ool);
    } else {
        MOZ_ASSERT(inputType == MIRType_ObjectOrNull);
        testZeroEmitBranch(Assembler::NotEqual, input, lir->ifTruthy(), lir->ifFalsy());
    }
}

void
CodeGenerator::visitTestVAndBranch(LTestVAndBranch* lir)
{
    OutOfLineTestObject* ool = nullptr;
    MDefinition* input = lir->mir()->input();
    // Unfortunately, it's possible that someone (e.g. phi elimination) switched
    // out our input after we did cacheOperandMightEmulateUndefined.  So we
    // might think it can emulate undefined _and_ know that it can't be an
    // object.
    if (lir->mir()->operandMightEmulateUndefined() && input->mightBeType(MIRType_Object)) {
        ool = new(alloc()) OutOfLineTestObject();
        addOutOfLineCode(ool, lir->mir());
    }

    Label* truthy = getJumpLabelForBranch(lir->ifTruthy());
    Label* falsy = getJumpLabelForBranch(lir->ifFalsy());

    testValueTruthy(ToValue(lir, LTestVAndBranch::Input),
                    lir->temp1(), lir->temp2(),
                    ToFloatRegister(lir->tempFloat()),
                    truthy, falsy, ool, input);
}

void
CodeGenerator::visitFunctionDispatch(LFunctionDispatch* lir)
{
    MFunctionDispatch* mir = lir->mir();
    Register input = ToRegister(lir->input());
    Label* lastLabel;
    size_t casesWithFallback;

    // Determine if the last case is fallback or an ordinary case.
    if (!mir->hasFallback()) {
        MOZ_ASSERT(mir->numCases() > 0);
        casesWithFallback = mir->numCases();
        lastLabel = skipTrivialBlocks(mir->getCaseBlock(mir->numCases() - 1))->lir()->label();
    } else {
        casesWithFallback = mir->numCases() + 1;
        lastLabel = skipTrivialBlocks(mir->getFallback())->lir()->label();
    }

    // Compare function pointers, except for the last case.
    for (size_t i = 0; i < casesWithFallback - 1; i++) {
        MOZ_ASSERT(i < mir->numCases());
        LBlock* target = skipTrivialBlocks(mir->getCaseBlock(i))->lir();
        if (ObjectGroup* funcGroup = mir->getCaseObjectGroup(i)) {
            masm.branchPtr(Assembler::Equal, Address(input, JSObject::offsetOfGroup()),
                           ImmGCPtr(funcGroup), target->label());
        } else {
            JSFunction* func = mir->getCase(i);
            masm.branchPtr(Assembler::Equal, input, ImmGCPtr(func), target->label());
        }
    }

    // Jump to the last case.
    masm.jump(lastLabel);
}

void
CodeGenerator::visitObjectGroupDispatch(LObjectGroupDispatch* lir)
{
    MObjectGroupDispatch* mir = lir->mir();
    Register input = ToRegister(lir->input());
    Register temp = ToRegister(lir->temp());

    // Load the incoming ObjectGroup in temp.
    masm.loadPtr(Address(input, JSObject::offsetOfGroup()), temp);

    // Compare ObjectGroups.
    MacroAssembler::BranchGCPtr lastBranch;
    LBlock* lastBlock = nullptr;
    InlinePropertyTable* propTable = mir->propTable();
    for (size_t i = 0; i < mir->numCases(); i++) {
        JSFunction* func = mir->getCase(i);
        LBlock* target = skipTrivialBlocks(mir->getCaseBlock(i))->lir();

        DebugOnly<bool> found = false;
        for (size_t j = 0; j < propTable->numEntries(); j++) {
            if (propTable->getFunction(j) != func)
                continue;

            if (lastBranch.isInitialized())
                lastBranch.emit(masm);

            ObjectGroup* group = propTable->getObjectGroup(j);
            lastBranch = MacroAssembler::BranchGCPtr(Assembler::Equal, temp, ImmGCPtr(group),
                                                     target->label());
            lastBlock = target;
            found = true;
        }
        MOZ_ASSERT(found);
    }

    // Jump to fallback block if we have an unknown ObjectGroup. If there's no
    // fallback block, we should have handled all cases.

    if (!mir->hasFallback()) {
        MOZ_ASSERT(lastBranch.isInitialized());
#ifdef DEBUG
        Label ok;
        lastBranch.relink(&ok);
        lastBranch.emit(masm);
        masm.assumeUnreachable("Unexpected ObjectGroup");
        masm.bind(&ok);
#endif
        if (!isNextBlock(lastBlock))
            masm.jump(lastBlock->label());
        return;
    }

    LBlock* fallback = skipTrivialBlocks(mir->getFallback())->lir();
    if (!lastBranch.isInitialized()) {
        if (!isNextBlock(fallback))
            masm.jump(fallback->label());
        return;
    }

    lastBranch.invertCondition();
    lastBranch.relink(fallback->label());
    lastBranch.emit(masm);

    if (!isNextBlock(lastBlock))
        masm.jump(lastBlock->label());
}

void
CodeGenerator::visitBooleanToString(LBooleanToString* lir)
{
    Register input = ToRegister(lir->input());
    Register output = ToRegister(lir->output());
    const JSAtomState& names = GetJitContext()->runtime->names();
    Label true_, done;

    masm.branchTest32(Assembler::NonZero, input, input, &true_);
    masm.movePtr(ImmGCPtr(names.false_), output);
    masm.jump(&done);

    masm.bind(&true_);
    masm.movePtr(ImmGCPtr(names.true_), output);

    masm.bind(&done);
}

void
CodeGenerator::emitIntToString(Register input, Register output, Label* ool)
{
    masm.branch32(Assembler::AboveOrEqual, input, Imm32(StaticStrings::INT_STATIC_LIMIT), ool);

    // Fast path for small integers.
    masm.movePtr(ImmPtr(&GetJitContext()->runtime->staticStrings().intStaticTable), output);
    masm.loadPtr(BaseIndex(output, input, ScalePointer), output);
}

typedef JSFlatString* (*IntToStringFn)(ExclusiveContext*, int);
static const VMFunction IntToStringInfo = FunctionInfo<IntToStringFn>(Int32ToString<CanGC>);

void
CodeGenerator::visitIntToString(LIntToString* lir)
{
    Register input = ToRegister(lir->input());
    Register output = ToRegister(lir->output());

    OutOfLineCode* ool = oolCallVM(IntToStringInfo, lir, (ArgList(), input),
                                   StoreRegisterTo(output));

    emitIntToString(input, output, ool->entry());

    masm.bind(ool->rejoin());
}

typedef JSString* (*DoubleToStringFn)(ExclusiveContext*, double);
static const VMFunction DoubleToStringInfo = FunctionInfo<DoubleToStringFn>(NumberToString<CanGC>);

void
CodeGenerator::visitDoubleToString(LDoubleToString* lir)
{
    FloatRegister input = ToFloatRegister(lir->input());
    Register temp = ToRegister(lir->tempInt());
    Register output = ToRegister(lir->output());

    OutOfLineCode* ool = oolCallVM(DoubleToStringInfo, lir, (ArgList(), input),
                                   StoreRegisterTo(output));

    // Try double to integer conversion and run integer to string code.
    masm.convertDoubleToInt32(input, temp, ool->entry(), true);
    emitIntToString(temp, output, ool->entry());

    masm.bind(ool->rejoin());
}

typedef JSString* (*PrimitiveToStringFn)(JSContext*, HandleValue);
static const VMFunction PrimitiveToStringInfo = FunctionInfo<PrimitiveToStringFn>(ToStringSlow);

void
CodeGenerator::visitValueToString(LValueToString* lir)
{
    ValueOperand input = ToValue(lir, LValueToString::Input);
    Register output = ToRegister(lir->output());

    OutOfLineCode* ool = oolCallVM(PrimitiveToStringInfo, lir, (ArgList(), input),
                                   StoreRegisterTo(output));

    Label done;
    Register tag = masm.splitTagForTest(input);
    const JSAtomState& names = GetJitContext()->runtime->names();

    // String
    if (lir->mir()->input()->mightBeType(MIRType_String)) {
        Label notString;
        masm.branchTestString(Assembler::NotEqual, tag, &notString);
        masm.unboxString(input, output);
        masm.jump(&done);
        masm.bind(&notString);
    }

    // Integer
    if (lir->mir()->input()->mightBeType(MIRType_Int32)) {
        Label notInteger;
        masm.branchTestInt32(Assembler::NotEqual, tag, &notInteger);
        Register unboxed = ToTempUnboxRegister(lir->tempToUnbox());
        unboxed = masm.extractInt32(input, unboxed);
        emitIntToString(unboxed, output, ool->entry());
        masm.jump(&done);
        masm.bind(&notInteger);
    }

    // Double
    if (lir->mir()->input()->mightBeType(MIRType_Double)) {
        // Note: no fastpath. Need two extra registers and can only convert doubles
        // that fit integers and are smaller than StaticStrings::INT_STATIC_LIMIT.
        masm.branchTestDouble(Assembler::Equal, tag, ool->entry());
    }

    // Undefined
    if (lir->mir()->input()->mightBeType(MIRType_Undefined)) {
        Label notUndefined;
        masm.branchTestUndefined(Assembler::NotEqual, tag, &notUndefined);
        masm.movePtr(ImmGCPtr(names.undefined), output);
        masm.jump(&done);
        masm.bind(&notUndefined);
    }

    // Null
    if (lir->mir()->input()->mightBeType(MIRType_Null)) {
        Label notNull;
        masm.branchTestNull(Assembler::NotEqual, tag, &notNull);
        masm.movePtr(ImmGCPtr(names.null), output);
        masm.jump(&done);
        masm.bind(&notNull);
    }

    // Boolean
    if (lir->mir()->input()->mightBeType(MIRType_Boolean)) {
        Label notBoolean, true_;
        masm.branchTestBoolean(Assembler::NotEqual, tag, &notBoolean);
        masm.branchTestBooleanTruthy(true, input, &true_);
        masm.movePtr(ImmGCPtr(names.false_), output);
        masm.jump(&done);
        masm.bind(&true_);
        masm.movePtr(ImmGCPtr(names.true_), output);
        masm.jump(&done);
        masm.bind(&notBoolean);
    }

    // Object
    if (lir->mir()->input()->mightBeType(MIRType_Object)) {
        // Bail.
        MOZ_ASSERT(lir->mir()->fallible());
        Label bail;
        masm.branchTestObject(Assembler::Equal, tag, &bail);
        bailoutFrom(&bail, lir->snapshot());
    }

    // Symbol
    if (lir->mir()->input()->mightBeType(MIRType_Symbol))
        masm.branchTestSymbol(Assembler::Equal, tag, ool->entry());

#ifdef DEBUG
    masm.assumeUnreachable("Unexpected type for MValueToString.");
#endif

    masm.bind(&done);
    masm.bind(ool->rejoin());
}

typedef JSObject* (*ToObjectFn)(JSContext*, HandleValue, bool);
static const VMFunction ToObjectInfo = FunctionInfo<ToObjectFn>(ToObjectSlow);

void
CodeGenerator::visitValueToObjectOrNull(LValueToObjectOrNull* lir)
{
    ValueOperand input = ToValue(lir, LValueToObjectOrNull::Input);
    Register output = ToRegister(lir->output());

    OutOfLineCode* ool = oolCallVM(ToObjectInfo, lir, (ArgList(), input, Imm32(0)),
                                   StoreRegisterTo(output));

    Label done;
    masm.branchTestObject(Assembler::Equal, input, &done);
    masm.branchTestNull(Assembler::NotEqual, input, ool->entry());

    masm.bind(&done);
    masm.unboxNonDouble(input, output);

    masm.bind(ool->rejoin());
}

typedef JSObject* (*CloneRegExpObjectFn)(JSContext*, JSObject*);
static const VMFunction CloneRegExpObjectInfo =
    FunctionInfo<CloneRegExpObjectFn>(CloneRegExpObject);

void
CodeGenerator::visitRegExp(LRegExp* lir)
{
    pushArg(ImmGCPtr(lir->mir()->source()));
    callVM(CloneRegExpObjectInfo, lir);
}

// The maximum number of pairs we can handle when executing RegExps inline.
static const size_t RegExpMaxPairCount = 6;

// Amount of space to reserve on the stack when executing RegExps inline.
static const size_t RegExpReservedStack = sizeof(irregexp::InputOutputData)
                                        + sizeof(MatchPairs)
                                        + RegExpMaxPairCount * sizeof(MatchPair);

static size_t
RegExpPairsVectorStartOffset(size_t inputOutputDataStartOffset)
{
    return inputOutputDataStartOffset + sizeof(irregexp::InputOutputData) + sizeof(MatchPairs);
}

static Address
RegExpPairCountAddress(MacroAssembler& masm, size_t inputOutputDataStartOffset)
{
    return Address(masm.getStackPointer(), inputOutputDataStartOffset
                                           + sizeof(irregexp::InputOutputData)
                                           + MatchPairs::offsetOfPairCount());
}

// Prepare an InputOutputData and optional MatchPairs which space has been
// allocated for on the stack, and try to execute a RegExp on a string input.
// If the RegExp was successfully executed and matched the input, fallthrough,
// otherwise jump to notFound or failure.
static bool
PrepareAndExecuteRegExp(JSContext* cx, MacroAssembler& masm, Register regexp, Register input,
                        Register temp1, Register temp2, Register temp3,
                        size_t inputOutputDataStartOffset,
                        RegExpShared::CompilationMode mode,
                        Label* notFound, Label* failure)
{
    size_t matchPairsStartOffset = inputOutputDataStartOffset + sizeof(irregexp::InputOutputData);
    size_t pairsVectorStartOffset = RegExpPairsVectorStartOffset(inputOutputDataStartOffset);

    Address inputStartAddress(masm.getStackPointer(),
        inputOutputDataStartOffset + offsetof(irregexp::InputOutputData, inputStart));
    Address inputEndAddress(masm.getStackPointer(),
        inputOutputDataStartOffset + offsetof(irregexp::InputOutputData, inputEnd));
    Address matchesPointerAddress(masm.getStackPointer(),
        inputOutputDataStartOffset + offsetof(irregexp::InputOutputData, matches));
    Address startIndexAddress(masm.getStackPointer(),
        inputOutputDataStartOffset + offsetof(irregexp::InputOutputData, startIndex));
    Address matchResultAddress(masm.getStackPointer(),
        inputOutputDataStartOffset + offsetof(irregexp::InputOutputData, result));

    Address pairCountAddress = RegExpPairCountAddress(masm, inputOutputDataStartOffset);
    Address pairsPointerAddress(masm.getStackPointer(),
        matchPairsStartOffset + MatchPairs::offsetOfPairs());

    Address pairsVectorAddress(masm.getStackPointer(), pairsVectorStartOffset);

    RegExpStatics* res = cx->global()->getRegExpStatics(cx);
    if (!res)
        return false;
#ifdef JS_USE_LINK_REGISTER
    if (mode != RegExpShared::MatchOnly)
        masm.pushReturnAddress();
#endif
    if (mode == RegExpShared::Normal) {
        // First, fill in a skeletal MatchPairs instance on the stack. This will be
        // passed to the OOL stub in the caller if we aren't able to execute the
        // RegExp inline, and that stub needs to be able to determine whether the
        // execution finished successfully.
        masm.store32(Imm32(1), pairCountAddress);
        masm.store32(Imm32(-1), pairsVectorAddress);
        masm.computeEffectiveAddress(pairsVectorAddress, temp1);
        masm.storePtr(temp1, pairsPointerAddress);
    }

    // Check for a linear input string.
    masm.branchIfRope(input, failure);

    // Get the RegExpShared for the RegExp.
    masm.loadPtr(Address(regexp, NativeObject::getFixedSlotOffset(RegExpObject::PRIVATE_SLOT)), temp1);
    masm.branchPtr(Assembler::Equal, temp1, ImmWord(0), failure);

    // Don't handle RegExps which read and write to lastIndex.
    masm.branchTest32(Assembler::NonZero, Address(temp1, RegExpShared::offsetOfFlags()),
                      Imm32(StickyFlag | GlobalFlag), failure);

    if (mode == RegExpShared::Normal) {
        // Don't handle RegExps with excessive parens.
        masm.load32(Address(temp1, RegExpShared::offsetOfParenCount()), temp2);
        masm.branch32(Assembler::AboveOrEqual, temp2, Imm32(RegExpMaxPairCount), failure);

        // Fill in the paren count in the MatchPairs on the stack.
        masm.add32(Imm32(1), temp2);
        masm.store32(temp2, pairCountAddress);
    }

    // Load the code pointer for the type of input string we have, and compute
    // the input start/end pointers in the InputOutputData.
    Register codePointer = temp1;
    {
        masm.loadStringChars(input, temp2);
        masm.storePtr(temp2, inputStartAddress);
        masm.loadStringLength(input, temp3);
        Label isLatin1, done;
        masm.branchTest32(Assembler::NonZero, Address(input, JSString::offsetOfFlags()),
                          Imm32(JSString::LATIN1_CHARS_BIT), &isLatin1);
        {
            masm.lshiftPtr(Imm32(1), temp3);
            masm.loadPtr(Address(temp1, RegExpShared::offsetOfJitCode(mode, false)), codePointer);
        }
        masm.jump(&done);
        {
            masm.bind(&isLatin1);
            masm.loadPtr(Address(temp1, RegExpShared::offsetOfJitCode(mode, true)), codePointer);
        }
        masm.bind(&done);
        masm.addPtr(temp3, temp2);
        masm.storePtr(temp2, inputEndAddress);
    }

    // Check the RegExpShared has been compiled for this type of input.
    masm.branchPtr(Assembler::Equal, codePointer, ImmWord(0), failure);
    masm.loadPtr(Address(codePointer, JitCode::offsetOfCode()), codePointer);

    // Don't handle execution inside a PreserveRegExpStatics instance.
    masm.branchPtr(Assembler::NotEqual, AbsoluteAddress(res->addressOfBufferLink()), ImmWord(0), failure);

    // Finish filling in the InputOutputData instance on the stack.
    if (mode == RegExpShared::Normal) {
        masm.computeEffectiveAddress(Address(masm.getStackPointer(), matchPairsStartOffset), temp2);
        masm.storePtr(temp2, matchesPointerAddress);
    }
    masm.storePtr(ImmWord(0), startIndexAddress);
    masm.store32(Imm32(0), matchResultAddress);

    // Save any volatile inputs.
    LiveGeneralRegisterSet volatileRegs;
    if (input.volatile_())
        volatileRegs.add(input);
    if (regexp.volatile_())
        volatileRegs.add(regexp);

    // Execute the RegExp.
    masm.computeEffectiveAddress(Address(masm.getStackPointer(), inputOutputDataStartOffset), temp2);
    masm.PushRegsInMask(volatileRegs);
    masm.setupUnalignedABICall(1, temp3);
    masm.passABIArg(temp2);
    masm.callWithABI(codePointer);
    masm.PopRegsInMask(volatileRegs);

    Label success;
    masm.branch32(Assembler::Equal, matchResultAddress,
                  Imm32(RegExpRunStatus_Success_NotFound), notFound);
    masm.branch32(Assembler::Equal, matchResultAddress,
                  Imm32(RegExpRunStatus_Error), failure);

    // Lazily update the RegExpStatics.
    masm.movePtr(ImmPtr(res), temp1);

    Address pendingInputAddress(temp1, RegExpStatics::offsetOfPendingInput());
    Address matchesInputAddress(temp1, RegExpStatics::offsetOfMatchesInput());
    Address lazySourceAddress(temp1, RegExpStatics::offsetOfLazySource());

    masm.patchableCallPreBarrier(pendingInputAddress, MIRType_String);
    masm.patchableCallPreBarrier(matchesInputAddress, MIRType_String);
    masm.patchableCallPreBarrier(lazySourceAddress, MIRType_String);

    masm.storePtr(input, pendingInputAddress);
    masm.storePtr(input, matchesInputAddress);
    masm.storePtr(ImmWord(0), Address(temp1, RegExpStatics::offsetOfLazyIndex()));
    masm.store32(Imm32(1), Address(temp1, RegExpStatics::offsetOfPendingLazyEvaluation()));

    masm.loadPtr(Address(regexp, NativeObject::getFixedSlotOffset(RegExpObject::PRIVATE_SLOT)), temp2);
    masm.loadPtr(Address(temp2, RegExpShared::offsetOfSource()), temp3);
    masm.storePtr(temp3, lazySourceAddress);
    masm.load32(Address(temp2, RegExpShared::offsetOfFlags()), temp3);
    masm.store32(temp3, Address(temp1, RegExpStatics::offsetOfLazyFlags()));

    return true;
}

static void
CopyStringChars(MacroAssembler& masm, Register to, Register from, Register len,
                Register byteOpScratch, size_t fromWidth, size_t toWidth);

static void
CreateDependentString(MacroAssembler& masm, const JSAtomState& names,
                      bool latin1, Register string,
                      Register base, Register temp1, Register temp2,
                      BaseIndex startIndexAddress, BaseIndex limitIndexAddress,
                      Label* failure)
{
    // Compute the string length.
    masm.load32(startIndexAddress, temp2);
    masm.load32(limitIndexAddress, temp1);
    masm.sub32(temp2, temp1);

    Label done, nonEmpty;

    // Zero length matches use the empty string.
    masm.branchTest32(Assembler::NonZero, temp1, temp1, &nonEmpty);
    masm.movePtr(ImmGCPtr(names.empty), string);
    masm.jump(&done);

    masm.bind(&nonEmpty);

    Label notInline;

    int32_t maxInlineLength = latin1
                              ? (int32_t) JSFatInlineString::MAX_LENGTH_LATIN1
                              : (int32_t) JSFatInlineString::MAX_LENGTH_TWO_BYTE;
    masm.branch32(Assembler::Above, temp1, Imm32(maxInlineLength), &notInline);

    {
        // Make a thin or fat inline string.
        Label stringAllocated, fatInline;

        int32_t maxThinInlineLength = latin1
                                      ? (int32_t) JSThinInlineString::MAX_LENGTH_LATIN1
                                      : (int32_t) JSThinInlineString::MAX_LENGTH_TWO_BYTE;
        masm.branch32(Assembler::Above, temp1, Imm32(maxThinInlineLength), &fatInline);

        int32_t thinFlags = (latin1 ? JSString::LATIN1_CHARS_BIT : 0) | JSString::INIT_THIN_INLINE_FLAGS;
        masm.newGCString(string, temp2, failure);
        masm.store32(Imm32(thinFlags), Address(string, JSString::offsetOfFlags()));
        masm.jump(&stringAllocated);

        masm.bind(&fatInline);

        int32_t fatFlags = (latin1 ? JSString::LATIN1_CHARS_BIT : 0) | JSString::INIT_FAT_INLINE_FLAGS;
        masm.newGCFatInlineString(string, temp2, failure);
        masm.store32(Imm32(fatFlags), Address(string, JSString::offsetOfFlags()));

        masm.bind(&stringAllocated);
        masm.store32(temp1, Address(string, JSString::offsetOfLength()));

        masm.push(string);
        masm.push(base);

        // Adjust the start index address for the above pushes.
        MOZ_ASSERT(startIndexAddress.base == masm.getStackPointer());
        BaseIndex newStartIndexAddress = startIndexAddress;
        newStartIndexAddress.offset += 2 * sizeof(void*);

        // Load chars pointer for the new string.
        masm.addPtr(ImmWord(JSInlineString::offsetOfInlineStorage()), string);

        // Load the source characters pointer.
        masm.loadStringChars(base, base);
        masm.load32(newStartIndexAddress, temp2);
        if (latin1)
            masm.addPtr(temp2, base);
        else
            masm.computeEffectiveAddress(BaseIndex(base, temp2, TimesTwo), base);

        CopyStringChars(masm, string, base, temp1, temp2, latin1 ? 1 : 2, latin1 ? 1 : 2);

        // Null-terminate.
        if (latin1)
            masm.store8(Imm32(0), Address(string, 0));
        else
            masm.store16(Imm32(0), Address(string, 0));

        masm.pop(base);
        masm.pop(string);
    }

    masm.jump(&done);
    masm.bind(&notInline);

    {
        // Make a dependent string.
        int32_t flags = (latin1 ? JSString::LATIN1_CHARS_BIT : 0) | JSString::DEPENDENT_FLAGS;

        masm.newGCString(string, temp2, failure);
        masm.store32(Imm32(flags), Address(string, JSString::offsetOfFlags()));
        masm.store32(temp1, Address(string, JSString::offsetOfLength()));

        masm.loadPtr(Address(base, JSString::offsetOfNonInlineChars()), temp1);
        masm.load32(startIndexAddress, temp2);
        if (latin1)
            masm.addPtr(temp2, temp1);
        else
            masm.computeEffectiveAddress(BaseIndex(temp1, temp2, TimesTwo), temp1);
        masm.storePtr(temp1, Address(string, JSString::offsetOfNonInlineChars()));
        masm.storePtr(base, Address(string, JSDependentString::offsetOfBase()));

        // Follow any base pointer if the input is itself a dependent string.
        // Watch for undepended strings, which have a base pointer but don't
        // actually share their characters with it.
        Label noBase;
        masm.branchTest32(Assembler::Zero, Address(base, JSString::offsetOfFlags()),
                          Imm32(JSString::HAS_BASE_BIT), &noBase);
        masm.branchTest32(Assembler::NonZero, Address(base, JSString::offsetOfFlags()),
                          Imm32(JSString::FLAT_BIT), &noBase);
        masm.loadPtr(Address(base, JSDependentString::offsetOfBase()), temp1);
        masm.storePtr(temp1, Address(string, JSDependentString::offsetOfBase()));
        masm.bind(&noBase);
    }

    masm.bind(&done);
}

JitCode*
JitCompartment::generateRegExpExecStub(JSContext* cx)
{
    Register regexp = CallTempReg0;
    Register input = CallTempReg1;
    ValueOperand result = JSReturnOperand;

    // We are free to clobber all registers, as LRegExpExec is a call instruction.
    AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All());
    regs.take(input);
    regs.take(regexp);

    // temp5 is used in single byte instructions when creating dependent
    // strings, and has restrictions on which register it can be on some
    // platforms.
    Register temp5;
    {
        AllocatableGeneralRegisterSet oregs = regs;
        do {
            temp5 = oregs.takeAny();
        } while (!MacroAssembler::canUseInSingleByteInstruction(temp5));
        regs.take(temp5);
    }

    Register temp1 = regs.takeAny();
    Register temp2 = regs.takeAny();
    Register temp3 = regs.takeAny();
    Register temp4 = regs.takeAny();

    ArrayObject* templateObject = cx->compartment()->regExps.getOrCreateMatchResultTemplateObject(cx);
    if (!templateObject)
        return nullptr;

    // The template object should have enough space for the maximum number of
    // pairs this stub can handle.
    MOZ_ASSERT(ObjectElements::VALUES_PER_HEADER + RegExpMaxPairCount ==
               gc::GetGCKindSlots(templateObject->asTenured().getAllocKind()));

    MacroAssembler masm(cx);

    // The InputOutputData is placed above the return address on the stack.
    size_t inputOutputDataStartOffset = sizeof(void*);

    Label notFound, oolEntry;
    if (!PrepareAndExecuteRegExp(cx, masm, regexp, input, temp1, temp2, temp3,
                                 inputOutputDataStartOffset, RegExpShared::Normal,
                                 &notFound, &oolEntry))
    {
        return nullptr;
    }

    // Construct the result.
    Register object = temp1;
    masm.createGCObject(object, temp2, templateObject, gc::DefaultHeap, &oolEntry);

    Register matchIndex = temp2;
    masm.move32(Imm32(0), matchIndex);

    size_t pairsVectorStartOffset = RegExpPairsVectorStartOffset(inputOutputDataStartOffset);
    Address pairsVectorAddress(masm.getStackPointer(), pairsVectorStartOffset);
    Address pairCountAddress = RegExpPairCountAddress(masm, inputOutputDataStartOffset);

    size_t elementsOffset = NativeObject::offsetOfFixedElements();
    BaseIndex stringAddress(object, matchIndex, TimesEight, elementsOffset);

    JS_STATIC_ASSERT(sizeof(MatchPair) == 8);
    BaseIndex stringIndexAddress(masm.getStackPointer(), matchIndex, TimesEight,
                                 pairsVectorStartOffset + offsetof(MatchPair, start));
    BaseIndex stringLimitAddress(masm.getStackPointer(), matchIndex, TimesEight,
                                 pairsVectorStartOffset + offsetof(MatchPair, limit));

    // Loop to construct the match strings. There are two different loops,
    // depending on whether the input is latin1.
    {
        Label isLatin1, done;
        masm.branchTest32(Assembler::NonZero, Address(input, JSString::offsetOfFlags()),
                          Imm32(JSString::LATIN1_CHARS_BIT), &isLatin1);

        for (int isLatin = 0; isLatin <= 1; isLatin++) {
            if (isLatin)
                masm.bind(&isLatin1);

            Label matchLoop;
            masm.bind(&matchLoop);

            Label isUndefined, storeDone;
            masm.branch32(Assembler::LessThan, stringIndexAddress, Imm32(0), &isUndefined);

            CreateDependentString(masm, cx->names(), isLatin, temp3, input, temp4, temp5,
                                  stringIndexAddress, stringLimitAddress, &oolEntry);
            masm.storeValue(JSVAL_TYPE_STRING, temp3, stringAddress);

            masm.jump(&storeDone);
            masm.bind(&isUndefined);

            masm.storeValue(UndefinedValue(), stringAddress);
            masm.bind(&storeDone);

            masm.add32(Imm32(1), matchIndex);
            masm.branch32(Assembler::LessThanOrEqual, pairCountAddress, matchIndex, &done);
            masm.jump(&matchLoop);
        }

        masm.bind(&done);
    }

    // Fill in the rest of the output object.
    masm.store32(matchIndex, Address(object, elementsOffset + ObjectElements::offsetOfInitializedLength()));
    masm.store32(matchIndex, Address(object, elementsOffset + ObjectElements::offsetOfLength()));

    masm.loadPtr(Address(object, NativeObject::offsetOfSlots()), temp2);

    MOZ_ASSERT(templateObject->numFixedSlots() == 0);
    MOZ_ASSERT(templateObject->lookupPure(cx->names().index)->slot() == 0);
    MOZ_ASSERT(templateObject->lookupPure(cx->names().input)->slot() == 1);

    masm.load32(pairsVectorAddress, temp3);
    masm.storeValue(JSVAL_TYPE_INT32, temp3, Address(temp2, 0));
    masm.storeValue(JSVAL_TYPE_STRING, input, Address(temp2, sizeof(Value)));

    // All done!
    masm.tagValue(JSVAL_TYPE_OBJECT, object, result);
    masm.ret();

    masm.bind(&notFound);
    masm.moveValue(NullValue(), result);
    masm.ret();

    // Use an undefined value to signal to the caller that the OOL stub needs to be called.
    masm.bind(&oolEntry);
    masm.moveValue(UndefinedValue(), result);
    masm.ret();

    Linker linker(masm);
    AutoFlushICache afc("RegExpExecStub");
    JitCode* code = linker.newCode<CanGC>(cx, OTHER_CODE);

#ifdef JS_ION_PERF
    writePerfSpewerJitCodeProfile(code, "RegExpExecStub");
#endif

    if (cx->zone()->needsIncrementalBarrier())
        code->togglePreBarriers(true);

    return code;
}

class OutOfLineRegExpExec : public OutOfLineCodeBase<CodeGenerator>
{
    LRegExpExec* lir_;

  public:
    explicit OutOfLineRegExpExec(LRegExpExec* lir)
      : lir_(lir)
    { }

    void accept(CodeGenerator* codegen) {
        codegen->visitOutOfLineRegExpExec(this);
    }

    LRegExpExec* lir() const {
        return lir_;
    }
};

typedef bool (*RegExpExecRawFn)(JSContext* cx, HandleObject regexp,
                                HandleString input, MatchPairs* pairs, MutableHandleValue output);
static const VMFunction RegExpExecRawInfo = FunctionInfo<RegExpExecRawFn>(regexp_exec_raw);

void
CodeGenerator::visitOutOfLineRegExpExec(OutOfLineRegExpExec* ool)
{
    LRegExpExec* lir = ool->lir();
    Register input = ToRegister(lir->string());
    Register regexp = ToRegister(lir->regexp());

    AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All());
    regs.take(input);
    regs.take(regexp);
    Register temp = regs.takeAny();

    masm.computeEffectiveAddress(Address(masm.getStackPointer(),
        sizeof(irregexp::InputOutputData)), temp);

    pushArg(temp);
    pushArg(input);
    pushArg(regexp);

    callVM(RegExpExecRawInfo, lir);

    masm.jump(ool->rejoin());
}

void
CodeGenerator::visitRegExpExec(LRegExpExec* lir)
{
    MOZ_ASSERT(ToRegister(lir->regexp()) == CallTempReg0);
    MOZ_ASSERT(ToRegister(lir->string()) == CallTempReg1);
    MOZ_ASSERT(GetValueOutput(lir) == JSReturnOperand);

    masm.reserveStack(RegExpReservedStack);

    OutOfLineRegExpExec* ool = new(alloc()) OutOfLineRegExpExec(lir);
    addOutOfLineCode(ool, lir->mir());

    JitCode* regExpExecStub = gen->compartment->jitCompartment()->regExpExecStubNoBarrier();
    masm.call(regExpExecStub);
    masm.branchTestUndefined(Assembler::Equal, JSReturnOperand, ool->entry());
    masm.bind(ool->rejoin());

    masm.freeStack(RegExpReservedStack);
}

// The value returned by the RegExp test stub if inline execution failed.
static const int32_t RegExpTestFailedValue = 2;

JitCode*
JitCompartment::generateRegExpTestStub(JSContext* cx)
{
    Register regexp = CallTempReg2;
    Register input = CallTempReg3;
    Register result = ReturnReg;

    MOZ_ASSERT(regexp != result && input != result);

    // We are free to clobber all registers, as LRegExpTest is a call instruction.
    AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All());
    regs.take(input);
    regs.take(regexp);
    Register temp1 = regs.takeAny();
    Register temp2 = regs.takeAny();
    Register temp3 = regs.takeAny();

    MacroAssembler masm(cx);

#ifdef JS_USE_LINK_REGISTER
    masm.pushReturnAddress();
#endif

    masm.reserveStack(sizeof(irregexp::InputOutputData));

    Label notFound, oolEntry;
    if (!PrepareAndExecuteRegExp(cx, masm, regexp, input, temp1, temp2, temp3, 0,
                                 RegExpShared::MatchOnly, &notFound, &oolEntry))
    {
        return nullptr;
    }

    Label done;

    masm.move32(Imm32(1), result);
    masm.jump(&done);

    masm.bind(&notFound);
    masm.move32(Imm32(0), result);
    masm.jump(&done);

    masm.bind(&oolEntry);
    masm.move32(Imm32(RegExpTestFailedValue), result);

    masm.bind(&done);
    masm.freeStack(sizeof(irregexp::InputOutputData));
    masm.ret();

    Linker linker(masm);
    AutoFlushICache afc("RegExpTestStub");
    JitCode* code = linker.newCode<CanGC>(cx, OTHER_CODE);

#ifdef JS_ION_PERF
    writePerfSpewerJitCodeProfile(code, "RegExpTestStub");
#endif

    if (cx->zone()->needsIncrementalBarrier())
        code->togglePreBarriers(true);

    return code;
}

class OutOfLineRegExpTest : public OutOfLineCodeBase<CodeGenerator>
{
    LRegExpTest* lir_;

  public:
    explicit OutOfLineRegExpTest(LRegExpTest* lir)
      : lir_(lir)
    { }

    void accept(CodeGenerator* codegen) {
        codegen->visitOutOfLineRegExpTest(this);
    }

    LRegExpTest* lir() const {
        return lir_;
    }
};

typedef bool (*RegExpTestRawFn)(JSContext* cx, HandleObject regexp,
                                HandleString input, bool* result);
static const VMFunction RegExpTestRawInfo = FunctionInfo<RegExpTestRawFn>(regexp_test_raw);

void
CodeGenerator::visitOutOfLineRegExpTest(OutOfLineRegExpTest* ool)
{
    LRegExpTest* lir = ool->lir();
    Register input = ToRegister(lir->string());
    Register regexp = ToRegister(lir->regexp());

    pushArg(input);
    pushArg(regexp);

    callVM(RegExpTestRawInfo, lir);

    masm.jump(ool->rejoin());
}

void
CodeGenerator::visitRegExpTest(LRegExpTest* lir)
{
    MOZ_ASSERT(ToRegister(lir->regexp()) == CallTempReg2);
    MOZ_ASSERT(ToRegister(lir->string()) == CallTempReg3);
    MOZ_ASSERT(ToRegister(lir->output()) == ReturnReg);

    OutOfLineRegExpTest* ool = new(alloc()) OutOfLineRegExpTest(lir);
    addOutOfLineCode(ool, lir->mir());

    JitCode* regExpTestStub = gen->compartment->jitCompartment()->regExpTestStubNoBarrier();
    masm.call(regExpTestStub);

    masm.branch32(Assembler::Equal, ReturnReg, Imm32(RegExpTestFailedValue), ool->entry());
    masm.bind(ool->rejoin());
}

typedef JSString* (*RegExpReplaceFn)(JSContext*, HandleString, HandleObject, HandleString);
static const VMFunction RegExpReplaceInfo = FunctionInfo<RegExpReplaceFn>(RegExpReplace);

void
CodeGenerator::visitRegExpReplace(LRegExpReplace* lir)
{
    if (lir->replacement()->isConstant())
        pushArg(ImmGCPtr(lir->replacement()->toConstant()->toString()));
    else
        pushArg(ToRegister(lir->replacement()));

    pushArg(ToRegister(lir->pattern()));

    if (lir->string()->isConstant())
        pushArg(ImmGCPtr(lir->string()->toConstant()->toString()));
    else
        pushArg(ToRegister(lir->string()));

    callVM(RegExpReplaceInfo, lir);
}

typedef JSString* (*StringReplaceFn)(JSContext*, HandleString, HandleString, HandleString);
static const VMFunction StringReplaceInfo = FunctionInfo<StringReplaceFn>(StringReplace);

void
CodeGenerator::visitStringReplace(LStringReplace* lir)
{
    if (lir->replacement()->isConstant())
        pushArg(ImmGCPtr(lir->replacement()->toConstant()->toString()));
    else
        pushArg(ToRegister(lir->replacement()));

    if (lir->pattern()->isConstant())
        pushArg(ImmGCPtr(lir->pattern()->toConstant()->toString()));
    else
        pushArg(ToRegister(lir->pattern()));

    if (lir->string()->isConstant())
        pushArg(ImmGCPtr(lir->string()->toConstant()->toString()));
    else
        pushArg(ToRegister(lir->string()));

    callVM(StringReplaceInfo, lir);
}

typedef JSObject* (*LambdaFn)(JSContext*, HandleFunction, HandleObject);
static const VMFunction LambdaInfo = FunctionInfo<LambdaFn>(js::Lambda);

void
CodeGenerator::visitLambdaForSingleton(LLambdaForSingleton* lir)
{
    pushArg(ToRegister(lir->scopeChain()));
    pushArg(ImmGCPtr(lir->mir()->info().fun));
    callVM(LambdaInfo, lir);
}

void
CodeGenerator::visitLambda(LLambda* lir)
{
    Register scopeChain = ToRegister(lir->scopeChain());
    Register output = ToRegister(lir->output());
    Register tempReg = ToRegister(lir->temp());
    const LambdaFunctionInfo& info = lir->mir()->info();

    OutOfLineCode* ool = oolCallVM(LambdaInfo, lir, (ArgList(), ImmGCPtr(info.fun), scopeChain),
                                   StoreRegisterTo(output));

    MOZ_ASSERT(!info.singletonType);

    masm.createGCObject(output, tempReg, info.fun, gc::DefaultHeap, ool->entry());

    emitLambdaInit(output, scopeChain, info);

    if (info.flags & JSFunction::EXTENDED) {
        MOZ_ASSERT(info.fun->isMethod());
        static_assert(FunctionExtended::NUM_EXTENDED_SLOTS == 2, "All slots must be initialized");
        masm.storeValue(UndefinedValue(), Address(output, FunctionExtended::offsetOfExtendedSlot(0)));
        masm.storeValue(UndefinedValue(), Address(output, FunctionExtended::offsetOfExtendedSlot(1)));
    }

    masm.bind(ool->rejoin());
}

typedef JSObject* (*LambdaArrowFn)(JSContext*, HandleFunction, HandleObject, HandleValue);
static const VMFunction LambdaArrowInfo = FunctionInfo<LambdaArrowFn>(js::LambdaArrow);

void
CodeGenerator::visitLambdaArrow(LLambdaArrow* lir)
{
    Register scopeChain = ToRegister(lir->scopeChain());
    ValueOperand thisv = ToValue(lir, LLambdaArrow::ThisValue);
    Register output = ToRegister(lir->output());
    Register tempReg = ToRegister(lir->temp());
    const LambdaFunctionInfo& info = lir->mir()->info();

    OutOfLineCode* ool = oolCallVM(LambdaArrowInfo, lir,
                                   (ArgList(), ImmGCPtr(info.fun), scopeChain, thisv),
                                   StoreRegisterTo(output));

    MOZ_ASSERT(!info.useSingletonForClone);

    if (info.singletonType) {
        // If the function has a singleton type, this instruction will only be
        // executed once so we don't bother inlining it.
        masm.jump(ool->entry());
        masm.bind(ool->rejoin());
        return;
    }

    masm.createGCObject(output, tempReg, info.fun, gc::DefaultHeap, ool->entry());

    emitLambdaInit(output, scopeChain, info);

    // Initialize extended slots. Lexical |this| is stored in the first one.
    MOZ_ASSERT(info.flags & JSFunction::EXTENDED);
    static_assert(FunctionExtended::NUM_EXTENDED_SLOTS == 2, "All slots must be initialized");
    static_assert(FunctionExtended::ARROW_THIS_SLOT == 0, "|this| must be stored in first slot");
    masm.storeValue(thisv, Address(output, FunctionExtended::offsetOfExtendedSlot(0)));
    masm.storeValue(UndefinedValue(), Address(output, FunctionExtended::offsetOfExtendedSlot(1)));

    masm.bind(ool->rejoin());
}

void
CodeGenerator::emitLambdaInit(Register output, Register scopeChain,
                              const LambdaFunctionInfo& info)
{
    // Initialize nargs and flags. We do this with a single uint32 to avoid
    // 16-bit writes.
    union {
        struct S {
            uint16_t nargs;
            uint16_t flags;
        } s;
        uint32_t word;
    } u;
    u.s.nargs = info.nargs;
    u.s.flags = info.flags;

    MOZ_ASSERT(JSFunction::offsetOfFlags() == JSFunction::offsetOfNargs() + 2);
    masm.store32(Imm32(u.word), Address(output, JSFunction::offsetOfNargs()));
    masm.storePtr(ImmGCPtr(info.scriptOrLazyScript),
                  Address(output, JSFunction::offsetOfNativeOrScript()));
    masm.storePtr(scopeChain, Address(output, JSFunction::offsetOfEnvironment()));
    masm.storePtr(ImmGCPtr(info.fun->displayAtom()), Address(output, JSFunction::offsetOfAtom()));
}

void
CodeGenerator::visitOsiPoint(LOsiPoint* lir)
{
    // Note: markOsiPoint ensures enough space exists between the last
    // LOsiPoint and this one to patch adjacent call instructions.

    MOZ_ASSERT(masm.framePushed() == frameSize());

    uint32_t osiCallPointOffset = markOsiPoint(lir);

    LSafepoint* safepoint = lir->associatedSafepoint();
    MOZ_ASSERT(!safepoint->osiCallPointOffset());
    safepoint->setOsiCallPointOffset(osiCallPointOffset);

#ifdef DEBUG
    // There should be no movegroups or other instructions between
    // an instruction and its OsiPoint. This is necessary because
    // we use the OsiPoint's snapshot from within VM calls.
    for (LInstructionReverseIterator iter(current->rbegin(lir)); iter != current->rend(); iter++) {
        if (*iter == lir)
            continue;
        MOZ_ASSERT(!iter->isMoveGroup());
        MOZ_ASSERT(iter->safepoint() == safepoint);
        break;
    }
#endif

#ifdef CHECK_OSIPOINT_REGISTERS
    if (shouldVerifyOsiPointRegs(safepoint))
        verifyOsiPointRegs(safepoint);
#endif
}

void
CodeGenerator::visitGoto(LGoto* lir)
{
    jumpToBlock(lir->target());
}

// Out-of-line path to execute any move groups between the start of a loop
// header and its interrupt check, then invoke the interrupt handler.
class OutOfLineInterruptCheckImplicit : public OutOfLineCodeBase<CodeGenerator>
{
  public:
    LBlock* block;
    LInterruptCheckImplicit* lir;

    OutOfLineInterruptCheckImplicit(LBlock* block, LInterruptCheckImplicit* lir)
      : block(block), lir(lir)
    { }

    void accept(CodeGenerator* codegen) {
        codegen->visitOutOfLineInterruptCheckImplicit(this);
    }
};

typedef bool (*InterruptCheckFn)(JSContext*);
static const VMFunction InterruptCheckInfo = FunctionInfo<InterruptCheckFn>(InterruptCheck);

void
CodeGenerator::visitOutOfLineInterruptCheckImplicit(OutOfLineInterruptCheckImplicit* ool)
{
#ifdef CHECK_OSIPOINT_REGISTERS
    // This is path is entered from the patched back-edge of the loop. This
    // means that the JitAtivation flags used for checking the validity of the
    // OSI points are not reseted by the path generated by generateBody, so we
    // have to reset it here.
    resetOsiPointRegs(ool->lir->safepoint());
#endif

    LInstructionIterator iter = ool->block->begin();
    for (; iter != ool->block->end(); iter++) {
        if (iter->isMoveGroup()) {
            // Replay this move group that preceds the interrupt check at the
            // start of the loop header. Any incoming jumps here will be from
            // the backedge and will skip over the move group emitted inline.
            visitMoveGroup(iter->toMoveGroup());
        } else {
            break;
        }
    }
    MOZ_ASSERT(*iter == ool->lir);

    saveLive(ool->lir);
    callVM(InterruptCheckInfo, ool->lir);
    restoreLive(ool->lir);
    masm.jump(ool->rejoin());
}

void
CodeGenerator::visitInterruptCheckImplicit(LInterruptCheckImplicit* lir)
{
    OutOfLineInterruptCheckImplicit* ool = new(alloc()) OutOfLineInterruptCheckImplicit(current, lir);
    addOutOfLineCode(ool, lir->mir());

    lir->setOolEntry(ool->entry());
    masm.bind(ool->rejoin());
}

void
CodeGenerator::visitTableSwitch(LTableSwitch* ins)
{
    MTableSwitch* mir = ins->mir();
    Label* defaultcase = skipTrivialBlocks(mir->getDefault())->lir()->label();
    const LAllocation* temp;

    if (mir->getOperand(0)->type() != MIRType_Int32) {
        temp = ins->tempInt()->output();

        // The input is a double, so try and convert it to an integer.
        // If it does not fit in an integer, take the default case.
        masm.convertDoubleToInt32(ToFloatRegister(ins->index()), ToRegister(temp), defaultcase, false);
    } else {
        temp = ins->index();
    }

    emitTableSwitchDispatch(mir, ToRegister(temp), ToRegisterOrInvalid(ins->tempPointer()));
}

void
CodeGenerator::visitTableSwitchV(LTableSwitchV* ins)
{
    MTableSwitch* mir = ins->mir();
    Label* defaultcase = skipTrivialBlocks(mir->getDefault())->lir()->label();

    Register index = ToRegister(ins->tempInt());
    ValueOperand value = ToValue(ins, LTableSwitchV::InputValue);
    Register tag = masm.extractTag(value, index);
    masm.branchTestNumber(Assembler::NotEqual, tag, defaultcase);

    Label unboxInt, isInt;
    masm.branchTestInt32(Assembler::Equal, tag, &unboxInt);
    {
        FloatRegister floatIndex = ToFloatRegister(ins->tempFloat());
        masm.unboxDouble(value, floatIndex);
        masm.convertDoubleToInt32(floatIndex, index, defaultcase, false);
        masm.jump(&isInt);
    }

    masm.bind(&unboxInt);
    masm.unboxInt32(value, index);

    masm.bind(&isInt);

    emitTableSwitchDispatch(mir, index, ToRegisterOrInvalid(ins->tempPointer()));
}

typedef JSObject* (*DeepCloneObjectLiteralFn)(JSContext*, HandleObject, NewObjectKind);
static const VMFunction DeepCloneObjectLiteralInfo =
    FunctionInfo<DeepCloneObjectLiteralFn>(DeepCloneObjectLiteral);

void
CodeGenerator::visitCloneLiteral(LCloneLiteral* lir)
{
    pushArg(ImmWord(TenuredObject));
    pushArg(ToRegister(lir->getObjectLiteral()));
    callVM(DeepCloneObjectLiteralInfo, lir);
}

void
CodeGenerator::visitParameter(LParameter* lir)
{
}

void
CodeGenerator::visitCallee(LCallee* lir)
{
    Register callee = ToRegister(lir->output());
    Address ptr(masm.getStackPointer(), frameSize() + JitFrameLayout::offsetOfCalleeToken());

    masm.loadFunctionFromCalleeToken(ptr, callee);
}

void
CodeGenerator::visitIsConstructing(LIsConstructing* lir)
{
    Register output = ToRegister(lir->output());
    Address calleeToken(masm.getStackPointer(), frameSize() + JitFrameLayout::offsetOfCalleeToken());
    masm.loadPtr(calleeToken, output);

    // We must be inside a function.
    MOZ_ASSERT(current->mir()->info().script()->functionNonDelazifying());

    // The low bit indicates whether this call is constructing, just clear the
    // other bits.
    static_assert(CalleeToken_Function == 0x0, "CalleeTokenTag value should match");
    static_assert(CalleeToken_FunctionConstructing == 0x1, "CalleeTokenTag value should match");
    masm.andPtr(Imm32(0x1), output);
}

void
CodeGenerator::visitStart(LStart* lir)
{
}

void
CodeGenerator::visitReturn(LReturn* lir)
{
#if defined(JS_NUNBOX32)
    DebugOnly<LAllocation*> type    = lir->getOperand(TYPE_INDEX);
    DebugOnly<LAllocation*> payload = lir->getOperand(PAYLOAD_INDEX);
    MOZ_ASSERT(ToRegister(type)    == JSReturnReg_Type);
    MOZ_ASSERT(ToRegister(payload) == JSReturnReg_Data);
#elif defined(JS_PUNBOX64)
    DebugOnly<LAllocation*> result = lir->getOperand(0);
    MOZ_ASSERT(ToRegister(result) == JSReturnReg);
#endif
    // Don't emit a jump to the return label if this is the last block.
    if (current->mir() != *gen->graph().poBegin())
        masm.jump(&returnLabel_);
}

void
CodeGenerator::visitOsrEntry(LOsrEntry* lir)
{
    Register temp = ToRegister(lir->temp());

    // Remember the OSR entry offset into the code buffer.
    masm.flushBuffer();
    setOsrEntryOffset(masm.size());

#ifdef JS_TRACE_LOGGING
    emitTracelogStopEvent(TraceLogger_Baseline);
    emitTracelogStartEvent(TraceLogger_IonMonkey);
#endif

    // If profiling, save the current frame pointer to a per-thread global field.
    if (isProfilerInstrumentationEnabled())
        masm.profilerEnterFrame(masm.getStackPointer(), temp);

    // Allocate the full frame for this function
    // Note we have a new entry here. So we reset MacroAssembler::framePushed()
    // to 0, before reserving the stack.
    MOZ_ASSERT(masm.framePushed() == frameSize());
    masm.setFramePushed(0);

    // Ensure that the Ion frames is properly aligned.
    masm.assertStackAlignment(JitStackAlignment, 0);

    masm.reserveStack(frameSize());
}

void
CodeGenerator::visitOsrScopeChain(LOsrScopeChain* lir)
{
    const LAllocation* frame   = lir->getOperand(0);
    const LDefinition* object  = lir->getDef(0);

    const ptrdiff_t frameOffset = BaselineFrame::reverseOffsetOfScopeChain();

    masm.loadPtr(Address(ToRegister(frame), frameOffset), ToRegister(object));
}

void
CodeGenerator::visitOsrArgumentsObject(LOsrArgumentsObject* lir)
{
    const LAllocation* frame   = lir->getOperand(0);
    const LDefinition* object  = lir->getDef(0);

    const ptrdiff_t frameOffset = BaselineFrame::reverseOffsetOfArgsObj();

    masm.loadPtr(Address(ToRegister(frame), frameOffset), ToRegister(object));
}

void
CodeGenerator::visitOsrValue(LOsrValue* value)
{
    const LAllocation* frame   = value->getOperand(0);
    const ValueOperand out     = ToOutValue(value);

    const ptrdiff_t frameOffset = value->mir()->frameOffset();

    masm.loadValue(Address(ToRegister(frame), frameOffset), out);
}

void
CodeGenerator::visitOsrReturnValue(LOsrReturnValue* lir)
{
    const LAllocation* frame   = lir->getOperand(0);
    const ValueOperand out     = ToOutValue(lir);

    Address flags = Address(ToRegister(frame), BaselineFrame::reverseOffsetOfFlags());
    Address retval = Address(ToRegister(frame), BaselineFrame::reverseOffsetOfReturnValue());

    masm.moveValue(UndefinedValue(), out);

    Label done;
    masm.branchTest32(Assembler::Zero, flags, Imm32(BaselineFrame::HAS_RVAL), &done);
    masm.loadValue(retval, out);
    masm.bind(&done);
}

void
CodeGenerator::visitStackArgT(LStackArgT* lir)
{
    const LAllocation* arg = lir->getArgument();
    MIRType argType = lir->type();
    uint32_t argslot = lir->argslot();
    MOZ_ASSERT(argslot - 1u < graph.argumentSlotCount());

    int32_t stack_offset = StackOffsetOfPassedArg(argslot);
    Address dest(masm.getStackPointer(), stack_offset);

    if (arg->isFloatReg())
        masm.storeDouble(ToFloatRegister(arg), dest);
    else if (arg->isRegister())
        masm.storeValue(ValueTypeFromMIRType(argType), ToRegister(arg), dest);
    else
        masm.storeValue(*(arg->toConstant()), dest);
}

void
CodeGenerator::visitStackArgV(LStackArgV* lir)
{
    ValueOperand val = ToValue(lir, 0);
    uint32_t argslot = lir->argslot();
    MOZ_ASSERT(argslot - 1u < graph.argumentSlotCount());

    int32_t stack_offset = StackOffsetOfPassedArg(argslot);

    masm.storeValue(val, Address(masm.getStackPointer(), stack_offset));
}

void
CodeGenerator::visitMoveGroup(LMoveGroup* group)
{
    if (!group->numMoves())
        return;

    MoveResolver& resolver = masm.moveResolver();

    for (size_t i = 0; i < group->numMoves(); i++) {
        const LMove& move = group->getMove(i);

        const LAllocation* from = move.from();
        const LAllocation* to = move.to();
        LDefinition::Type type = move.type();

        // No bogus moves.
        MOZ_ASSERT(*from != *to);
        MOZ_ASSERT(!from->isConstant());
        MoveOp::Type moveType;
        switch (type) {
          case LDefinition::OBJECT:
          case LDefinition::SLOTS:
#ifdef JS_NUNBOX32
          case LDefinition::TYPE:
          case LDefinition::PAYLOAD:
#else
          case LDefinition::BOX:
#endif
          case LDefinition::GENERAL:    moveType = MoveOp::GENERAL;   break;
          case LDefinition::INT32:      moveType = MoveOp::INT32;     break;
          case LDefinition::FLOAT32:    moveType = MoveOp::FLOAT32;   break;
          case LDefinition::DOUBLE:     moveType = MoveOp::DOUBLE;    break;
          case LDefinition::INT32X4:    moveType = MoveOp::INT32X4;   break;
          case LDefinition::FLOAT32X4:  moveType = MoveOp::FLOAT32X4; break;
          default: MOZ_CRASH("Unexpected move type");
        }

        masm.propagateOOM(resolver.addMove(toMoveOperand(from), toMoveOperand(to), moveType));
    }

    masm.propagateOOM(resolver.resolve());

    MoveEmitter emitter(masm);
    if (group->maybeScratchRegister().isGeneralReg())
        emitter.setScratchRegister(group->maybeScratchRegister().toGeneralReg()->reg());
    emitter.emit(resolver);
    emitter.finish();
}

void
CodeGenerator::visitInteger(LInteger* lir)
{
    masm.move32(Imm32(lir->getValue()), ToRegister(lir->output()));
}

void
CodeGenerator::visitPointer(LPointer* lir)
{
    if (lir->kind() == LPointer::GC_THING)
        masm.movePtr(ImmGCPtr(lir->gcptr()), ToRegister(lir->output()));
    else
        masm.movePtr(ImmPtr(lir->ptr()), ToRegister(lir->output()));
}

void
CodeGenerator::visitNurseryObject(LNurseryObject* lir)
{
    Register output = ToRegister(lir->output());
    uint32_t index = lir->mir()->index();

    // Store a dummy JSObject pointer. We will fix it up on the main thread,
    // in JitCode::fixupNurseryObjects. The low bit is set to distinguish
    // it from a real JSObject pointer.
    JSObject* ptr = reinterpret_cast<JSObject*>((uintptr_t(index) << 1) | 1);
    masm.movePtr(ImmGCPtr(IonNurseryPtr(ptr)), output);
}

void
CodeGenerator::visitSlots(LSlots* lir)
{
    Address slots(ToRegister(lir->object()), NativeObject::offsetOfSlots());
    masm.loadPtr(slots, ToRegister(lir->output()));
}

void
CodeGenerator::visitLoadSlotT(LLoadSlotT* lir)
{
    Register base = ToRegister(lir->slots());
    int32_t offset = lir->mir()->slot() * sizeof(js::Value);
    AnyRegister result = ToAnyRegister(lir->output());

    masm.loadUnboxedValue(Address(base, offset), lir->mir()->type(), result);
}

void
CodeGenerator::visitLoadSlotV(LLoadSlotV* lir)
{
    ValueOperand dest = ToOutValue(lir);
    Register base = ToRegister(lir->input());
    int32_t offset = lir->mir()->slot() * sizeof(js::Value);

    masm.loadValue(Address(base, offset), dest);
}

void
CodeGenerator::visitStoreSlotT(LStoreSlotT* lir)
{
    Register base = ToRegister(lir->slots());
    int32_t offset = lir->mir()->slot() * sizeof(js::Value);
    Address dest(base, offset);

    if (lir->mir()->needsBarrier())
        emitPreBarrier(dest);

    MIRType valueType = lir->mir()->value()->type();

    if (valueType == MIRType_ObjectOrNull) {
        masm.storeObjectOrNull(ToRegister(lir->value()), dest);
    } else {
        ConstantOrRegister value;
        if (lir->value()->isConstant())
            value = ConstantOrRegister(*lir->value()->toConstant());
        else
            value = TypedOrValueRegister(valueType, ToAnyRegister(lir->value()));
        masm.storeUnboxedValue(value, valueType, dest, lir->mir()->slotType());
    }
}

void
CodeGenerator::visitStoreSlotV(LStoreSlotV* lir)
{
    Register base = ToRegister(lir->slots());
    int32_t offset = lir->mir()->slot() * sizeof(Value);

    const ValueOperand value = ToValue(lir, LStoreSlotV::Value);

    if (lir->mir()->needsBarrier())
       emitPreBarrier(Address(base, offset));

    masm.storeValue(value, Address(base, offset));
}

static void
GuardReceiver(MacroAssembler& masm, const ReceiverGuard& guard,
              Register obj, Register scratch, Label* miss, bool checkNullExpando)
{
    if (guard.group) {
        masm.branchTestObjGroup(Assembler::NotEqual, obj, guard.group, miss);

        Address expandoAddress(obj, UnboxedPlainObject::offsetOfExpando());
        if (guard.shape) {
            masm.loadPtr(expandoAddress, scratch);
            masm.branchPtr(Assembler::Equal, scratch, ImmWord(0), miss);
            masm.branchTestObjShape(Assembler::NotEqual, scratch, guard.shape, miss);
        } else if (checkNullExpando) {
            masm.branchPtr(Assembler::NotEqual, expandoAddress, ImmWord(0), miss);
        }
    } else {
        masm.branchTestObjShape(Assembler::NotEqual, obj, guard.shape, miss);
    }
}

void
CodeGenerator::emitGetPropertyPolymorphic(LInstruction* ins, Register obj, Register scratch,
                                          const TypedOrValueRegister& output)
{
    MGetPropertyPolymorphic* mir = ins->mirRaw()->toGetPropertyPolymorphic();

    Label done;

    for (size_t i = 0; i < mir->numReceivers(); i++) {
        ReceiverGuard receiver = mir->receiver(i);

        Label next;
        GuardReceiver(masm, receiver, obj, scratch, &next, /* checkNullExpando = */ false);

        if (receiver.shape) {
            // If this is an unboxed expando access, GuardReceiver loaded the
            // expando object into scratch.
            Register target = receiver.group ? scratch : obj;

            Shape* shape = mir->shape(i);
            if (shape->slot() < shape->numFixedSlots()) {
                // Fixed slot.
                masm.loadTypedOrValue(Address(target, NativeObject::getFixedSlotOffset(shape->slot())),
                                      output);
            } else {
                // Dynamic slot.
                uint32_t offset = (shape->slot() - shape->numFixedSlots()) * sizeof(js::Value);
                masm.loadPtr(Address(target, NativeObject::offsetOfSlots()), scratch);
                masm.loadTypedOrValue(Address(scratch, offset), output);
            }
        } else {
            const UnboxedLayout::Property* property =
                receiver.group->unboxedLayout().lookup(mir->name());
            Address propertyAddr(obj, UnboxedPlainObject::offsetOfData() + property->offset);

            masm.loadUnboxedProperty(propertyAddr, property->type, output);
        }

        if (i == mir->numReceivers() - 1) {
            bailoutFrom(&next, ins->snapshot());
        } else {
            masm.jump(&done);
            masm.bind(&next);
        }
    }

    masm.bind(&done);
}

void
CodeGenerator::visitGetPropertyPolymorphicV(LGetPropertyPolymorphicV* ins)
{
    Register obj = ToRegister(ins->obj());
    ValueOperand output = GetValueOutput(ins);
    emitGetPropertyPolymorphic(ins, obj, output.scratchReg(), output);
}

void
CodeGenerator::visitGetPropertyPolymorphicT(LGetPropertyPolymorphicT* ins)
{
    Register obj = ToRegister(ins->obj());
    TypedOrValueRegister output(ins->mir()->type(), ToAnyRegister(ins->output()));
    Register temp = (output.type() == MIRType_Double)
                    ? ToRegister(ins->temp())
                    : output.typedReg().gpr();
    emitGetPropertyPolymorphic(ins, obj, temp, output);
}

template <typename T>
static void
EmitUnboxedPreBarrier(MacroAssembler &masm, T address, JSValueType type)
{
    if (type == JSVAL_TYPE_OBJECT)
        masm.patchableCallPreBarrier(address, MIRType_Object);
    else if (type == JSVAL_TYPE_STRING)
        masm.patchableCallPreBarrier(address, MIRType_String);
    else
        MOZ_ASSERT(!UnboxedTypeNeedsPreBarrier(type));
}

void
CodeGenerator::emitSetPropertyPolymorphic(LInstruction* ins, Register obj, Register scratch,
                                          const ConstantOrRegister& value)
{
    MSetPropertyPolymorphic* mir = ins->mirRaw()->toSetPropertyPolymorphic();

    Label done;
    for (size_t i = 0; i < mir->numReceivers(); i++) {
        ReceiverGuard receiver = mir->receiver(i);

        Label next;
        GuardReceiver(masm, receiver, obj, scratch, &next, /* checkNullExpando = */ false);

        if (receiver.shape) {
            // If this is an unboxed expando access, GuardReceiver loaded the
            // expando object into scratch.
            Register target = receiver.group ? scratch : obj;

            Shape* shape = mir->shape(i);
            if (shape->slot() < shape->numFixedSlots()) {
                // Fixed slot.
                Address addr(target, NativeObject::getFixedSlotOffset(shape->slot()));
                if (mir->needsBarrier())
                    emitPreBarrier(addr);
                masm.storeConstantOrRegister(value, addr);
            } else {
                // Dynamic slot.
                masm.loadPtr(Address(target, NativeObject::offsetOfSlots()), scratch);
                Address addr(scratch, (shape->slot() - shape->numFixedSlots()) * sizeof(js::Value));
                if (mir->needsBarrier())
                    emitPreBarrier(addr);
                masm.storeConstantOrRegister(value, addr);
            }
        } else {
            const UnboxedLayout::Property* property =
                receiver.group->unboxedLayout().lookup(mir->name());
            Address propertyAddr(obj, UnboxedPlainObject::offsetOfData() + property->offset);

            EmitUnboxedPreBarrier(masm, propertyAddr, property->type);
            masm.storeUnboxedProperty(propertyAddr, property->type, value, nullptr);
        }

        if (i == mir->numReceivers() - 1) {
            bailoutFrom(&next, ins->snapshot());
        } else {
            masm.jump(&done);
            masm.bind(&next);
        }
    }

    masm.bind(&done);
}

void
CodeGenerator::visitSetPropertyPolymorphicV(LSetPropertyPolymorphicV* ins)
{
    Register obj = ToRegister(ins->obj());
    Register temp = ToRegister(ins->temp());
    ValueOperand value = ToValue(ins, LSetPropertyPolymorphicV::Value);
    emitSetPropertyPolymorphic(ins, obj, temp, TypedOrValueRegister(value));
}

void
CodeGenerator::visitSetPropertyPolymorphicT(LSetPropertyPolymorphicT* ins)
{
    Register obj = ToRegister(ins->obj());
    Register temp = ToRegister(ins->temp());

    ConstantOrRegister value;
    if (ins->mir()->value()->isConstant())
        value = ConstantOrRegister(ins->mir()->value()->toConstant()->value());
    else
        value = TypedOrValueRegister(ins->mir()->value()->type(), ToAnyRegister(ins->value()));

    emitSetPropertyPolymorphic(ins, obj, temp, value);
}

void
CodeGenerator::visitElements(LElements* lir)
{
    Address elements(ToRegister(lir->object()),
                     lir->mir()->unboxed() ? UnboxedArrayObject::offsetOfElements()
                                           : NativeObject::offsetOfElements());
    masm.loadPtr(elements, ToRegister(lir->output()));
}

typedef bool (*ConvertElementsToDoublesFn)(JSContext*, uintptr_t);
static const VMFunction ConvertElementsToDoublesInfo =
    FunctionInfo<ConvertElementsToDoublesFn>(ObjectElements::ConvertElementsToDoubles);

void
CodeGenerator::visitConvertElementsToDoubles(LConvertElementsToDoubles* lir)
{
    Register elements = ToRegister(lir->elements());

    OutOfLineCode* ool = oolCallVM(ConvertElementsToDoublesInfo, lir,
                                   (ArgList(), elements), StoreNothing());

    Address convertedAddress(elements, ObjectElements::offsetOfFlags());
    Imm32 bit(ObjectElements::CONVERT_DOUBLE_ELEMENTS);
    masm.branchTest32(Assembler::Zero, convertedAddress, bit, ool->entry());
    masm.bind(ool->rejoin());
}

void
CodeGenerator::visitMaybeToDoubleElement(LMaybeToDoubleElement* lir)
{
    Register elements = ToRegister(lir->elements());
    Register value = ToRegister(lir->value());
    ValueOperand out = ToOutValue(lir);

    FloatRegister temp = ToFloatRegister(lir->tempFloat());
    Label convert, done;

    // If the CONVERT_DOUBLE_ELEMENTS flag is set, convert the int32
    // value to double. Else, just box it.
    masm.branchTest32(Assembler::NonZero,
                      Address(elements, ObjectElements::offsetOfFlags()),
                      Imm32(ObjectElements::CONVERT_DOUBLE_ELEMENTS),
                      &convert);

    masm.tagValue(JSVAL_TYPE_INT32, value, out);
    masm.jump(&done);

    masm.bind(&convert);
    masm.convertInt32ToDouble(value, temp);
    masm.boxDouble(temp, out);

    masm.bind(&done);
}

typedef bool (*CopyElementsForWriteFn)(ExclusiveContext*, NativeObject*);
static const VMFunction CopyElementsForWriteInfo =
    FunctionInfo<CopyElementsForWriteFn>(NativeObject::CopyElementsForWrite);

void
CodeGenerator::visitMaybeCopyElementsForWrite(LMaybeCopyElementsForWrite* lir)
{
    Register object = ToRegister(lir->object());
    Register temp = ToRegister(lir->temp());

    OutOfLineCode* ool = oolCallVM(CopyElementsForWriteInfo, lir,
                                   (ArgList(), object), StoreNothing());

    masm.loadPtr(Address(object, NativeObject::offsetOfElements()), temp);
    masm.branchTest32(Assembler::NonZero,
                      Address(temp, ObjectElements::offsetOfFlags()),
                      Imm32(ObjectElements::COPY_ON_WRITE),
                      ool->entry());
    masm.bind(ool->rejoin());
}

void
CodeGenerator::visitFunctionEnvironment(LFunctionEnvironment* lir)
{
    Address environment(ToRegister(lir->function()), JSFunction::offsetOfEnvironment());
    masm.loadPtr(environment, ToRegister(lir->output()));
}

void
CodeGenerator::visitGuardObjectIdentity(LGuardObjectIdentity* guard)
{
    Register input = ToRegister(guard->input());
    Register expected = ToRegister(guard->expected());

    Assembler::Condition cond =
        guard->mir()->bailOnEquality() ? Assembler::Equal : Assembler::NotEqual;
    bailoutCmpPtr(cond, input, expected, guard->snapshot());
}

void
CodeGenerator::visitGuardReceiverPolymorphic(LGuardReceiverPolymorphic* lir)
{
    const MGuardReceiverPolymorphic* mir = lir->mir();
    Register obj = ToRegister(lir->object());
    Register temp = ToRegister(lir->temp());

    Label done;

    for (size_t i = 0; i < mir->numReceivers(); i++) {
        const ReceiverGuard& receiver = mir->receiver(i);

        Label next;
        GuardReceiver(masm, receiver, obj, temp, &next, /* checkNullExpando = */ true);

        if (i == mir->numReceivers() - 1) {
            bailoutFrom(&next, lir->snapshot());
        } else {
            masm.jump(&done);
            masm.bind(&next);
        }
    }

    masm.bind(&done);
}

void
CodeGenerator::visitGuardUnboxedExpando(LGuardUnboxedExpando* lir)
{
    Label miss;

    Register obj = ToRegister(lir->object());
    masm.branchPtr(lir->mir()->requireExpando() ? Assembler::Equal : Assembler::NotEqual,
                   Address(obj, UnboxedPlainObject::offsetOfExpando()), ImmWord(0), &miss);

    bailoutFrom(&miss, lir->snapshot());
}

void
CodeGenerator::visitLoadUnboxedExpando(LLoadUnboxedExpando* lir)
{
    Register obj = ToRegister(lir->object());
    Register result = ToRegister(lir->getDef(0));

    masm.loadPtr(Address(obj, UnboxedPlainObject::offsetOfExpando()), result);
}

void
CodeGenerator::visitTypeBarrierV(LTypeBarrierV* lir)
{
    ValueOperand operand = ToValue(lir, LTypeBarrierV::Input);
    Register scratch = ToTempRegisterOrInvalid(lir->temp());

    Label miss;
    masm.guardTypeSet(operand, lir->mir()->resultTypeSet(), lir->mir()->barrierKind(), scratch, &miss);
    bailoutFrom(&miss, lir->snapshot());
}

void
CodeGenerator::visitTypeBarrierO(LTypeBarrierO* lir)
{
    Register obj = ToRegister(lir->object());
    Register scratch = ToTempRegisterOrInvalid(lir->temp());
    Label miss, ok;

    if (lir->mir()->type() == MIRType_ObjectOrNull) {
        Label* nullTarget = lir->mir()->resultTypeSet()->mightBeMIRType(MIRType_Null) ? &ok : &miss;
        masm.branchTestPtr(Assembler::Zero, obj, obj, nullTarget);
    } else {
        MOZ_ASSERT(lir->mir()->type() == MIRType_Object);
        MOZ_ASSERT(lir->mir()->barrierKind() != BarrierKind::TypeTagOnly);
    }

    if (lir->mir()->barrierKind() != BarrierKind::TypeTagOnly)
        masm.guardObjectType(obj, lir->mir()->resultTypeSet(), scratch, &miss);

    bailoutFrom(&miss, lir->snapshot());
    masm.bind(&ok);
}

void
CodeGenerator::visitMonitorTypes(LMonitorTypes* lir)
{
    ValueOperand operand = ToValue(lir, LMonitorTypes::Input);
    Register scratch = ToTempUnboxRegister(lir->temp());

    Label matched, miss;
    masm.guardTypeSet(operand, lir->mir()->typeSet(), lir->mir()->barrierKind(), scratch, &miss);
    bailoutFrom(&miss, lir->snapshot());
}

// Out-of-line path to update the store buffer.
class OutOfLineCallPostWriteBarrier : public OutOfLineCodeBase<CodeGenerator>
{
    LInstruction* lir_;
    const LAllocation* object_;

  public:
    OutOfLineCallPostWriteBarrier(LInstruction* lir, const LAllocation* object)
      : lir_(lir), object_(object)
    { }

    void accept(CodeGenerator* codegen) {
        codegen->visitOutOfLineCallPostWriteBarrier(this);
    }

    LInstruction* lir() const {
        return lir_;
    }
    const LAllocation* object() const {
        return object_;
    }
};

void
CodeGenerator::visitOutOfLineCallPostWriteBarrier(OutOfLineCallPostWriteBarrier* ool)
{
    saveLiveVolatile(ool->lir());

    const LAllocation* obj = ool->object();

    AllocatableGeneralRegisterSet regs(GeneralRegisterSet::Volatile());

    Register objreg;
    bool isGlobal = false;
    if (obj->isConstant()) {
        JSObject* object = &obj->toConstant()->toObject();
        isGlobal = object->is<GlobalObject>();
        objreg = regs.takeAny();
        masm.movePtr(ImmGCPtr(object), objreg);
    } else {
        objreg = ToRegister(obj);
        regs.takeUnchecked(objreg);
    }

    Register runtimereg = regs.takeAny();
    masm.mov(ImmPtr(GetJitContext()->runtime), runtimereg);

    void (*fun)(JSRuntime*, JSObject*) = isGlobal ? PostGlobalWriteBarrier : PostWriteBarrier;
    masm.setupUnalignedABICall(2, regs.takeAny());
    masm.passABIArg(runtimereg);
    masm.passABIArg(objreg);
    masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, fun));

    restoreLiveVolatile(ool->lir());

    masm.jump(ool->rejoin());
}

void
CodeGenerator::visitPostWriteBarrierO(LPostWriteBarrierO* lir)
{
    OutOfLineCallPostWriteBarrier* ool = new(alloc()) OutOfLineCallPostWriteBarrier(lir, lir->object());
    addOutOfLineCode(ool, lir->mir());

    Register temp = ToTempRegisterOrInvalid(lir->temp());

    if (lir->object()->isConstant()) {
        MOZ_ASSERT(!IsInsideNursery(&lir->object()->toConstant()->toObject()));
    } else {
        masm.branchPtrInNurseryRange(Assembler::Equal, ToRegister(lir->object()), temp,
                                     ool->rejoin());
    }

    masm.branchPtrInNurseryRange(Assembler::Equal, ToRegister(lir->value()), temp, ool->entry());

    masm.bind(ool->rejoin());
}

void
CodeGenerator::visitPostWriteBarrierV(LPostWriteBarrierV* lir)
{
    OutOfLineCallPostWriteBarrier* ool = new(alloc()) OutOfLineCallPostWriteBarrier(lir, lir->object());
    addOutOfLineCode(ool, lir->mir());

    Register temp = ToTempRegisterOrInvalid(lir->temp());

    if (lir->object()->isConstant()) {
#ifdef DEBUG
        MOZ_ASSERT(!IsInsideNursery(&lir->object()->toConstant()->toObject()));
#endif
    } else {
        masm.branchPtrInNurseryRange(Assembler::Equal, ToRegister(lir->object()), temp,
                                     ool->rejoin());
    }

    ValueOperand value = ToValue(lir, LPostWriteBarrierV::Input);
    masm.branchValueIsNurseryObject(Assembler::Equal, value, temp, ool->entry());

    masm.bind(ool->rejoin());
}

void
CodeGenerator::visitCallNative(LCallNative* call)
{
    JSFunction* target = call->getSingleTarget();
    MOZ_ASSERT(target);
    MOZ_ASSERT(target->isNative());

    int callargslot = call->argslot();
    int unusedStack = StackOffsetOfPassedArg(callargslot);

    // Registers used for callWithABI() argument-passing.
    const Register argContextReg   = ToRegister(call->getArgContextReg());
    const Register argUintNReg     = ToRegister(call->getArgUintNReg());
    const Register argVpReg        = ToRegister(call->getArgVpReg());

    // Misc. temporary registers.
    const Register tempReg = ToRegister(call->getTempReg());

    DebugOnly<uint32_t> initialStack = masm.framePushed();

    masm.checkStackAlignment();

    // Native functions have the signature:
    //  bool (*)(JSContext*, unsigned, Value* vp)
    // Where vp[0] is space for an outparam, vp[1] is |this|, and vp[2] onward
    // are the function arguments.

    // Allocate space for the outparam, moving the StackPointer to what will be &vp[1].
    masm.adjustStack(unusedStack);

    // Push a Value containing the callee object: natives are allowed to access their callee before
    // setitng the return value. The StackPointer is moved to &vp[0].
    masm.Push(ObjectValue(*target));

    // Preload arguments into registers.
    masm.loadJSContext(argContextReg);
    masm.move32(Imm32(call->numActualArgs()), argUintNReg);
    masm.moveStackPtrTo(argVpReg);

    masm.Push(argUintNReg);

    // Construct native exit frame.
    uint32_t safepointOffset;
    masm.buildFakeExitFrame(tempReg, &safepointOffset);
    masm.enterFakeExitFrame(NativeExitFrameLayout::Token());

    markSafepointAt(safepointOffset, call);

    // Construct and execute call.
    masm.setupUnalignedABICall(3, tempReg);
    masm.passABIArg(argContextReg);
    masm.passABIArg(argUintNReg);
    masm.passABIArg(argVpReg);
    masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, target->native()));

    // Test for failure.
    masm.branchIfFalseBool(ReturnReg, masm.failureLabel());

    // Load the outparam vp[0] into output register(s).
    masm.loadValue(Address(masm.getStackPointer(), NativeExitFrameLayout::offsetOfResult()), JSReturnOperand);

    // The next instruction is removing the footer of the exit frame, so there
    // is no need for leaveFakeExitFrame.

    // Move the StackPointer back to its original location, unwinding the native exit frame.
    masm.adjustStack(NativeExitFrameLayout::Size() - unusedStack);
    MOZ_ASSERT(masm.framePushed() == initialStack);
}

static void
LoadDOMPrivate(MacroAssembler& masm, Register obj, Register priv)
{
    // Load the value in DOM_OBJECT_SLOT for a native or proxy DOM object. This
    // will be in the first slot but may be fixed or non-fixed.
    MOZ_ASSERT(obj != priv);

    // Check shape->numFixedSlots != 0.
    masm.loadPtr(Address(obj, JSObject::offsetOfShape()), priv);

    Label hasFixedSlots, done;
    masm.branchTest32(Assembler::NonZero,
                      Address(priv, Shape::offsetOfSlotInfo()),
                      Imm32(Shape::fixedSlotsMask()),
                      &hasFixedSlots);

    masm.loadPtr(Address(obj, NativeObject::offsetOfSlots()), priv);
    masm.loadPrivate(Address(priv, 0), priv);

    masm.jump(&done);
    masm.bind(&hasFixedSlots);

    masm.loadPrivate(Address(obj, NativeObject::getFixedSlotOffset(0)), priv);

    masm.bind(&done);
}

void
CodeGenerator::visitCallDOMNative(LCallDOMNative* call)
{
    JSFunction* target = call->getSingleTarget();
    MOZ_ASSERT(target);
    MOZ_ASSERT(target->isNative());
    MOZ_ASSERT(target->jitInfo());
    MOZ_ASSERT(call->mir()->isCallDOMNative());

    int callargslot = call->argslot();
    int unusedStack = StackOffsetOfPassedArg(callargslot);

    // Registers used for callWithABI() argument-passing.
    const Register argJSContext = ToRegister(call->getArgJSContext());
    const Register argObj       = ToRegister(call->getArgObj());
    const Register argPrivate   = ToRegister(call->getArgPrivate());
    const Register argArgs      = ToRegister(call->getArgArgs());

    DebugOnly<uint32_t> initialStack = masm.framePushed();

    masm.checkStackAlignment();

    // DOM methods have the signature:
    //  bool (*)(JSContext*, HandleObject, void* private, const JSJitMethodCallArgs& args)
    // Where args is initialized from an argc and a vp, vp[0] is space for an
    // outparam and the callee, vp[1] is |this|, and vp[2] onward are the
    // function arguments.  Note that args stores the argv, not the vp, and
    // argv == vp + 2.

    // Nestle the stack up against the pushed arguments, leaving StackPointer at
    // &vp[1]
    masm.adjustStack(unusedStack);
    // argObj is filled with the extracted object, then returned.
    Register obj = masm.extractObject(Address(masm.getStackPointer(), 0), argObj);
    MOZ_ASSERT(obj == argObj);

    // Push a Value containing the callee object: natives are allowed to access their callee before
    // setitng the return value. After this the StackPointer points to &vp[0].
    masm.Push(ObjectValue(*target));

    // Now compute the argv value.  Since StackPointer is pointing to &vp[0] and
    // argv is &vp[2] we just need to add 2*sizeof(Value) to the current
    // StackPointer.
    JS_STATIC_ASSERT(JSJitMethodCallArgsTraits::offsetOfArgv == 0);
    JS_STATIC_ASSERT(JSJitMethodCallArgsTraits::offsetOfArgc ==
                     IonDOMMethodExitFrameLayoutTraits::offsetOfArgcFromArgv);
    masm.computeEffectiveAddress(Address(masm.getStackPointer(), 2 * sizeof(Value)), argArgs);

    LoadDOMPrivate(masm, obj, argPrivate);

    // Push argc from the call instruction into what will become the IonExitFrame
    masm.Push(Imm32(call->numActualArgs()));

    // Push our argv onto the stack
    masm.Push(argArgs);
    // And store our JSJitMethodCallArgs* in argArgs.
    masm.moveStackPtrTo(argArgs);

    // Push |this| object for passing HandleObject. We push after argc to
    // maintain the same sp-relative location of the object pointer with other
    // DOMExitFrames.
    masm.Push(argObj);
    masm.moveStackPtrTo(argObj);

    // Construct native exit frame.
    uint32_t safepointOffset;
    masm.buildFakeExitFrame(argJSContext, &safepointOffset);
    masm.enterFakeExitFrame(IonDOMMethodExitFrameLayout::Token());

    markSafepointAt(safepointOffset, call);

    // Construct and execute call.
    masm.setupUnalignedABICall(4, argJSContext);

    masm.loadJSContext(argJSContext);

    masm.passABIArg(argJSContext);
    masm.passABIArg(argObj);
    masm.passABIArg(argPrivate);
    masm.passABIArg(argArgs);
    masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, target->jitInfo()->method));

    if (target->jitInfo()->isInfallible) {
        masm.loadValue(Address(masm.getStackPointer(), IonDOMMethodExitFrameLayout::offsetOfResult()),
                       JSReturnOperand);
    } else {
        // Test for failure.
        masm.branchIfFalseBool(ReturnReg, masm.exceptionLabel());

        // Load the outparam vp[0] into output register(s).
        masm.loadValue(Address(masm.getStackPointer(), IonDOMMethodExitFrameLayout::offsetOfResult()),
                       JSReturnOperand);
    }

    // The next instruction is removing the footer of the exit frame, so there
    // is no need for leaveFakeExitFrame.

    // Move the StackPointer back to its original location, unwinding the native exit frame.
    masm.adjustStack(IonDOMMethodExitFrameLayout::Size() - unusedStack);
    MOZ_ASSERT(masm.framePushed() == initialStack);
}

typedef bool (*GetIntrinsicValueFn)(JSContext* cx, HandlePropertyName, MutableHandleValue);
static const VMFunction GetIntrinsicValueInfo =
    FunctionInfo<GetIntrinsicValueFn>(GetIntrinsicValue);

void
CodeGenerator::visitCallGetIntrinsicValue(LCallGetIntrinsicValue* lir)
{
    pushArg(ImmGCPtr(lir->mir()->name()));
    callVM(GetIntrinsicValueInfo, lir);
}

typedef bool (*InvokeFunctionFn)(JSContext*, HandleObject, uint32_t, Value*, Value*);
static const VMFunction InvokeFunctionInfo = FunctionInfo<InvokeFunctionFn>(InvokeFunction);

void
CodeGenerator::emitCallInvokeFunction(LInstruction* call, Register calleereg,
                                      uint32_t argc, uint32_t unusedStack)
{
    // Nestle %esp up to the argument vector.
    // Each path must account for framePushed_ separately, for callVM to be valid.
    masm.freeStack(unusedStack);

    pushArg(masm.getStackPointer()); // argv.
    pushArg(Imm32(argc));            // argc.
    pushArg(calleereg);              // JSFunction*.

    callVM(InvokeFunctionInfo, call);

    // Un-nestle %esp from the argument vector. No prefix was pushed.
    masm.reserveStack(unusedStack);
}

void
CodeGenerator::visitCallGeneric(LCallGeneric* call)
{
    Register calleereg = ToRegister(call->getFunction());
    Register objreg    = ToRegister(call->getTempObject());
    Register nargsreg  = ToRegister(call->getNargsReg());
    uint32_t unusedStack = StackOffsetOfPassedArg(call->argslot());
    Label invoke, thunk, makeCall, end;

    // Known-target case is handled by LCallKnown.
    MOZ_ASSERT(!call->hasSingleTarget());

    // Generate an ArgumentsRectifier.
    JitCode* argumentsRectifier = gen->jitRuntime()->getArgumentsRectifier();

    masm.checkStackAlignment();

    // Guard that calleereg is actually a function object.
    masm.loadObjClass(calleereg, nargsreg);
    masm.branchPtr(Assembler::NotEqual, nargsreg, ImmPtr(&JSFunction::class_), &invoke);

    // Guard that calleereg is an interpreted function with a JSScript.
    // If we are constructing, also ensure the callee is a constructor.
    if (call->mir()->isConstructing())
        masm.branchIfNotInterpretedConstructor(calleereg, nargsreg, &invoke);
    else
        masm.branchIfFunctionHasNoScript(calleereg, &invoke);

    // Knowing that calleereg is a non-native function, load the JSScript.
    masm.loadPtr(Address(calleereg, JSFunction::offsetOfNativeOrScript()), objreg);

    // Load script jitcode.
    masm.loadBaselineOrIonRaw(objreg, objreg, &invoke);

    // Nestle the StackPointer up to the argument vector.
    masm.freeStack(unusedStack);

    // Construct the IonFramePrefix.
    uint32_t descriptor = MakeFrameDescriptor(masm.framePushed(), JitFrame_IonJS);
    masm.Push(Imm32(call->numActualArgs()));
    masm.PushCalleeToken(calleereg, call->mir()->isConstructing());
    masm.Push(Imm32(descriptor));

    // Check whether the provided arguments satisfy target argc.
    // We cannot have lowered to LCallGeneric with a known target. Assert that we didn't
    // add any undefineds in IonBuilder. NB: MCall::numStackArgs includes |this|.
    MOZ_ASSERT(call->numActualArgs() == call->mir()->numStackArgs() - 1);
    masm.load16ZeroExtend(Address(calleereg, JSFunction::offsetOfNargs()), nargsreg);
    masm.branch32(Assembler::Above, nargsreg, Imm32(call->numActualArgs()), &thunk);
    masm.jump(&makeCall);

    // Argument fixed needed. Load the ArgumentsRectifier.
    masm.bind(&thunk);
    {
        MOZ_ASSERT(ArgumentsRectifierReg != objreg);
        masm.movePtr(ImmGCPtr(argumentsRectifier), objreg); // Necessary for GC marking.
        masm.loadPtr(Address(objreg, JitCode::offsetOfCode()), objreg);
        masm.move32(Imm32(call->numActualArgs()), ArgumentsRectifierReg);
    }

    // Finally call the function in objreg.
    masm.bind(&makeCall);
    uint32_t callOffset = masm.callJit(objreg);
    markSafepointAt(callOffset, call);

    // Increment to remove IonFramePrefix; decrement to fill FrameSizeClass.
    // The return address has already been removed from the Ion frame.
    int prefixGarbage = sizeof(JitFrameLayout) - sizeof(void*);
    masm.adjustStack(prefixGarbage - unusedStack);
    masm.jump(&end);

    // Handle uncompiled or native functions.
    masm.bind(&invoke);
    emitCallInvokeFunction(call, calleereg, call->numActualArgs(), unusedStack);

    masm.bind(&end);

    // If the return value of the constructing function is Primitive,
    // replace the return value with the Object from CreateThis.
    if (call->mir()->isConstructing()) {
        Label notPrimitive;
        masm.branchTestPrimitive(Assembler::NotEqual, JSReturnOperand, &notPrimitive);
        masm.loadValue(Address(masm.getStackPointer(), unusedStack), JSReturnOperand);
        masm.bind(&notPrimitive);
    }
}

void
CodeGenerator::visitCallKnown(LCallKnown* call)
{
    Register calleereg = ToRegister(call->getFunction());
    Register objreg    = ToRegister(call->getTempObject());
    uint32_t unusedStack = StackOffsetOfPassedArg(call->argslot());
    DebugOnly<JSFunction*> target = call->getSingleTarget();
    Label end, uncompiled;

    // Native single targets are handled by LCallNative.
    MOZ_ASSERT(!target->isNative());
    // Missing arguments must have been explicitly appended by the IonBuilder.
    MOZ_ASSERT(target->nargs() <= call->mir()->numStackArgs() - 1);

    MOZ_ASSERT_IF(call->mir()->isConstructing(), target->isConstructor());

    masm.checkStackAlignment();

    // The calleereg is known to be a non-native function, but might point to
    // a LazyScript instead of a JSScript.
    masm.branchIfFunctionHasNoScript(calleereg, &uncompiled);

    // Knowing that calleereg is a non-native function, load the JSScript.
    masm.loadPtr(Address(calleereg, JSFunction::offsetOfNativeOrScript()), objreg);

    // Load script jitcode.
    if (call->mir()->needsArgCheck())
        masm.loadBaselineOrIonRaw(objreg, objreg, &uncompiled);
    else
        masm.loadBaselineOrIonNoArgCheck(objreg, objreg, &uncompiled);

    // Nestle the StackPointer up to the argument vector.
    masm.freeStack(unusedStack);

    // Construct the IonFramePrefix.
    uint32_t descriptor = MakeFrameDescriptor(masm.framePushed(), JitFrame_IonJS);
    masm.Push(Imm32(call->numActualArgs()));
    masm.PushCalleeToken(calleereg, call->mir()->isConstructing());
    masm.Push(Imm32(descriptor));

    // Finally call the function in objreg.
    uint32_t callOffset = masm.callJit(objreg);
    markSafepointAt(callOffset, call);

    // Increment to remove IonFramePrefix; decrement to fill FrameSizeClass.
    // The return address has already been removed from the Ion frame.
    int prefixGarbage = sizeof(JitFrameLayout) - sizeof(void*);
    masm.adjustStack(prefixGarbage - unusedStack);
    masm.jump(&end);

    // Handle uncompiled functions.
    masm.bind(&uncompiled);
    emitCallInvokeFunction(call, calleereg, call->numActualArgs(), unusedStack);

    masm.bind(&end);

    // If the return value of the constructing function is Primitive,
    // replace the return value with the Object from CreateThis.
    if (call->mir()->isConstructing()) {
        Label notPrimitive;
        masm.branchTestPrimitive(Assembler::NotEqual, JSReturnOperand, &notPrimitive);
        masm.loadValue(Address(masm.getStackPointer(), unusedStack), JSReturnOperand);
        masm.bind(&notPrimitive);
    }
}

void
CodeGenerator::emitCallInvokeFunction(LApplyArgsGeneric* apply, Register extraStackSize)
{
    Register objreg = ToRegister(apply->getTempObject());
    MOZ_ASSERT(objreg != extraStackSize);

    // Push the space used by the arguments.
    masm.moveStackPtrTo(objreg);
    masm.Push(extraStackSize);

    pushArg(objreg);                           // argv.
    pushArg(ToRegister(apply->getArgc()));     // argc.
    pushArg(ToRegister(apply->getFunction())); // JSFunction*.

    // This specialization og callVM restore the extraStackSize after the call.
    callVM(InvokeFunctionInfo, apply, &extraStackSize);

    masm.Pop(extraStackSize);
}

// Do not bailout after the execution of this function since the stack no longer
// correspond to what is expected by the snapshots.
void
CodeGenerator::emitPushArguments(LApplyArgsGeneric* apply, Register extraStackSpace)
{
    // Holds the function nargs. Initially undefined.
    Register argcreg = ToRegister(apply->getArgc());
    Register copyreg = ToRegister(apply->getTempObject());

    // Initialize the loop counter AND Compute the stack usage (if == 0)
    masm.movePtr(argcreg, extraStackSpace);

    // Align the JitFrameLayout on the JitStackAlignment.
    if (JitStackValueAlignment > 1) {
        MOZ_ASSERT(frameSize() % JitStackAlignment == 0,
            "Stack padding assumes that the frameSize is correct");
        MOZ_ASSERT(JitStackValueAlignment == 2);
        Label noPaddingNeeded;
        // if the number of arguments is odd, then we do not need any padding.
        masm.branchTestPtr(Assembler::NonZero, argcreg, Imm32(1), &noPaddingNeeded);
        masm.addPtr(Imm32(1), extraStackSpace);
        masm.bind(&noPaddingNeeded);
    }

    // Reserve space for copying the arguments.
    NativeObject::elementsSizeMustNotOverflow();
    masm.lshiftPtr(Imm32(ValueShift), extraStackSpace);
    masm.subFromStackPtr(extraStackSpace);

#ifdef DEBUG
    // Put a magic value in the space reserved for padding. Note, this code
    // cannot be merged with the previous test, as not all architectures can
    // write below their stack pointers.
    if (JitStackValueAlignment > 1) {
        MOZ_ASSERT(JitStackValueAlignment == 2);
        Label noPaddingNeeded;
        // if the number of arguments is odd, then we do not need any padding.
        masm.branchTestPtr(Assembler::NonZero, argcreg, Imm32(1), &noPaddingNeeded);
        BaseValueIndex dstPtr(masm.getStackPointer(), argcreg);
        masm.storeValue(MagicValue(JS_ARG_POISON), dstPtr);
        masm.bind(&noPaddingNeeded);
    }
#endif

    // Skip the copy of arguments.
    Label end;
    masm.branchTestPtr(Assembler::Zero, argcreg, argcreg, &end);

    // We are making a copy of the arguments which are above the JitFrameLayout
    // of the current Ion frame.
    //
    // [arg1] [arg0] <- src [this] [JitFrameLayout] [.. frameSize ..] [pad] [arg1] [arg0] <- dst

    // Compute the source and destination offsets into the stack.
    size_t argvSrcOffset = frameSize() + JitFrameLayout::offsetOfActualArgs();
    size_t argvDstOffset = 0;

    // Save the extra stack space, and re-use the register as a base.
    masm.push(extraStackSpace);
    Register argvSrcBase = extraStackSpace;
    argvSrcOffset += sizeof(void*);
    argvDstOffset += sizeof(void*);

    // Save the actual number of register, and re-use the register as an index register.
    masm.push(argcreg);
    Register argvIndex = argcreg;
    argvSrcOffset += sizeof(void*);
    argvDstOffset += sizeof(void*);

    // srcPtr = (StackPointer + extraStackSpace) + argvSrcOffset
    // dstPtr = (StackPointer                  ) + argvDstOffset
    masm.addStackPtrTo(argvSrcBase);

    // Copy arguments.
    {
        Label loop;
        masm.bind(&loop);

        // As argvIndex is off by 1, and we use the decBranchPtr instruction
        // to loop back, we have to substract the size of the word which are
        // copied.
        BaseValueIndex srcPtr(argvSrcBase, argvIndex, argvSrcOffset - sizeof(void*));
        BaseValueIndex dstPtr(masm.getStackPointer(), argvIndex, argvDstOffset - sizeof(void*));
        masm.loadPtr(srcPtr, copyreg);
        masm.storePtr(copyreg, dstPtr);

        // Handle 32 bits architectures.
        if (sizeof(Value) == 2 * sizeof(void*)) {
            BaseValueIndex srcPtrLow(argvSrcBase, argvIndex, argvSrcOffset - 2 * sizeof(void*));
            BaseValueIndex dstPtrLow(masm.getStackPointer(), argvIndex, argvDstOffset - 2 * sizeof(void*));
            masm.loadPtr(srcPtrLow, copyreg);
            masm.storePtr(copyreg, dstPtrLow);
        }

        masm.decBranchPtr(Assembler::NonZero, argvIndex, Imm32(1), &loop);
    }

    // Restore argcreg and the extra stack space counter.
    masm.pop(argcreg);
    masm.pop(extraStackSpace);

    // Join with all arguments copied and the extra stack usage computed.
    masm.bind(&end);

    // Push |this|.
    masm.addPtr(Imm32(sizeof(Value)), extraStackSpace);
    masm.pushValue(ToValue(apply, LApplyArgsGeneric::ThisIndex));
}

void
CodeGenerator::emitPopArguments(LApplyArgsGeneric* apply, Register extraStackSpace)
{
    // Pop |this| and Arguments.
    masm.freeStack(extraStackSpace);
}

void
CodeGenerator::visitApplyArgsGeneric(LApplyArgsGeneric* apply)
{
    // Holds the function object.
    Register calleereg = ToRegister(apply->getFunction());

    // Temporary register for modifying the function object.
    Register objreg = ToRegister(apply->getTempObject());
    Register extraStackSpace = ToRegister(apply->getTempStackCounter());

    // Holds the function nargs. Initially undefined.
    Register argcreg = ToRegister(apply->getArgc());

    // Unless already known, guard that calleereg is actually a function object.
    if (!apply->hasSingleTarget()) {
        masm.loadObjClass(calleereg, objreg);

        ImmPtr ptr = ImmPtr(&JSFunction::class_);
        bailoutCmpPtr(Assembler::NotEqual, objreg, ptr, apply->snapshot());
    }

    // Copy the arguments of the current function.
    emitPushArguments(apply, extraStackSpace);

    masm.checkStackAlignment();

    // If the function is native, only emit the call to InvokeFunction.
    if (apply->hasSingleTarget() && apply->getSingleTarget()->isNative()) {
        emitCallInvokeFunction(apply, extraStackSpace);
        emitPopArguments(apply, extraStackSpace);
        return;
    }

    Label end, invoke;

    // Guard that calleereg is an interpreted function with a JSScript.
    masm.branchIfFunctionHasNoScript(calleereg, &invoke);

    // Knowing that calleereg is a non-native function, load the JSScript.
    masm.loadPtr(Address(calleereg, JSFunction::offsetOfNativeOrScript()), objreg);

    // Load script jitcode.
    masm.loadBaselineOrIonRaw(objreg, objreg, &invoke);

    // Call with an Ion frame or a rectifier frame.
    {
        // Create the frame descriptor.
        unsigned pushed = masm.framePushed();
        Register stackSpace = extraStackSpace;
        masm.addPtr(Imm32(pushed), stackSpace);
        masm.makeFrameDescriptor(stackSpace, JitFrame_IonJS);

        masm.Push(argcreg);
        masm.Push(calleereg);
        masm.Push(stackSpace); // descriptor

        Label underflow, rejoin;

        // Check whether the provided arguments satisfy target argc.
        if (!apply->hasSingleTarget()) {
            Register nformals = extraStackSpace;
            masm.load16ZeroExtend(Address(calleereg, JSFunction::offsetOfNargs()), nformals);
            masm.branch32(Assembler::Below, argcreg, nformals, &underflow);
        } else {
            masm.branch32(Assembler::Below, argcreg, Imm32(apply->getSingleTarget()->nargs()),
                          &underflow);
        }

        // Skip the construction of the rectifier frame because we have no
        // underflow.
        masm.jump(&rejoin);

        // Argument fixup needed. Get ready to call the argumentsRectifier.
        {
            masm.bind(&underflow);

            // Hardcode the address of the argumentsRectifier code.
            JitCode* argumentsRectifier = gen->jitRuntime()->getArgumentsRectifier();

            MOZ_ASSERT(ArgumentsRectifierReg != objreg);
            masm.movePtr(ImmGCPtr(argumentsRectifier), objreg); // Necessary for GC marking.
            masm.loadPtr(Address(objreg, JitCode::offsetOfCode()), objreg);
            masm.movePtr(argcreg, ArgumentsRectifierReg);
        }

        masm.bind(&rejoin);

        // Finally call the function in objreg, as assigned by one of the paths above.
        uint32_t callOffset = masm.callJit(objreg);
        markSafepointAt(callOffset, apply);

        // Recover the number of arguments from the frame descriptor.
        masm.loadPtr(Address(masm.getStackPointer(), 0), stackSpace);
        masm.rshiftPtr(Imm32(FRAMESIZE_SHIFT), stackSpace);
        masm.subPtr(Imm32(pushed), stackSpace);

        // Increment to remove IonFramePrefix; decrement to fill FrameSizeClass.
        // The return address has already been removed from the Ion frame.
        int prefixGarbage = sizeof(JitFrameLayout) - sizeof(void*);
        masm.adjustStack(prefixGarbage);
        masm.jump(&end);
    }

    // Handle uncompiled or native functions.
    {
        masm.bind(&invoke);
        emitCallInvokeFunction(apply, extraStackSpace);
    }

    // Pop arguments and continue.
    masm.bind(&end);
    emitPopArguments(apply, extraStackSpace);
}

typedef bool (*ArraySpliceDenseFn)(JSContext*, HandleObject, uint32_t, uint32_t);
static const VMFunction ArraySpliceDenseInfo = FunctionInfo<ArraySpliceDenseFn>(ArraySpliceDense);

void
CodeGenerator::visitArraySplice(LArraySplice* lir)
{
    pushArg(ToRegister(lir->getDeleteCount()));
    pushArg(ToRegister(lir->getStart()));
    pushArg(ToRegister(lir->getObject()));
    callVM(ArraySpliceDenseInfo, lir);
}

void
CodeGenerator::visitBail(LBail* lir)
{
    bailout(lir->snapshot());
}

void
CodeGenerator::visitUnreachable(LUnreachable* lir)
{
    masm.assumeUnreachable("end-of-block assumed unreachable");
}

void
CodeGenerator::visitEncodeSnapshot(LEncodeSnapshot* lir)
{
    encode(lir->snapshot());
}

void
CodeGenerator::visitGetDynamicName(LGetDynamicName* lir)
{
    Register scopeChain = ToRegister(lir->getScopeChain());
    Register name = ToRegister(lir->getName());
    Register temp1 = ToRegister(lir->temp1());
    Register temp2 = ToRegister(lir->temp2());
    Register temp3 = ToRegister(lir->temp3());

    masm.loadJSContext(temp3);

    /* Make space for the outparam. */
    masm.adjustStack(-int32_t(sizeof(Value)));
    masm.moveStackPtrTo(temp2);

    masm.setupUnalignedABICall(4, temp1);
    masm.passABIArg(temp3);
    masm.passABIArg(scopeChain);
    masm.passABIArg(name);
    masm.passABIArg(temp2);
    masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, GetDynamicName));

    const ValueOperand out = ToOutValue(lir);

    masm.loadValue(Address(masm.getStackPointer(), 0), out);
    masm.adjustStack(sizeof(Value));

    Label undefined;
    masm.branchTestUndefined(Assembler::Equal, out, &undefined);
    bailoutFrom(&undefined, lir->snapshot());
}

void
CodeGenerator::emitFilterArgumentsOrEval(LInstruction* lir, Register string,
                                         Register temp1, Register temp2)
{
    masm.loadJSContext(temp2);

    masm.setupUnalignedABICall(2, temp1);
    masm.passABIArg(temp2);
    masm.passABIArg(string);
    masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, FilterArgumentsOrEval));

    Label bail;
    masm.branchIfFalseBool(ReturnReg, &bail);
    bailoutFrom(&bail, lir->snapshot());
}

void
CodeGenerator::visitFilterArgumentsOrEvalS(LFilterArgumentsOrEvalS* lir)
{
    emitFilterArgumentsOrEval(lir, ToRegister(lir->getString()),
                              ToRegister(lir->temp1()),
                              ToRegister(lir->temp2()));
}

void
CodeGenerator::visitFilterArgumentsOrEvalV(LFilterArgumentsOrEvalV* lir)
{
    ValueOperand input = ToValue(lir, LFilterArgumentsOrEvalV::Input);

    // Act as nop on non-strings.
    Label done;
    masm.branchTestString(Assembler::NotEqual, input, &done);

    emitFilterArgumentsOrEval(lir, masm.extractString(input, ToRegister(lir->temp3())),
                              ToRegister(lir->temp1()), ToRegister(lir->temp2()));

    masm.bind(&done);
}

typedef bool (*DirectEvalSFn)(JSContext*, HandleObject, HandleScript, HandleValue, HandleString,
                              jsbytecode*, MutableHandleValue);
static const VMFunction DirectEvalStringInfo = FunctionInfo<DirectEvalSFn>(DirectEvalStringFromIon);

void
CodeGenerator::visitCallDirectEvalS(LCallDirectEvalS* lir)
{
    Register scopeChain = ToRegister(lir->getScopeChain());
    Register string = ToRegister(lir->getString());

    pushArg(ImmPtr(lir->mir()->pc()));
    pushArg(string);
    pushArg(ToValue(lir, LCallDirectEvalS::ThisValue));
    pushArg(ImmGCPtr(gen->info().script()));
    pushArg(scopeChain);

    callVM(DirectEvalStringInfo, lir);
}

typedef bool (*DirectEvalVFn)(JSContext*, HandleObject, HandleScript, HandleValue, HandleValue,
                              jsbytecode*, MutableHandleValue);
static const VMFunction DirectEvalValueInfo = FunctionInfo<DirectEvalVFn>(DirectEvalValueFromIon);

void
CodeGenerator::visitCallDirectEvalV(LCallDirectEvalV* lir)
{
    Register scopeChain = ToRegister(lir->getScopeChain());

    pushArg(ImmPtr(lir->mir()->pc()));
    pushArg(ToValue(lir, LCallDirectEvalV::Argument));
    pushArg(ToValue(lir, LCallDirectEvalV::ThisValue));
    pushArg(ImmGCPtr(gen->info().script()));
    pushArg(scopeChain);

    callVM(DirectEvalValueInfo, lir);
}

void
CodeGenerator::generateArgumentsChecks(bool bailout)
{
    // Registers safe for use before generatePrologue().
    static const uint32_t EntryTempMask = Registers::TempMask & ~(1 << OsrFrameReg.code());

    // This function can be used the normal way to check the argument types,
    // before entering the function and bailout when arguments don't match.
    // For debug purpose, this is can also be used to force/check that the
    // arguments are correct. Upon fail it will hit a breakpoint.

    MIRGraph& mir = gen->graph();
    MResumePoint* rp = mir.entryResumePoint();

    // No registers are allocated yet, so it's safe to grab anything.
    Register temp = GeneralRegisterSet(EntryTempMask).getAny();

    CompileInfo& info = gen->info();

    Label miss;
    for (uint32_t i = info.startArgSlot(); i < info.endArgSlot(); i++) {
        // All initial parameters are guaranteed to be MParameters.
        MParameter* param = rp->getOperand(i)->toParameter();
        const TypeSet* types = param->resultTypeSet();
        if (!types || types->unknown())
            continue;

        // Calculate the offset on the stack of the argument.
        // (i - info.startArgSlot())    - Compute index of arg within arg vector.
        // ... * sizeof(Value)          - Scale by value size.
        // ArgToStackOffset(...)        - Compute displacement within arg vector.
        int32_t offset = ArgToStackOffset((i - info.startArgSlot()) * sizeof(Value));
        masm.guardTypeSet(Address(masm.getStackPointer(), offset), types, BarrierKind::TypeSet, temp, &miss);
    }

    if (miss.used()) {
        if (bailout) {
            bailoutFrom(&miss, graph.entrySnapshot());
        } else {
            Label success;
            masm.jump(&success);
            masm.bind(&miss);

            // Check for cases where the type set guard might have missed due to
            // changing object groups.
            for (uint32_t i = info.startArgSlot(); i < info.endArgSlot(); i++) {
                Label skip;
                Address addr(StackPointer, ArgToStackOffset((i - info.startArgSlot()) * sizeof(Value)));
                masm.branchTestObject(Assembler::NotEqual, addr, &skip);
                Register obj = masm.extractObject(addr, temp);
                masm.guardTypeSetMightBeIncomplete(obj, temp, &success);
                masm.bind(&skip);
            }

            masm.assumeUnreachable("Argument check fail.");
            masm.bind(&success);
        }
    }
}

// Out-of-line path to report over-recursed error and fail.
class CheckOverRecursedFailure : public OutOfLineCodeBase<CodeGenerator>
{
    LInstruction* lir_;

  public:
    explicit CheckOverRecursedFailure(LInstruction* lir)
      : lir_(lir)
    { }

    void accept(CodeGenerator* codegen) {
        codegen->visitCheckOverRecursedFailure(this);
    }

    LInstruction* lir() const {
        return lir_;
    }
};

void
CodeGenerator::visitCheckOverRecursed(LCheckOverRecursed* lir)
{
    // If we don't push anything on the stack, skip the check.
    if (omitOverRecursedCheck())
        return;

    // Ensure that this frame will not cross the stack limit.
    // This is a weak check, justified by Ion using the C stack: we must always
    // be some distance away from the actual limit, since if the limit is
    // crossed, an error must be thrown, which requires more frames.
    //
    // It must always be possible to trespass past the stack limit.
    // Ion may legally place frames very close to the limit. Calling additional
    // C functions may then violate the limit without any checking.

    // Since Ion frames exist on the C stack, the stack limit may be
    // dynamically set by JS_SetThreadStackLimit() and JS_SetNativeStackQuota().
    const void* limitAddr = GetJitContext()->runtime->addressOfJitStackLimit();

    CheckOverRecursedFailure* ool = new(alloc()) CheckOverRecursedFailure(lir);
    addOutOfLineCode(ool, lir->mir());

    // Conditional forward (unlikely) branch to failure.
    masm.branchStackPtrRhs(Assembler::AboveOrEqual, AbsoluteAddress(limitAddr), ool->entry());
    masm.bind(ool->rejoin());
}

typedef bool (*DefVarOrConstFn)(JSContext*, HandlePropertyName, unsigned, HandleObject);
static const VMFunction DefVarOrConstInfo =
    FunctionInfo<DefVarOrConstFn>(DefVarOrConst);

void
CodeGenerator::visitDefVar(LDefVar* lir)
{
    Register scopeChain = ToRegister(lir->scopeChain());

    pushArg(scopeChain); // JSObject*
    pushArg(Imm32(lir->mir()->attrs())); // unsigned
    pushArg(ImmGCPtr(lir->mir()->name())); // PropertyName*

    callVM(DefVarOrConstInfo, lir);
}

typedef bool (*DefFunOperationFn)(JSContext*, HandleScript, HandleObject, HandleFunction);
static const VMFunction DefFunOperationInfo = FunctionInfo<DefFunOperationFn>(DefFunOperation);

void
CodeGenerator::visitDefFun(LDefFun* lir)
{
    Register scopeChain = ToRegister(lir->scopeChain());

    pushArg(ImmGCPtr(lir->mir()->fun()));
    pushArg(scopeChain);
    pushArg(ImmGCPtr(current->mir()->info().script()));

    callVM(DefFunOperationInfo, lir);
}

typedef bool (*CheckOverRecursedFn)(JSContext*);
static const VMFunction CheckOverRecursedInfo =
    FunctionInfo<CheckOverRecursedFn>(CheckOverRecursed);

void
CodeGenerator::visitCheckOverRecursedFailure(CheckOverRecursedFailure* ool)
{
    // The OOL path is hit if the recursion depth has been exceeded.
    // Throw an InternalError for over-recursion.

    // LFunctionEnvironment can appear before LCheckOverRecursed, so we have
    // to save all live registers to avoid crashes if CheckOverRecursed triggers
    // a GC.
    saveLive(ool->lir());

    callVM(CheckOverRecursedInfo, ool->lir());

    restoreLive(ool->lir());
    masm.jump(ool->rejoin());
}

IonScriptCounts*
CodeGenerator::maybeCreateScriptCounts()
{
    // If scripts are being profiled, create a new IonScriptCounts for the
    // profiling data, which will be attached to the associated JSScript or
    // AsmJS module after code generation finishes.
    if (!GetJitContext()->runtime->profilingScripts())
        return nullptr;

    IonScriptCounts* counts = nullptr;

    CompileInfo* outerInfo = &gen->info();
    JSScript* script = outerInfo->script();

    counts = js_new<IonScriptCounts>();
    if (!counts || !counts->init(graph.numBlocks())) {
        js_delete(counts);
        return nullptr;
    }

    for (size_t i = 0; i < graph.numBlocks(); i++) {
        MBasicBlock* block = graph.getBlock(i)->mir();

        uint32_t offset = 0;
        char* description = nullptr;
        if (script) {
            if (MResumePoint* resume = block->entryResumePoint()) {
                // Find a PC offset in the outermost script to use. If this
                // block is from an inlined script, find a location in the
                // outer script to associate information about the inlining
                // with.
                while (resume->caller())
                    resume = resume->caller();
                offset = script->pcToOffset(resume->pc());

                if (block->entryResumePoint()->caller()) {
                    // Get the filename and line number of the inner script.
                    JSScript* innerScript = block->info().script();
                    description = (char*) js_calloc(200);
                    if (description) {
                        JS_snprintf(description, 200, "%s:%" PRIuSIZE,
                                    innerScript->filename(), innerScript->lineno());
                    }
                }
            }
        }

        if (!counts->block(i).init(block->id(), offset, description, block->numSuccessors())) {
            js_delete(counts);
            return nullptr;
        }
        for (size_t j = 0; j < block->numSuccessors(); j++)
            counts->block(i).setSuccessor(j, skipTrivialBlocks(block->getSuccessor(j))->id());
    }

    scriptCounts_ = counts;
    return counts;
}

// Structure for managing the state tracked for a block by script counters.
struct ScriptCountBlockState
{
    IonBlockCounts& block;
    MacroAssembler& masm;

    Sprinter printer;

  public:
    ScriptCountBlockState(IonBlockCounts* block, MacroAssembler* masm)
      : block(*block), masm(*masm), printer(GetJitContext()->cx)
    {
    }

    bool init()
    {
        if (!printer.init())
            return false;

        // Bump the hit count for the block at the start. This code is not
        // included in either the text for the block or the instruction byte
        // counts.
        masm.inc64(AbsoluteAddress(block.addressOfHitCount()));

        // Collect human readable assembly for the code generated in the block.
        masm.setPrinter(&printer);

        return true;
    }

    void visitInstruction(LInstruction* ins)
    {
        // Prefix stream of assembly instructions with their LIR instruction
        // name and any associated high level info.
        if (const char* extra = ins->extraName())
            printer.printf("[%s:%s]\n", ins->opName(), extra);
        else
            printer.printf("[%s]\n", ins->opName());
    }

    ~ScriptCountBlockState()
    {
        masm.setPrinter(nullptr);

        block.setCode(printer.string());
    }
};

void
CodeGenerator::branchIfInvalidated(Register temp, Label* invalidated)
{
    CodeOffsetLabel label = masm.movWithPatch(ImmWord(uintptr_t(-1)), temp);
    masm.propagateOOM(ionScriptLabels_.append(label));

    // If IonScript::invalidationCount_ != 0, the script has been invalidated.
    masm.branch32(Assembler::NotEqual,
                  Address(temp, IonScript::offsetOfInvalidationCount()),
                  Imm32(0),
                  invalidated);
}

void
CodeGenerator::emitAssertObjectOrStringResult(Register input, MIRType type, TemporaryTypeSet* typeset)
{
    MOZ_ASSERT(type == MIRType_Object || type == MIRType_ObjectOrNull ||
               type == MIRType_String || type == MIRType_Symbol);

    AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All());
    regs.take(input);

    Register temp = regs.takeAny();
    masm.push(temp);

    // Don't check if the script has been invalidated. In that case invalid
    // types are expected (until we reach the OsiPoint and bailout).
    Label done;
    branchIfInvalidated(temp, &done);

    if ((type == MIRType_Object || type == MIRType_ObjectOrNull) &&
        typeset && !typeset->unknownObject())
    {
        // We have a result TypeSet, assert this object is in it.
        Label miss, ok;
        if (type == MIRType_ObjectOrNull)
            masm.branchPtr(Assembler::Equal, input, ImmWord(0), &ok);
        if (typeset->getObjectCount() > 0)
            masm.guardObjectType(input, typeset, temp, &miss);
        else
            masm.jump(&miss);
        masm.jump(&ok);

        masm.bind(&miss);
        masm.guardTypeSetMightBeIncomplete(input, temp, &ok);

        masm.assumeUnreachable("MIR instruction returned object with unexpected type");

        masm.bind(&ok);
    }

    // Check that we have a valid GC pointer.
    saveVolatile();
    masm.setupUnalignedABICall(2, temp);
    masm.loadJSContext(temp);
    masm.passABIArg(temp);
    masm.passABIArg(input);

    void* callee;
    switch (type) {
      case MIRType_Object:
        callee = JS_FUNC_TO_DATA_PTR(void*, AssertValidObjectPtr);
        break;
      case MIRType_ObjectOrNull:
        callee = JS_FUNC_TO_DATA_PTR(void*, AssertValidObjectOrNullPtr);
        break;
      case MIRType_String:
        callee = JS_FUNC_TO_DATA_PTR(void*, AssertValidStringPtr);
        break;
      case MIRType_Symbol:
        callee = JS_FUNC_TO_DATA_PTR(void*, AssertValidSymbolPtr);
        break;
      default:
        MOZ_CRASH();
    }

    masm.callWithABI(callee);
    restoreVolatile();

    masm.bind(&done);
    masm.pop(temp);
}

void
CodeGenerator::emitAssertResultV(const ValueOperand input, TemporaryTypeSet* typeset)
{
    AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All());
    regs.take(input);

    Register temp1 = regs.takeAny();
    Register temp2 = regs.takeAny();
    masm.push(temp1);
    masm.push(temp2);

    // Don't check if the script has been invalidated. In that case invalid
    // types are expected (until we reach the OsiPoint and bailout).
    Label done;
    branchIfInvalidated(temp1, &done);

    if (typeset && !typeset->unknown()) {
        // We have a result TypeSet, assert this value is in it.
        Label miss, ok;
        masm.guardTypeSet(input, typeset, BarrierKind::TypeSet, temp1, &miss);
        masm.jump(&ok);

        masm.bind(&miss);

        // Check for cases where the type set guard might have missed due to
        // changing object groups.
        Label realMiss;
        masm.branchTestObject(Assembler::NotEqual, input, &realMiss);
        Register payload = masm.extractObject(input, temp1);
        masm.guardTypeSetMightBeIncomplete(payload, temp1, &ok);
        masm.bind(&realMiss);

        masm.assumeUnreachable("MIR instruction returned value with unexpected type");

        masm.bind(&ok);
    }

    // Check that we have a valid GC pointer.
    saveVolatile();

    masm.pushValue(input);
    masm.moveStackPtrTo(temp1);

    masm.setupUnalignedABICall(2, temp2);
    masm.loadJSContext(temp2);
    masm.passABIArg(temp2);
    masm.passABIArg(temp1);
    masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, AssertValidValue));
    masm.popValue(input);
    restoreVolatile();

    masm.bind(&done);
    masm.pop(temp2);
    masm.pop(temp1);
}

#ifdef DEBUG
void
CodeGenerator::emitObjectOrStringResultChecks(LInstruction* lir, MDefinition* mir)
{
    if (lir->numDefs() == 0)
        return;

    MOZ_ASSERT(lir->numDefs() == 1);
    Register output = ToRegister(lir->getDef(0));

    emitAssertObjectOrStringResult(output, mir->type(), mir->resultTypeSet());
}

void
CodeGenerator::emitValueResultChecks(LInstruction* lir, MDefinition* mir)
{
    if (lir->numDefs() == 0)
        return;

    MOZ_ASSERT(lir->numDefs() == BOX_PIECES);
    if (!lir->getDef(0)->output()->isRegister())
        return;

    ValueOperand output = ToOutValue(lir);

    emitAssertResultV(output, mir->resultTypeSet());
}

void
CodeGenerator::emitDebugResultChecks(LInstruction* ins)
{
    // In debug builds, check that LIR instructions return valid values.

    MDefinition* mir = ins->mirRaw();
    if (!mir)
        return;

    switch (mir->type()) {
      case MIRType_Object:
      case MIRType_ObjectOrNull:
      case MIRType_String:
      case MIRType_Symbol:
        emitObjectOrStringResultChecks(ins, mir);
        break;
      case MIRType_Value:
        emitValueResultChecks(ins, mir);
        break;
      default:
        break;
    }
}
#endif

bool
CodeGenerator::generateBody()
{
    IonScriptCounts* counts = maybeCreateScriptCounts();

#if defined(JS_ION_PERF)
    PerfSpewer* perfSpewer = &perfSpewer_;
    if (gen->compilingAsmJS())
        perfSpewer = &gen->perfSpewer();
#endif

    for (size_t i = 0; i < graph.numBlocks(); i++) {
        current = graph.getBlock(i);

        // Don't emit any code for trivial blocks, containing just a goto. Such
        // blocks are created to split critical edges, and if we didn't end up
        // putting any instructions in them, we can skip them.
        if (current->isTrivial())
            continue;

#ifdef DEBUG
        const char* filename = nullptr;
        size_t lineNumber = 0;
        unsigned columnNumber = 0;
        if (current->mir()->info().script()) {
            filename = current->mir()->info().script()->filename();
            if (current->mir()->pc())
                lineNumber = PCToLineNumber(current->mir()->info().script(), current->mir()->pc(),
                                            &columnNumber);
        } else {
            lineNumber = current->mir()->lineno();
            columnNumber = current->mir()->columnIndex();
        }
        JitSpew(JitSpew_Codegen, "# block%" PRIuSIZE " %s:%" PRIuSIZE ":%u%s:",
                i, filename ? filename : "?", lineNumber, columnNumber,
                current->mir()->isLoopHeader() ? " (loop header)" : "");
#endif

        masm.bind(current->label());

        mozilla::Maybe<ScriptCountBlockState> blockCounts;
        if (counts) {
            blockCounts.emplace(&counts->block(i), &masm);
            if (!blockCounts->init())
                return false;
        }

#if defined(JS_ION_PERF)
        perfSpewer->startBasicBlock(current->mir(), masm);
#endif

        for (LInstructionIterator iter = current->begin(); iter != current->end(); iter++) {
#ifdef DEBUG
            JitSpewStart(JitSpew_Codegen, "instruction %s", iter->opName());
            if (const char* extra = iter->extraName())
                JitSpewCont(JitSpew_Codegen, ":%s", extra);
            JitSpewFin(JitSpew_Codegen);
#endif

            if (counts)
                blockCounts->visitInstruction(*iter);

#ifdef CHECK_OSIPOINT_REGISTERS
            if (iter->safepoint())
                resetOsiPointRegs(iter->safepoint());
#endif

            if (iter->mirRaw()) {
                // Only add instructions that have a tracked inline script tree.
                if (iter->mirRaw()->trackedTree()) {
                    if (!addNativeToBytecodeEntry(iter->mirRaw()->trackedSite()))
                        return false;
                }

                // Track the start native offset of optimizations.
                if (iter->mirRaw()->trackedOptimizations()) {
                    if (!addTrackedOptimizationsEntry(iter->mirRaw()->trackedOptimizations()))
                        return false;
                }
            }

            iter->accept(this);

            // Track the end native offset of optimizations.
            if (iter->mirRaw() && iter->mirRaw()->trackedOptimizations())
                extendTrackedOptimizationsEntry(iter->mirRaw()->trackedOptimizations());

#ifdef DEBUG
            if (!counts)
                emitDebugResultChecks(*iter);
#endif
        }
        if (masm.oom())
            return false;

#if defined(JS_ION_PERF)
        perfSpewer->endBasicBlock(masm);
#endif
    }

    return true;
}

// Out-of-line object allocation for LNewArray.
class OutOfLineNewArray : public OutOfLineCodeBase<CodeGenerator>
{
    LNewArray* lir_;

  public:
    explicit OutOfLineNewArray(LNewArray* lir)
      : lir_(lir)
    { }

    void accept(CodeGenerator* codegen) {
        codegen->visitOutOfLineNewArray(this);
    }

    LNewArray* lir() const {
        return lir_;
    }
};

typedef JSObject* (*NewArrayOperationFn)(JSContext*, HandleScript, jsbytecode*, uint32_t,
                                         NewObjectKind);
static const VMFunction NewArrayOperationInfo =
    FunctionInfo<NewArrayOperationFn>(NewArrayOperation);

typedef ArrayObject* (*NewDenseArrayFn)(ExclusiveContext*, uint32_t, HandleObjectGroup,
                                        AllocatingBehaviour, bool);
static const VMFunction NewDenseArrayInfo = FunctionInfo<NewDenseArrayFn>(NewDenseArray);

void
CodeGenerator::visitNewArrayCallVM(LNewArray* lir)
{
    Register objReg = ToRegister(lir->output());

    MOZ_ASSERT(!lir->isCall());
    saveLive(lir);

    JSObject* templateObject = lir->mir()->templateObject();

    if (templateObject && !templateObject->is<UnboxedArrayObject>()) {
        pushArg(Imm32(lir->mir()->convertDoubleElements()));
        pushArg(Imm32(lir->mir()->allocatingBehaviour()));
        pushArg(ImmGCPtr(templateObject->group()));
        pushArg(Imm32(lir->mir()->count()));

        callVM(NewDenseArrayInfo, lir);
    } else {
        pushArg(Imm32(GenericObject));
        pushArg(Imm32(lir->mir()->count()));
        pushArg(ImmPtr(lir->mir()->pc()));
        pushArg(ImmGCPtr(lir->mir()->block()->info().script()));

        callVM(NewArrayOperationInfo, lir);
    }

    if (ReturnReg != objReg)
        masm.movePtr(ReturnReg, objReg);

    restoreLive(lir);
}

typedef JSObject* (*NewDerivedTypedObjectFn)(JSContext*,
                                             HandleObject type,
                                             HandleObject owner,
                                             int32_t offset);
static const VMFunction CreateDerivedTypedObjInfo =
    FunctionInfo<NewDerivedTypedObjectFn>(CreateDerivedTypedObj);

void
CodeGenerator::visitNewDerivedTypedObject(LNewDerivedTypedObject* lir)
{
    pushArg(ToRegister(lir->offset()));
    pushArg(ToRegister(lir->owner()));
    pushArg(ToRegister(lir->type()));
    callVM(CreateDerivedTypedObjInfo, lir);
}

void
CodeGenerator::visitAtan2D(LAtan2D* lir)
{
    Register temp = ToRegister(lir->temp());
    FloatRegister y = ToFloatRegister(lir->y());
    FloatRegister x = ToFloatRegister(lir->x());

    masm.setupUnalignedABICall(2, temp);
    masm.passABIArg(y, MoveOp::DOUBLE);
    masm.passABIArg(x, MoveOp::DOUBLE);
    masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, ecmaAtan2), MoveOp::DOUBLE);

    MOZ_ASSERT(ToFloatRegister(lir->output()) == ReturnDoubleReg);
}

void
CodeGenerator::visitHypot(LHypot* lir)
{
    Register temp = ToRegister(lir->temp());
    uint32_t numArgs = lir->numArgs();
    masm.setupUnalignedABICall(numArgs, temp);

    for (uint32_t i = 0 ; i < numArgs; ++i)
        masm.passABIArg(ToFloatRegister(lir->getOperand(i)), MoveOp::DOUBLE);

    switch(numArgs) {
      case 2:
        masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, ecmaHypot), MoveOp::DOUBLE);
        break;
      case 3:
        masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, hypot3), MoveOp::DOUBLE);
        break;
      case 4:
        masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, hypot4), MoveOp::DOUBLE);
        break;
      default:
        MOZ_CRASH("Unexpected number of arguments to hypot function.");
    }
    MOZ_ASSERT(ToFloatRegister(lir->output()) == ReturnDoubleReg);
}

void
CodeGenerator::visitNewArray(LNewArray* lir)
{
    Register objReg = ToRegister(lir->output());
    Register tempReg = ToRegister(lir->temp());
    JSObject* templateObject = lir->mir()->templateObject();
    DebugOnly<uint32_t> count = lir->mir()->count();

    MOZ_ASSERT(count < NativeObject::NELEMENTS_LIMIT);

    if (lir->mir()->shouldUseVM()) {
        visitNewArrayCallVM(lir);
        return;
    }

    OutOfLineNewArray* ool = new(alloc()) OutOfLineNewArray(lir);
    addOutOfLineCode(ool, lir->mir());

    masm.createGCObject(objReg, tempReg, templateObject, lir->mir()->initialHeap(),
                        ool->entry(), /* initContents = */ true,
                        lir->mir()->convertDoubleElements());

    masm.bind(ool->rejoin());
}

void
CodeGenerator::visitOutOfLineNewArray(OutOfLineNewArray* ool)
{
    visitNewArrayCallVM(ool->lir());
    masm.jump(ool->rejoin());
}

void
CodeGenerator::visitNewArrayCopyOnWrite(LNewArrayCopyOnWrite* lir)
{
    Register objReg = ToRegister(lir->output());
    Register tempReg = ToRegister(lir->temp());
    ArrayObject* templateObject = lir->mir()->templateObject();
    gc::InitialHeap initialHeap = lir->mir()->initialHeap();

    // If we have a template object, we can inline call object creation.
    OutOfLineCode* ool = oolCallVM(NewArrayCopyOnWriteInfo, lir,
                                   (ArgList(), ImmGCPtr(templateObject), Imm32(initialHeap)),
                                   StoreRegisterTo(objReg));

    masm.createGCObject(objReg, tempReg, templateObject, initialHeap, ool->entry());

    masm.bind(ool->rejoin());
}

typedef ArrayObject* (*ArrayConstructorOneArgFn)(JSContext*, HandleObjectGroup, int32_t length);
static const VMFunction ArrayConstructorOneArgInfo =
    FunctionInfo<ArrayConstructorOneArgFn>(ArrayConstructorOneArg);

void
CodeGenerator::visitNewArrayDynamicLength(LNewArrayDynamicLength* lir)
{
    Register lengthReg = ToRegister(lir->length());
    Register objReg = ToRegister(lir->output());
    Register tempReg = ToRegister(lir->temp());

    ArrayObject* templateObject = lir->mir()->templateObject();
    gc::InitialHeap initialHeap = lir->mir()->initialHeap();

    OutOfLineCode* ool = oolCallVM(ArrayConstructorOneArgInfo, lir,
                                   (ArgList(), ImmGCPtr(templateObject->group()), lengthReg),
                                   StoreRegisterTo(objReg));

    size_t numSlots = gc::GetGCKindSlots(templateObject->asTenured().getAllocKind());
    size_t inlineLength = numSlots >= ObjectElements::VALUES_PER_HEADER
                        ? numSlots - ObjectElements::VALUES_PER_HEADER
                        : 0;

    // Try to do the allocation inline if the template object is big enough
    // for the length in lengthReg. If the length is bigger we could still
    // use the template object and not allocate the elements, but it's more
    // efficient to do a single big allocation than (repeatedly) reallocating
    // the array later on when filling it.
    if (!templateObject->isSingleton() && templateObject->length() <= inlineLength)
        masm.branch32(Assembler::Above, lengthReg, Imm32(templateObject->length()), ool->entry());
    else
        masm.jump(ool->entry());

    masm.createGCObject(objReg, tempReg, templateObject, initialHeap, ool->entry());

    size_t lengthOffset = NativeObject::offsetOfFixedElements() + ObjectElements::offsetOfLength();
    masm.store32(lengthReg, Address(objReg, lengthOffset));

    masm.bind(ool->rejoin());
}

// Out-of-line object allocation for JSOP_NEWOBJECT.
class OutOfLineNewObject : public OutOfLineCodeBase<CodeGenerator>
{
    LNewObject* lir_;

  public:
    explicit OutOfLineNewObject(LNewObject* lir)
      : lir_(lir)
    { }

    void accept(CodeGenerator* codegen) {
        codegen->visitOutOfLineNewObject(this);
    }

    LNewObject* lir() const {
        return lir_;
    }
};

typedef JSObject* (*NewInitObjectWithTemplateFn)(JSContext*, HandleObject);
static const VMFunction NewInitObjectWithTemplateInfo =
    FunctionInfo<NewInitObjectWithTemplateFn>(NewObjectOperationWithTemplate);

typedef JSObject* (*NewInitObjectFn)(JSContext*, HandleScript, jsbytecode* pc, NewObjectKind);
static const VMFunction NewInitObjectInfo = FunctionInfo<NewInitObjectFn>(NewObjectOperation);

typedef PlainObject* (*ObjectCreateWithTemplateFn)(JSContext*, HandlePlainObject);
static const VMFunction ObjectCreateWithTemplateInfo =
    FunctionInfo<ObjectCreateWithTemplateFn>(ObjectCreateWithTemplate);

void
CodeGenerator::visitNewObjectVMCall(LNewObject* lir)
{
    Register objReg = ToRegister(lir->output());

    MOZ_ASSERT(!lir->isCall());
    saveLive(lir);

    JSObject* templateObject = lir->mir()->templateObject();

    // If we're making a new object with a class prototype (that is, an object
    // that derives its class from its prototype instead of being
    // PlainObject::class_'d) from self-hosted code, we need a different init
    // function.
    if (lir->mir()->mode() == MNewObject::ObjectLiteral) {
        if (templateObject) {
            pushArg(ImmGCPtr(templateObject));
            callVM(NewInitObjectWithTemplateInfo, lir);
        } else {
            pushArg(Imm32(GenericObject));
            pushArg(ImmPtr(lir->mir()->resumePoint()->pc()));
            pushArg(ImmGCPtr(lir->mir()->block()->info().script()));
            callVM(NewInitObjectInfo, lir);
        }
    } else {
        MOZ_ASSERT(lir->mir()->mode() == MNewObject::ObjectCreate);
        pushArg(ImmGCPtr(templateObject));
        callVM(ObjectCreateWithTemplateInfo, lir);
    }

    if (ReturnReg != objReg)
        masm.movePtr(ReturnReg, objReg);

    restoreLive(lir);
}

static bool
ShouldInitFixedSlots(LInstruction* lir, JSObject* obj)
{
    if (!obj->isNative())
        return true;
    NativeObject* templateObj = &obj->as<NativeObject>();

    // Look for StoreFixedSlot instructions following an object allocation
    // that write to this object before a GC is triggered or this object is
    // passed to a VM call. If all fixed slots will be initialized, the
    // allocation code doesn't need to set the slots to |undefined|.

    uint32_t nfixed = templateObj->numUsedFixedSlots();
    if (nfixed == 0)
        return false;

    // Only optimize if all fixed slots are initially |undefined|, so that we
    // can assume incremental pre-barriers are not necessary. See also the
    // comment below.
    for (uint32_t slot = 0; slot < nfixed; slot++) {
        if (!templateObj->getSlot(slot).isUndefined())
            return true;
    }

    // Keep track of the fixed slots that are initialized. initializedSlots is
    // a bit mask with a bit for each slot.
    MOZ_ASSERT(nfixed <= NativeObject::MAX_FIXED_SLOTS);
    static_assert(NativeObject::MAX_FIXED_SLOTS <= 32, "Slot bits must fit in 32 bits");
    uint32_t initializedSlots = 0;
    uint32_t numInitialized = 0;

    MInstruction* allocMir = lir->mirRaw()->toInstruction();
    MBasicBlock* block = allocMir->block();

    // Skip the allocation instruction.
    MInstructionIterator iter = block->begin(allocMir);
    MOZ_ASSERT(*iter == allocMir);
    iter++;

    while (true) {
        for (; iter != block->end(); iter++) {
            if (iter->isNop() || iter->isConstant() || iter->isPostWriteBarrier()) {
                // These instructions won't trigger a GC or read object slots.
                continue;
            }

            if (iter->isStoreFixedSlot()) {
                MStoreFixedSlot* store = iter->toStoreFixedSlot();
                if (store->object() != allocMir)
                    return true;

                // We may not initialize this object slot on allocation, so the
                // pre-barrier could read uninitialized memory. Simply disable
                // the barrier for this store: the object was just initialized
                // so the barrier is not necessary.
                store->setNeedsBarrier(false);

                uint32_t slot = store->slot();
                MOZ_ASSERT(slot < nfixed);
                if ((initializedSlots & (1 << slot)) == 0) {
                    numInitialized++;
                    initializedSlots |= (1 << slot);

                    if (numInitialized == nfixed) {
                        // All fixed slots will be initialized.
                        MOZ_ASSERT(mozilla::CountPopulation32(initializedSlots) == nfixed);
                        return false;
                    }
                }
                continue;
            }

            if (iter->isGoto()) {
                block = iter->toGoto()->target();
                if (block->numPredecessors() != 1)
                    return true;
                break;
            }

            // Unhandled instruction, assume it bails or reads object slots.
            return true;
        }
        iter = block->begin();
    }

    MOZ_CRASH("Shouldn't get here");
}

void
CodeGenerator::visitNewObject(LNewObject* lir)
{
    Register objReg = ToRegister(lir->output());
    Register tempReg = ToRegister(lir->temp());
    JSObject* templateObject = lir->mir()->templateObject();

    if (lir->mir()->shouldUseVM()) {
        visitNewObjectVMCall(lir);
        return;
    }

    OutOfLineNewObject* ool = new(alloc()) OutOfLineNewObject(lir);
    addOutOfLineCode(ool, lir->mir());

    bool initContents = ShouldInitFixedSlots(lir, templateObject);
    masm.createGCObject(objReg, tempReg, templateObject, lir->mir()->initialHeap(), ool->entry(),
                        initContents);

    masm.bind(ool->rejoin());
}

void
CodeGenerator::visitOutOfLineNewObject(OutOfLineNewObject* ool)
{
    visitNewObjectVMCall(ool->lir());
    masm.jump(ool->rejoin());
}

typedef InlineTypedObject* (*NewTypedObjectFn)(JSContext*, Handle<InlineTypedObject*>, gc::InitialHeap);
static const VMFunction NewTypedObjectInfo =
    FunctionInfo<NewTypedObjectFn>(InlineTypedObject::createCopy);

void
CodeGenerator::visitNewTypedObject(LNewTypedObject* lir)
{
    Register object = ToRegister(lir->output());
    Register temp = ToRegister(lir->temp());
    InlineTypedObject* templateObject = lir->mir()->templateObject();
    gc::InitialHeap initialHeap = lir->mir()->initialHeap();

    OutOfLineCode* ool = oolCallVM(NewTypedObjectInfo, lir,
                                   (ArgList(), ImmGCPtr(templateObject), Imm32(initialHeap)),
                                   StoreRegisterTo(object));

    masm.createGCObject(object, temp, templateObject, initialHeap, ool->entry());

    masm.bind(ool->rejoin());
}

void
CodeGenerator::visitSimdBox(LSimdBox* lir)
{
    FloatRegister in = ToFloatRegister(lir->input());
    Register object = ToRegister(lir->output());
    Register temp = ToRegister(lir->temp());
    InlineTypedObject* templateObject = lir->mir()->templateObject();
    gc::InitialHeap initialHeap = lir->mir()->initialHeap();
    MIRType type = lir->mir()->input()->type();
    registerSimdTemplate(templateObject);

    MOZ_ASSERT(lir->safepoint()->liveRegs().has(in),
               "Save the input register across the oolCallVM");
    OutOfLineCode* ool = oolCallVM(NewTypedObjectInfo, lir,
                                   (ArgList(), ImmGCPtr(templateObject), Imm32(initialHeap)),
                                   StoreRegisterTo(object));

    masm.createGCObject(object, temp, templateObject, initialHeap, ool->entry());
    masm.bind(ool->rejoin());

    Address objectData(object, InlineTypedObject::offsetOfDataStart());
    switch (type) {
      case MIRType_Int32x4:
        masm.storeUnalignedInt32x4(in, objectData);
        break;
      case MIRType_Float32x4:
        masm.storeUnalignedFloat32x4(in, objectData);
        break;
      default:
        MOZ_CRASH("Unknown SIMD kind when generating code for SimdBox.");
    }
}

void
CodeGenerator::registerSimdTemplate(InlineTypedObject* templateObject)
{
    simdRefreshTemplatesDuringLink_ |=
        1 << uint32_t(templateObject->typeDescr().as<SimdTypeDescr>().type());
}

void
CodeGenerator::captureSimdTemplate(JSContext* cx)
{
    JitCompartment* jitCompartment = cx->compartment()->jitCompartment();
    while (simdRefreshTemplatesDuringLink_) {
        uint32_t typeIndex = mozilla::CountTrailingZeroes32(simdRefreshTemplatesDuringLink_);
        simdRefreshTemplatesDuringLink_ ^= 1 << typeIndex;
        SimdTypeDescr::Type type = SimdTypeDescr::Type(typeIndex);

        // Note: the weak-reference on the template object should not have been
        // garbage collected. It is either registered by IonBuilder, or verified
        // before using it in the EagerSimdUnbox phase.
        jitCompartment->registerSimdTemplateObjectFor(type);
    }
}

void
CodeGenerator::visitSimdUnbox(LSimdUnbox* lir)
{
    Register object = ToRegister(lir->input());
    FloatRegister simd = ToFloatRegister(lir->output());
    Register temp = ToRegister(lir->temp());
    Label bail;

    // obj->group()
    masm.loadPtr(Address(object, JSObject::offsetOfGroup()), temp);

    // Guard that the object has the same representation as the one produced for
    // SIMD value-type.
    Address clasp(temp, ObjectGroup::offsetOfClasp());
    static_assert(!SimdTypeDescr::Opaque, "SIMD objects are transparent");
    masm.branchPtr(Assembler::NotEqual, clasp, ImmPtr(&InlineTransparentTypedObject::class_),
                   &bail);

    // obj->type()->typeDescr()
    // The previous class pointer comparison implies that the addendumKind is
    // Addendum_TypeDescr.
    masm.loadPtr(Address(temp, ObjectGroup::offsetOfAddendum()), temp);

    // Check for the /Kind/ reserved slot of the TypeDescr.  This is an Int32
    // Value which is equivalent to the object class check.
    static_assert(JS_DESCR_SLOT_KIND < NativeObject::MAX_FIXED_SLOTS, "Load from fixed slots");
    Address typeDescrKind(temp, NativeObject::getFixedSlotOffset(JS_DESCR_SLOT_KIND));
    masm.assertTestInt32(Assembler::Equal, typeDescrKind,
      "MOZ_ASSERT(obj->type()->typeDescr()->getReservedSlot(JS_DESCR_SLOT_KIND).isInt32())");
    masm.branch32(Assembler::NotEqual, masm.ToPayload(typeDescrKind), Imm32(js::type::Simd), &bail);

    // Convert the SIMD MIRType to a SimdTypeDescr::Type.
    js::SimdTypeDescr::Type type;
    switch (lir->mir()->type()) {
      case MIRType_Int32x4:
        type = js::SimdTypeDescr::Int32x4;
        break;
      case MIRType_Float32x4:
        type = js::SimdTypeDescr::Float32x4;
        break;
      default:
        MOZ_CRASH("Unexpected SIMD Type.");
    }

    // Check if the SimdTypeDescr /Type/ match the specialization of this
    // MSimdUnbox instruction.
    static_assert(JS_DESCR_SLOT_TYPE < NativeObject::MAX_FIXED_SLOTS, "Load from fixed slots");
    Address typeDescrType(temp, NativeObject::getFixedSlotOffset(JS_DESCR_SLOT_TYPE));
    masm.assertTestInt32(Assembler::Equal, typeDescrType,
      "MOZ_ASSERT(obj->type()->typeDescr()->getReservedSlot(JS_DESCR_SLOT_TYPE).isInt32())");
    masm.branch32(Assembler::NotEqual, masm.ToPayload(typeDescrType), Imm32(type), &bail);

    // Load the value from the data of the InlineTypedObject.
    Address objectData(object, InlineTypedObject::offsetOfDataStart());
    switch (lir->mir()->type()) {
      case MIRType_Int32x4:
        masm.loadUnalignedInt32x4(objectData, simd);
        break;
      case MIRType_Float32x4:
        masm.loadUnalignedFloat32x4(objectData, simd);
        break;
      default:
        MOZ_CRASH("The impossible happened!");
    }

    bailoutFrom(&bail, lir->snapshot());
}

typedef js::DeclEnvObject* (*NewDeclEnvObjectFn)(JSContext*, HandleFunction, gc::InitialHeap);
static const VMFunction NewDeclEnvObjectInfo =
    FunctionInfo<NewDeclEnvObjectFn>(DeclEnvObject::createTemplateObject);

void
CodeGenerator::visitNewDeclEnvObject(LNewDeclEnvObject* lir)
{
    Register objReg = ToRegister(lir->output());
    Register tempReg = ToRegister(lir->temp());
    DeclEnvObject* templateObj = lir->mir()->templateObj();
    CompileInfo& info = lir->mir()->block()->info();

    // If we have a template object, we can inline call object creation.
    OutOfLineCode* ool = oolCallVM(NewDeclEnvObjectInfo, lir,
                                   (ArgList(), ImmGCPtr(info.funMaybeLazy()),
                                    Imm32(gc::DefaultHeap)),
                                   StoreRegisterTo(objReg));

    bool initContents = ShouldInitFixedSlots(lir, templateObj);
    masm.createGCObject(objReg, tempReg, templateObj, gc::DefaultHeap, ool->entry(),
                        initContents);

    masm.bind(ool->rejoin());
}

typedef JSObject* (*NewCallObjectFn)(JSContext*, HandleShape, HandleObjectGroup, uint32_t);
static const VMFunction NewCallObjectInfo =
    FunctionInfo<NewCallObjectFn>(NewCallObject);

void
CodeGenerator::visitNewCallObject(LNewCallObject* lir)
{
    Register objReg = ToRegister(lir->output());
    Register tempReg = ToRegister(lir->temp());

    CallObject* templateObj = lir->mir()->templateObject();

    JSScript* script = lir->mir()->block()->info().script();
    uint32_t lexicalBegin = script->bindings.aliasedBodyLevelLexicalBegin();
    OutOfLineCode* ool = oolCallVM(NewCallObjectInfo, lir,
                                   (ArgList(), ImmGCPtr(templateObj->lastProperty()),
                                               ImmGCPtr(templateObj->group()),
                                               Imm32(lexicalBegin)),
                                   StoreRegisterTo(objReg));

    // Inline call object creation, using the OOL path only for tricky cases.
    bool initContents = ShouldInitFixedSlots(lir, templateObj);
    masm.createGCObject(objReg, tempReg, templateObj, gc::DefaultHeap, ool->entry(),
                        initContents);

    masm.bind(ool->rejoin());
}

typedef JSObject* (*NewSingletonCallObjectFn)(JSContext*, HandleShape, uint32_t);
static const VMFunction NewSingletonCallObjectInfo =
    FunctionInfo<NewSingletonCallObjectFn>(NewSingletonCallObject);

void
CodeGenerator::visitNewSingletonCallObject(LNewSingletonCallObject* lir)
{
    Register objReg = ToRegister(lir->output());

    JSObject* templateObj = lir->mir()->templateObject();

    JSScript* script = lir->mir()->block()->info().script();
    uint32_t lexicalBegin = script->bindings.aliasedBodyLevelLexicalBegin();
    OutOfLineCode* ool;
    ool = oolCallVM(NewSingletonCallObjectInfo, lir,
                    (ArgList(), ImmGCPtr(templateObj->as<CallObject>().lastProperty()),
                                Imm32(lexicalBegin)),
                    StoreRegisterTo(objReg));

    // Objects can only be given singleton types in VM calls.  We make the call
    // out of line to not bloat inline code, even if (naively) this seems like
    // extra work.
    masm.jump(ool->entry());
    masm.bind(ool->rejoin());
}

typedef JSObject* (*NewStringObjectFn)(JSContext*, HandleString);
static const VMFunction NewStringObjectInfo = FunctionInfo<NewStringObjectFn>(NewStringObject);

void
CodeGenerator::visitNewStringObject(LNewStringObject* lir)
{
    Register input = ToRegister(lir->input());
    Register output = ToRegister(lir->output());
    Register temp = ToRegister(lir->temp());

    StringObject* templateObj = lir->mir()->templateObj();

    OutOfLineCode* ool = oolCallVM(NewStringObjectInfo, lir, (ArgList(), input),
                                   StoreRegisterTo(output));

    masm.createGCObject(output, temp, templateObj, gc::DefaultHeap, ool->entry());

    masm.loadStringLength(input, temp);

    masm.storeValue(JSVAL_TYPE_STRING, input, Address(output, StringObject::offsetOfPrimitiveValue()));
    masm.storeValue(JSVAL_TYPE_INT32, temp, Address(output, StringObject::offsetOfLength()));

    masm.bind(ool->rejoin());
}

typedef bool(*InitElemFn)(JSContext* cx, HandleObject obj,
                          HandleValue id, HandleValue value);
static const VMFunction InitElemInfo =
    FunctionInfo<InitElemFn>(InitElemOperation);

void
CodeGenerator::visitInitElem(LInitElem* lir)
{
    Register objReg = ToRegister(lir->getObject());

    pushArg(ToValue(lir, LInitElem::ValueIndex));
    pushArg(ToValue(lir, LInitElem::IdIndex));
    pushArg(objReg);

    callVM(InitElemInfo, lir);
}

typedef bool (*InitElemGetterSetterFn)(JSContext*, jsbytecode*, HandleObject, HandleValue,
                                       HandleObject);
static const VMFunction InitElemGetterSetterInfo =
    FunctionInfo<InitElemGetterSetterFn>(InitGetterSetterOperation);

void
CodeGenerator::visitInitElemGetterSetter(LInitElemGetterSetter* lir)
{
    Register obj = ToRegister(lir->object());
    Register value = ToRegister(lir->value());

    pushArg(value);
    pushArg(ToValue(lir, LInitElemGetterSetter::IdIndex));
    pushArg(obj);
    pushArg(ImmPtr(lir->mir()->resumePoint()->pc()));

    callVM(InitElemGetterSetterInfo, lir);
}

typedef bool(*MutatePrototypeFn)(JSContext* cx, HandlePlainObject obj, HandleValue value);
static const VMFunction MutatePrototypeInfo =
    FunctionInfo<MutatePrototypeFn>(MutatePrototype);

void
CodeGenerator::visitMutateProto(LMutateProto* lir)
{
    Register objReg = ToRegister(lir->getObject());

    pushArg(ToValue(lir, LMutateProto::ValueIndex));
    pushArg(objReg);

    callVM(MutatePrototypeInfo, lir);
}

typedef bool(*InitPropFn)(JSContext*, HandleObject, HandlePropertyName, HandleValue, jsbytecode* pc);
static const VMFunction InitPropInfo = FunctionInfo<InitPropFn>(InitProp);

void
CodeGenerator::visitInitProp(LInitProp* lir)
{
    Register objReg = ToRegister(lir->getObject());

    pushArg(ImmPtr(lir->mir()->resumePoint()->pc()));
    pushArg(ToValue(lir, LInitProp::ValueIndex));
    pushArg(ImmGCPtr(lir->mir()->propertyName()));
    pushArg(objReg);

    callVM(InitPropInfo, lir);
}

typedef bool(*InitPropGetterSetterFn)(JSContext*, jsbytecode*, HandleObject, HandlePropertyName,
                                      HandleObject);
static const VMFunction InitPropGetterSetterInfo =
    FunctionInfo<InitPropGetterSetterFn>(InitGetterSetterOperation);

void
CodeGenerator::visitInitPropGetterSetter(LInitPropGetterSetter* lir)
{
    Register obj = ToRegister(lir->object());
    Register value = ToRegister(lir->value());

    pushArg(value);
    pushArg(ImmGCPtr(lir->mir()->name()));
    pushArg(obj);
    pushArg(ImmPtr(lir->mir()->resumePoint()->pc()));

    callVM(InitPropGetterSetterInfo, lir);
}

typedef bool (*CreateThisFn)(JSContext* cx, HandleObject callee, MutableHandleValue rval);
static const VMFunction CreateThisInfoCodeGen = FunctionInfo<CreateThisFn>(CreateThis);

void
CodeGenerator::visitCreateThis(LCreateThis* lir)
{
    const LAllocation* callee = lir->getCallee();

    if (callee->isConstant())
        pushArg(ImmGCPtr(&callee->toConstant()->toObject()));
    else
        pushArg(ToRegister(callee));

    callVM(CreateThisInfoCodeGen, lir);
}

static JSObject*
CreateThisForFunctionWithProtoWrapper(JSContext* cx, js::HandleObject callee, HandleObject proto)
{
    return CreateThisForFunctionWithProto(cx, callee, proto);
}

typedef JSObject* (*CreateThisWithProtoFn)(JSContext* cx, HandleObject callee, HandleObject proto);
static const VMFunction CreateThisWithProtoInfo =
FunctionInfo<CreateThisWithProtoFn>(CreateThisForFunctionWithProtoWrapper);

void
CodeGenerator::visitCreateThisWithProto(LCreateThisWithProto* lir)
{
    const LAllocation* callee = lir->getCallee();
    const LAllocation* proto = lir->getPrototype();

    if (proto->isConstant())
        pushArg(ImmGCPtr(&proto->toConstant()->toObject()));
    else
        pushArg(ToRegister(proto));

    if (callee->isConstant())
        pushArg(ImmGCPtr(&callee->toConstant()->toObject()));
    else
        pushArg(ToRegister(callee));

    callVM(CreateThisWithProtoInfo, lir);
}

void
CodeGenerator::visitCreateThisWithTemplate(LCreateThisWithTemplate* lir)
{
    JSObject* templateObject = lir->mir()->templateObject();
    Register objReg = ToRegister(lir->output());
    Register tempReg = ToRegister(lir->temp());

    OutOfLineCode* ool = oolCallVM(NewInitObjectWithTemplateInfo, lir,
                                   (ArgList(), ImmGCPtr(templateObject)),
                                   StoreRegisterTo(objReg));

    // Allocate. If the FreeList is empty, call to VM, which may GC.
    bool initContents = !templateObject->is<PlainObject>() ||
                        ShouldInitFixedSlots(lir, &templateObject->as<PlainObject>());
    masm.createGCObject(objReg, tempReg, templateObject, lir->mir()->initialHeap(), ool->entry(),
                        initContents);

    masm.bind(ool->rejoin());
}

typedef JSObject* (*NewIonArgumentsObjectFn)(JSContext* cx, JitFrameLayout* frame, HandleObject);
static const VMFunction NewIonArgumentsObjectInfo =
    FunctionInfo<NewIonArgumentsObjectFn>((NewIonArgumentsObjectFn) ArgumentsObject::createForIon);

void
CodeGenerator::visitCreateArgumentsObject(LCreateArgumentsObject* lir)
{
    // This should be getting constructed in the first block only, and not any OSR entry blocks.
    MOZ_ASSERT(lir->mir()->block()->id() == 0);

    const LAllocation* callObj = lir->getCallObject();
    Register temp = ToRegister(lir->getTemp(0));

    masm.moveStackPtrTo(temp);
    masm.addPtr(Imm32(frameSize()), temp);

    pushArg(ToRegister(callObj));
    pushArg(temp);
    callVM(NewIonArgumentsObjectInfo, lir);
}

void
CodeGenerator::visitGetArgumentsObjectArg(LGetArgumentsObjectArg* lir)
{
    Register temp = ToRegister(lir->getTemp(0));
    Register argsObj = ToRegister(lir->getArgsObject());
    ValueOperand out = ToOutValue(lir);

    masm.loadPrivate(Address(argsObj, ArgumentsObject::getDataSlotOffset()), temp);
    Address argAddr(temp, ArgumentsData::offsetOfArgs() + lir->mir()->argno() * sizeof(Value));
    masm.loadValue(argAddr, out);
#ifdef DEBUG
    Label success;
    masm.branchTestMagic(Assembler::NotEqual, out, &success);
    masm.assumeUnreachable("Result from ArgumentObject shouldn't be JSVAL_TYPE_MAGIC.");
    masm.bind(&success);
#endif
}

void
CodeGenerator::visitSetArgumentsObjectArg(LSetArgumentsObjectArg* lir)
{
    Register temp = ToRegister(lir->getTemp(0));
    Register argsObj = ToRegister(lir->getArgsObject());
    ValueOperand value = ToValue(lir, LSetArgumentsObjectArg::ValueIndex);

    masm.loadPrivate(Address(argsObj, ArgumentsObject::getDataSlotOffset()), temp);
    Address argAddr(temp, ArgumentsData::offsetOfArgs() + lir->mir()->argno() * sizeof(Value));
    emitPreBarrier(argAddr);
#ifdef DEBUG
    Label success;
    masm.branchTestMagic(Assembler::NotEqual, argAddr, &success);
    masm.assumeUnreachable("Result in ArgumentObject shouldn't be JSVAL_TYPE_MAGIC.");
    masm.bind(&success);
#endif
    masm.storeValue(value, argAddr);
}

void
CodeGenerator::visitReturnFromCtor(LReturnFromCtor* lir)
{
    ValueOperand value = ToValue(lir, LReturnFromCtor::ValueIndex);
    Register obj = ToRegister(lir->getObject());
    Register output = ToRegister(lir->output());

    Label valueIsObject, end;

    masm.branchTestObject(Assembler::Equal, value, &valueIsObject);

    // Value is not an object. Return that other object.
    masm.movePtr(obj, output);
    masm.jump(&end);

    // Value is an object. Return unbox(Value).
    masm.bind(&valueIsObject);
    Register payload = masm.extractObject(value, output);
    if (payload != output)
        masm.movePtr(payload, output);

    masm.bind(&end);
}

typedef JSObject* (*BoxNonStrictThisFn)(JSContext*, HandleValue);
static const VMFunction BoxNonStrictThisInfo = FunctionInfo<BoxNonStrictThisFn>(BoxNonStrictThis);

void
CodeGenerator::visitComputeThis(LComputeThis* lir)
{
    ValueOperand value = ToValue(lir, LComputeThis::ValueIndex);
    Register output = ToRegister(lir->output());

    OutOfLineCode* ool = oolCallVM(BoxNonStrictThisInfo, lir, (ArgList(), value),
                                   StoreRegisterTo(output));

    masm.branchTestObject(Assembler::NotEqual, value, ool->entry());
    masm.unboxObject(value, output);

    masm.bind(ool->rejoin());
}

void
CodeGenerator::visitLoadArrowThis(LLoadArrowThis* lir)
{
    Register callee = ToRegister(lir->callee());
    ValueOperand output = ToOutValue(lir);
    masm.loadValue(Address(callee, FunctionExtended::offsetOfArrowThisSlot()), output);
}

void
CodeGenerator::visitArrayLength(LArrayLength* lir)
{
    Address length(ToRegister(lir->elements()), ObjectElements::offsetOfLength());
    masm.load32(length, ToRegister(lir->output()));
}

void
CodeGenerator::visitSetArrayLength(LSetArrayLength* lir)
{
    Address length(ToRegister(lir->elements()), ObjectElements::offsetOfLength());
    Int32Key newLength = ToInt32Key(lir->index());

    masm.bumpKey(&newLength, 1);
    masm.storeKey(newLength, length);
    // Restore register value if it is used/captured after.
    masm.bumpKey(&newLength, -1);
}

void
CodeGenerator::visitTypedArrayLength(LTypedArrayLength* lir)
{
    Register obj = ToRegister(lir->object());
    Register out = ToRegister(lir->output());
    masm.unboxInt32(Address(obj, TypedArrayLayout::lengthOffset()), out);
}

void
CodeGenerator::visitTypedArrayElements(LTypedArrayElements* lir)
{
    Register obj = ToRegister(lir->object());
    Register out = ToRegister(lir->output());
    masm.loadPtr(Address(obj, TypedArrayLayout::dataOffset()), out);
}

void
CodeGenerator::visitSetDisjointTypedElements(LSetDisjointTypedElements* lir)
{
    Register target = ToRegister(lir->target());
    Register targetOffset = ToRegister(lir->targetOffset());
    Register source = ToRegister(lir->source());

    Register temp = ToRegister(lir->temp());

    masm.setupUnalignedABICall(3, temp);
    masm.passABIArg(target);
    masm.passABIArg(targetOffset);
    masm.passABIArg(source);
    masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, js::SetDisjointTypedElements));
}

void
CodeGenerator::visitTypedObjectDescr(LTypedObjectDescr* lir)
{
    Register obj = ToRegister(lir->object());
    Register out = ToRegister(lir->output());

    masm.loadPtr(Address(obj, JSObject::offsetOfGroup()), out);
    masm.loadPtr(Address(out, ObjectGroup::offsetOfAddendum()), out);
}

void
CodeGenerator::visitTypedObjectElements(LTypedObjectElements* lir)
{
    Register obj = ToRegister(lir->object());
    Register out = ToRegister(lir->output());

    if (lir->mir()->definitelyOutline()) {
        masm.loadPtr(Address(obj, OutlineTypedObject::offsetOfData()), out);
    } else {
        Label inlineObject, done;
        masm.loadObjClass(obj, out);
        masm.branchPtr(Assembler::Equal, out, ImmPtr(&InlineOpaqueTypedObject::class_), &inlineObject);
        masm.branchPtr(Assembler::Equal, out, ImmPtr(&InlineTransparentTypedObject::class_), &inlineObject);

        masm.loadPtr(Address(obj, OutlineTypedObject::offsetOfData()), out);
        masm.jump(&done);

        masm.bind(&inlineObject);
        masm.computeEffectiveAddress(Address(obj, InlineTypedObject::offsetOfDataStart()), out);
        masm.bind(&done);
    }
}

void
CodeGenerator::visitSetTypedObjectOffset(LSetTypedObjectOffset* lir)
{
    Register object = ToRegister(lir->object());
    Register offset = ToRegister(lir->offset());
    Register temp0 = ToRegister(lir->temp0());
    Register temp1 = ToRegister(lir->temp1());

    // Compute the base pointer for the typed object's owner.
    masm.loadPtr(Address(object, OutlineTypedObject::offsetOfOwner()), temp0);

    Label inlineObject, done;
    masm.loadObjClass(temp0, temp1);
    masm.branchPtr(Assembler::Equal, temp1, ImmPtr(&InlineOpaqueTypedObject::class_), &inlineObject);
    masm.branchPtr(Assembler::Equal, temp1, ImmPtr(&InlineTransparentTypedObject::class_), &inlineObject);

    masm.loadPrivate(Address(temp0, ArrayBufferObject::offsetOfDataSlot()), temp0);
    masm.jump(&done);

    masm.bind(&inlineObject);
    masm.addPtr(ImmWord(InlineTypedObject::offsetOfDataStart()), temp0);

    masm.bind(&done);

    // Compute the new data pointer and set it in the object.
    masm.addPtr(offset, temp0);
    masm.storePtr(temp0, Address(object, OutlineTypedObject::offsetOfData()));
}

void
CodeGenerator::visitStringLength(LStringLength* lir)
{
    Register input = ToRegister(lir->string());
    Register output = ToRegister(lir->output());

    masm.loadStringLength(input, output);
}

void
CodeGenerator::visitMinMaxI(LMinMaxI* ins)
{
    Register first = ToRegister(ins->first());
    Register output = ToRegister(ins->output());

    MOZ_ASSERT(first == output);

    Label done;
    Assembler::Condition cond = ins->mir()->isMax()
                                ? Assembler::GreaterThan
                                : Assembler::LessThan;

    if (ins->second()->isConstant()) {
        masm.branch32(cond, first, Imm32(ToInt32(ins->second())), &done);
        masm.move32(Imm32(ToInt32(ins->second())), output);
    } else {
        masm.branch32(cond, first, ToRegister(ins->second()), &done);
        masm.move32(ToRegister(ins->second()), output);
    }

    masm.bind(&done);
}

void
CodeGenerator::visitAbsI(LAbsI* ins)
{
    Register input = ToRegister(ins->input());
    Label positive;

    MOZ_ASSERT(input == ToRegister(ins->output()));
    masm.branchTest32(Assembler::NotSigned, input, input, &positive);
    masm.neg32(input);
    LSnapshot* snapshot = ins->snapshot();
#ifdef JS_CODEGEN_MIPS
    if (snapshot)
        bailoutCmp32(Assembler::Equal, input, Imm32(INT32_MIN), snapshot);
#else
    if (snapshot)
        bailoutIf(Assembler::Overflow, snapshot);
#endif
    masm.bind(&positive);
}

void
CodeGenerator::visitPowI(LPowI* ins)
{
    FloatRegister value = ToFloatRegister(ins->value());
    Register power = ToRegister(ins->power());
    Register temp = ToRegister(ins->temp());

    MOZ_ASSERT(power != temp);

    // In all implementations, setupUnalignedABICall() relinquishes use of
    // its scratch register. We can therefore save an input register by
    // reusing the scratch register to pass constants to callWithABI.
    masm.setupUnalignedABICall(2, temp);
    masm.passABIArg(value, MoveOp::DOUBLE);
    masm.passABIArg(power);

    masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, js::powi), MoveOp::DOUBLE);
    MOZ_ASSERT(ToFloatRegister(ins->output()) == ReturnDoubleReg);
}

void
CodeGenerator::visitPowD(LPowD* ins)
{
    FloatRegister value = ToFloatRegister(ins->value());
    FloatRegister power = ToFloatRegister(ins->power());
    Register temp = ToRegister(ins->temp());

    masm.setupUnalignedABICall(2, temp);
    masm.passABIArg(value, MoveOp::DOUBLE);
    masm.passABIArg(power, MoveOp::DOUBLE);
    masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, ecmaPow), MoveOp::DOUBLE);

    MOZ_ASSERT(ToFloatRegister(ins->output()) == ReturnDoubleReg);
}

void
CodeGenerator::visitRandom(LRandom* ins)
{
    Register temp = ToRegister(ins->temp());
    Register temp2 = ToRegister(ins->temp2());

    masm.loadJSContext(temp);

    masm.setupUnalignedABICall(1, temp2);
    masm.passABIArg(temp);
    masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, math_random_no_outparam), MoveOp::DOUBLE);

    MOZ_ASSERT(ToFloatRegister(ins->output()) == ReturnDoubleReg);
}

void
CodeGenerator::visitMathFunctionD(LMathFunctionD* ins)
{
    Register temp = ToRegister(ins->temp());
    FloatRegister input = ToFloatRegister(ins->input());
    MOZ_ASSERT(ToFloatRegister(ins->output()) == ReturnDoubleReg);

    const MathCache* mathCache = ins->mir()->cache();

    masm.setupUnalignedABICall(mathCache ? 2 : 1, temp);
    if (mathCache) {
        masm.movePtr(ImmPtr(mathCache), temp);
        masm.passABIArg(temp);
    }
    masm.passABIArg(input, MoveOp::DOUBLE);

#   define MAYBE_CACHED(fcn) (mathCache ? (void*)fcn ## _impl : (void*)fcn ## _uncached)

    void* funptr = nullptr;
    switch (ins->mir()->function()) {
      case MMathFunction::Log:
        funptr = JS_FUNC_TO_DATA_PTR(void*, MAYBE_CACHED(js::math_log));
        break;
      case MMathFunction::Sin:
        funptr = JS_FUNC_TO_DATA_PTR(void*, MAYBE_CACHED(js::math_sin));
        break;
      case MMathFunction::Cos:
        funptr = JS_FUNC_TO_DATA_PTR(void*, MAYBE_CACHED(js::math_cos));
        break;
      case MMathFunction::Exp:
        funptr = JS_FUNC_TO_DATA_PTR(void*, MAYBE_CACHED(js::math_exp));
        break;
      case MMathFunction::Tan:
        funptr = JS_FUNC_TO_DATA_PTR(void*, MAYBE_CACHED(js::math_tan));
        break;
      case MMathFunction::ATan:
        funptr = JS_FUNC_TO_DATA_PTR(void*, MAYBE_CACHED(js::math_atan));
        break;
      case MMathFunction::ASin:
        funptr = JS_FUNC_TO_DATA_PTR(void*, MAYBE_CACHED(js::math_asin));
        break;
      case MMathFunction::ACos:
        funptr = JS_FUNC_TO_DATA_PTR(void*, MAYBE_CACHED(js::math_acos));
        break;
      case MMathFunction::Log10:
        funptr = JS_FUNC_TO_DATA_PTR(void*, MAYBE_CACHED(js::math_log10));
        break;
      case MMathFunction::Log2:
        funptr = JS_FUNC_TO_DATA_PTR(void*, MAYBE_CACHED(js::math_log2));
        break;
      case MMathFunction::Log1P:
        funptr = JS_FUNC_TO_DATA_PTR(void*, MAYBE_CACHED(js::math_log1p));
        break;
      case MMathFunction::ExpM1:
        funptr = JS_FUNC_TO_DATA_PTR(void*, MAYBE_CACHED(js::math_expm1));
        break;
      case MMathFunction::CosH:
        funptr = JS_FUNC_TO_DATA_PTR(void*, MAYBE_CACHED(js::math_cosh));
        break;
      case MMathFunction::SinH:
        funptr = JS_FUNC_TO_DATA_PTR(void*, MAYBE_CACHED(js::math_sinh));
        break;
      case MMathFunction::TanH:
        funptr = JS_FUNC_TO_DATA_PTR(void*, MAYBE_CACHED(js::math_tanh));
        break;
      case MMathFunction::ACosH:
        funptr = JS_FUNC_TO_DATA_PTR(void*, MAYBE_CACHED(js::math_acosh));
        break;
      case MMathFunction::ASinH:
        funptr = JS_FUNC_TO_DATA_PTR(void*, MAYBE_CACHED(js::math_asinh));
        break;
      case MMathFunction::ATanH:
        funptr = JS_FUNC_TO_DATA_PTR(void*, MAYBE_CACHED(js::math_atanh));
        break;
      case MMathFunction::Sign:
        funptr = JS_FUNC_TO_DATA_PTR(void*, MAYBE_CACHED(js::math_sign));
        break;
      case MMathFunction::Trunc:
        funptr = JS_FUNC_TO_DATA_PTR(void*, MAYBE_CACHED(js::math_trunc));
        break;
      case MMathFunction::Cbrt:
        funptr = JS_FUNC_TO_DATA_PTR(void*, MAYBE_CACHED(js::math_cbrt));
        break;
      case MMathFunction::Floor:
        funptr = JS_FUNC_TO_DATA_PTR(void*, js::math_floor_impl);
        break;
      case MMathFunction::Ceil:
        funptr = JS_FUNC_TO_DATA_PTR(void*, js::math_ceil_impl);
        break;
      case MMathFunction::Round:
        funptr = JS_FUNC_TO_DATA_PTR(void*, js::math_round_impl);
        break;
      default:
        MOZ_CRASH("Unknown math function");
    }

#   undef MAYBE_CACHED

    masm.callWithABI(funptr, MoveOp::DOUBLE);
}

void
CodeGenerator::visitMathFunctionF(LMathFunctionF* ins)
{
    Register temp = ToRegister(ins->temp());
    FloatRegister input = ToFloatRegister(ins->input());
    MOZ_ASSERT(ToFloatRegister(ins->output()) == ReturnFloat32Reg);

    masm.setupUnalignedABICall(1, temp);
    masm.passABIArg(input, MoveOp::FLOAT32);

    void* funptr = nullptr;
    switch (ins->mir()->function()) {
      case MMathFunction::Floor: funptr = JS_FUNC_TO_DATA_PTR(void*, floorf);           break;
      case MMathFunction::Round: funptr = JS_FUNC_TO_DATA_PTR(void*, math_roundf_impl); break;
      case MMathFunction::Ceil:  funptr = JS_FUNC_TO_DATA_PTR(void*, ceilf);            break;
      default:
        MOZ_CRASH("Unknown or unsupported float32 math function");
    }

    masm.callWithABI(funptr, MoveOp::FLOAT32);
}

void
CodeGenerator::visitModD(LModD* ins)
{
    FloatRegister lhs = ToFloatRegister(ins->lhs());
    FloatRegister rhs = ToFloatRegister(ins->rhs());
    Register temp = ToRegister(ins->temp());

    MOZ_ASSERT(ToFloatRegister(ins->output()) == ReturnDoubleReg);

    masm.setupUnalignedABICall(2, temp);
    masm.passABIArg(lhs, MoveOp::DOUBLE);
    masm.passABIArg(rhs, MoveOp::DOUBLE);

    if (gen->compilingAsmJS())
        masm.callWithABI(AsmJSImm_ModD, MoveOp::DOUBLE);
    else
        masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, NumberMod), MoveOp::DOUBLE);
}