/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsRFPService.h"
#include <algorithm>
#include <memory>
#include <time.h>
#include "mozilla/ClearOnShutdown.h"
#include "mozilla/Logging.h"
#include "mozilla/Mutex.h"
#include "mozilla/Preferences.h"
#include "mozilla/Services.h"
#include "mozilla/StaticPtr.h"
#include "mozilla/TextEvents.h"
#include "mozilla/dom/KeyboardEventBinding.h"
#include "nsCOMPtr.h"
#include "nsCoord.h"
#include "nsServiceManagerUtils.h"
#include "nsString.h"
#include "nsXULAppAPI.h"
#include "nsPrintfCString.h"
#include "nsICryptoHash.h"
#include "nsIObserverService.h"
#include "nsIPrefBranch.h"
#include "nsIPrefService.h"
#include "nsIRandomGenerator.h"
#include "nsIXULAppInfo.h"
#include "nsIXULRuntime.h"
#include "nsJSUtils.h"
#include "prenv.h"
#include "nss.h"
#include "js/Date.h"
using namespace mozilla;
using namespace std;
#ifdef DEBUG
static mozilla::LazyLogModule gResistFingerprintingLog("nsResistFingerprinting");
#endif
#define RESIST_FINGERPRINTING_PREF "privacy.resistFingerprinting"
#define RFP_TIMER_PREF "privacy.reduceTimerPrecision"
#define RFP_TIMER_VALUE_PREF "privacy.resistFingerprinting.reduceTimerPrecision.microseconds"
#define RFP_TIMER_VALUE_DEFAULT 2000
#define RFP_JITTER_VALUE_PREF "privacy.resistFingerprinting.reduceTimerPrecision.jitter"
#define RFP_JITTER_VALUE_DEFAULT true
#define RFP_SPOOFED_FRAMES_PER_SEC_PREF "privacy.resistFingerprinting.video_frames_per_sec"
#define RFP_SPOOFED_DROPPED_RATIO_PREF "privacy.resistFingerprinting.video_dropped_ratio"
#define RFP_TARGET_VIDEO_RES_PREF "privacy.resistFingerprinting.target_video_res"
#define RFP_SPOOFED_FRAMES_PER_SEC_DEFAULT 30
#define RFP_SPOOFED_DROPPED_RATIO_DEFAULT 5
#define RFP_TARGET_VIDEO_RES_DEFAULT 480
#define PROFILE_INITIALIZED_TOPIC "profile-initial-state"
#define RFP_DEFAULT_SPOOFING_KEYBOARD_LANG KeyboardLang::EN
#define RFP_DEFAULT_SPOOFING_KEYBOARD_REGION KeyboardRegion::US
NS_IMPL_ISUPPORTS(nsRFPService, nsIObserver)
/*
* The below variables are marked with 'Relaxed' memory ordering. We don't
* particurally care that threads have a percently consistent view of the values
* of these prefs. They are not expected to change often, and having an outdated
* view is not particurally harmful. They will eventually become consistent.
*
* The variables will, however, be read often (specifically sResolutionUSec on
* each timer rounding) so performance is important.
*/
static StaticRefPtr<nsRFPService> sRFPService;
static bool sInitialized = false;
Atomic<bool, Relaxed> nsRFPService::sPrivacyResistFingerprinting;
Atomic<bool, Relaxed> nsRFPService::sPrivacyTimerPrecisionReduction;
// Note: anytime you want to use this variable, you should probably use TimerResolution() instead
Atomic<uint32_t, Relaxed> sResolutionUSec;
Atomic<bool, Relaxed> sJitter;
static uint32_t sVideoFramesPerSec;
static uint32_t sVideoDroppedRatio;
static uint32_t sTargetVideoRes;
nsDataHashtable<KeyboardHashKey, const SpoofingKeyboardCode*>*
nsRFPService::sSpoofingKeyboardCodes = nullptr;
static mozilla::StaticMutex sLock;
/* static */
nsRFPService*
nsRFPService::GetOrCreate()
{
if (!sInitialized) {
sRFPService = new nsRFPService();
nsresult rv = sRFPService->Init();
if (NS_FAILED(rv)) {
sRFPService = nullptr;
return nullptr;
}
ClearOnShutdown(&sRFPService);
sInitialized = true;
}
return sRFPService;
}
inline double
TimerResolution()
{
if(nsRFPService::IsResistFingerprintingEnabled()) {
return max(100000.0, (double)sResolutionUSec);
}
return sResolutionUSec;
}
/* static */
bool
nsRFPService::IsResistFingerprintingEnabled()
{
return sPrivacyResistFingerprinting;
}
/* static */
bool
nsRFPService::IsTimerPrecisionReductionEnabled(TimerPrecisionType aType)
{
if (aType == TimerPrecisionType::RFPOnly) {
return IsResistFingerprintingEnabled();
}
return (sPrivacyTimerPrecisionReduction || IsResistFingerprintingEnabled()) &&
TimerResolution() > 0;
}
/*
* The below is a simple time-based Least Recently Used cache used to store the
* result of a cryptographic hash function. It has LRU_CACHE_SIZE slots, and will
* be used from multiple threads. It is thread-safe.
*/
#define LRU_CACHE_SIZE (45)
#define HASH_DIGEST_SIZE_BITS (256)
#define HASH_DIGEST_SIZE_BYTES (HASH_DIGEST_SIZE_BITS / 8)
class LRUCache
{
public:
LRUCache()
: mLock("mozilla.resistFingerprinting.LRUCache") {
this->cache.SetLength(LRU_CACHE_SIZE);
}
nsCString Get(long long aKey) {
for (auto & cacheEntry : this->cache) {
// Read optimistically befor locking
if (cacheEntry.key == aKey) {
MutexAutoLock lock(mLock);
// Double check after we have a lock
if (MOZ_UNLIKELY(cacheEntry.key != aKey)) {
// Got evicted in a race
#if defined(DEBUG)
long long tmp_key = cacheEntry.key;
MOZ_LOG(gResistFingerprintingLog, LogLevel::Verbose,
("LRU Cache HIT-MISS with %lli != %lli", aKey, tmp_key));
#endif
return EmptyCString();
}
cacheEntry.accessTime = PR_Now();
#if defined(DEBUG)
MOZ_LOG(gResistFingerprintingLog, LogLevel::Verbose,
("LRU Cache HIT with %lli", aKey));
#endif
return cacheEntry.data;
}
}
return EmptyCString();
}
void Store(long long aKey, const nsCString& aValue) {
MOZ_DIAGNOSTIC_ASSERT(aValue.Length() == HASH_DIGEST_SIZE_BYTES);
MutexAutoLock lock(mLock);
CacheEntry* lowestKey = &this->cache[0];
for (auto & cacheEntry : this->cache) {
if (MOZ_UNLIKELY(cacheEntry.key == aKey)) {
// Another thread inserted before us, don't insert twice
#if defined(DEBUG)
MOZ_LOG(gResistFingerprintingLog, LogLevel::Verbose,
("LRU Cache DOUBLE STORE with %lli", aKey));
#endif
return;
}
if (cacheEntry.accessTime < lowestKey->accessTime) {
lowestKey = &cacheEntry;
}
}
lowestKey->key = aKey;
lowestKey->data = aValue;
lowestKey->accessTime = PR_Now();
#if defined(DEBUG)
MOZ_LOG(gResistFingerprintingLog, LogLevel::Verbose, ("LRU Cache STORE with %lli", aKey));
#endif
}
private:
struct CacheEntry {
Atomic<long long, Relaxed> key;
PRTime accessTime = 0;
nsCString data;
CacheEntry() {
this->key = 0xFFFFFFFFFFFFFFFF;
this->accessTime = 0;
this->data = nullptr;
}
CacheEntry(const CacheEntry &obj) {
this->key.exchange(obj.key);
this->accessTime = obj.accessTime;
this->data = obj.data;
}
};
AutoTArray<CacheEntry, LRU_CACHE_SIZE> cache;
mozilla::Mutex mLock;
};
// We make a single LRUCache
static StaticAutoPtr<LRUCache> sCache;
/**
* The purpose of this function is to deterministicly generate a random midpoint
* between a lower clamped value and an upper clamped value. Assuming a clamping
* resolution of 100, here is an example:
*
* |---------------------------------------|--------------------------|
* lower clamped value (e.g. 300) | upper clamped value (400)
* random midpoint (e.g. 360)
*
* If our actual timestamp (e.g. 325) is below the midpoint, we keep it clamped
* downwards. If it were equal to or above the midpoint (e.g. 365) we would
* round it upwards to the largest clamped value (in this example: 400).
*
* The question is: does time go backwards?
*
* The midpoint is deterministicly random
* and generated from two components: a secret seed and a clamped time.
*
* When comparing times across different seed values: time may go backwards.
* For a clamped time of 300, one seed may generate a midpoint of 305 and another
* 395. So comparing an (actual) timestamp of 325 and 351 could see the 325 clamped
* up to 400 and the 351 clamped down to 300. The seed is per-process, so this case
* occurs when one can compare timestamps cross-process. This is uncommon (because
* we don't have site isolation.) The circumstances this could occur are
* BroadcastChannel, Storage Notification, and in theory (but not yet implemented)
* SharedWorker. This should be an exhaustive list (at time of comment writing!).
*
* Aside from cross-process communication, derived timestamps across different
* time origins may go backwards. (Specifically, derived means adding two timestamps
* together to get an (approximate) absolute time.)
* Assume a page and a worker. If one calls performance.now() in the page and then
* triggers a call to performance.now() in the worker, the following invariant should
* hold true:
* page.performance.timeOrigin + page.performance.now() <
* worker.performance.timeOrigin + worker.performance.now()
*
* We break this invariant.
*
*
* TODO: The above comment is going to need to be entirely rewritten when we mix in
* a per-context shared secret. Context is 'Any new object that gets a time origin
* starting from zero'. The most obvious example is Documents and Workers. An attacker
* could let time go forward and observe (roughly) where the random midpoints fall.
* Then they create a new object, time starts back ovr at zero, and they know
* (approximately) where the random midpoints are.
*
* @param aClampedTimeUSec [in] The clamped input time in microseconds.
* @param aResolutionUSec [in] The current resolution for clamping in microseconds.
* @param aMidpointOut [out] The midpoint, in microseconds, between [0, aResolutionUSec].
* @param aSecretSeed [in] TESTING ONLY. When provided, the current seed will be
* replaced with this value.
* @return A nsresult indicating success of failure. If the function failed,
* nothing is written to aMidpointOut
*/
/* static */
nsresult
nsRFPService::RandomMidpoint(long long aClampedTimeUSec,
long long aResolutionUSec,
long long* aMidpointOut,
uint8_t * aSecretSeed /* = nullptr */)
{
nsresult rv;
const int kSeedSize = 16;
const int kClampTimesPerDigest = HASH_DIGEST_SIZE_BITS / 32;
static uint8_t * sSecretMidpointSeed = nullptr;
if(MOZ_UNLIKELY(!sCache)) {
StaticMutexAutoLock lock(sLock);
if(MOZ_LIKELY(!sCache)) {
sCache = new LRUCache();
ClearOnShutdown(&sCache);
}
}
if(MOZ_UNLIKELY(!aMidpointOut)) {
return NS_ERROR_INVALID_ARG;
}
/*
* Below, we will call a cryptographic hash function. That's expensive. We look for ways to
* make it more efficient.
*
* We only need as much output from the hash function as the maximum resolution we will
* ever support, because we will reduce the output modulo that value. The maximum resolution
* we think is likely is in the low seconds value, or about 1-10 million microseconds.
* 2**24 is 16 million, so we only need 24 bits of output. Practically speaking though,
* it's way easier to work with 32 bits.
*
* So we're using 32 bits of output and throwing away the other DIGEST_SIZE - 32 (in the case of
* SHA-256, DIGEST_SIZE is 256.) That's a lot of waste.
*
* Instead of throwing it away, we're going to use all of it. We can handle DIGEST_SIZE / 32
* Clamped Time's per hash function - call that , so we reduce aClampedTime to a multiple of
* kClampTimesPerDigest (just like we reduced the real time value to aClampedTime!)
*
* Then we hash _that_ value (assuming it's not in the cache) and index into the digest result
* the appropriate bit offset.
*/
long long reducedResolution = aResolutionUSec * kClampTimesPerDigest;
long long extraClampedTime = (aClampedTimeUSec / reducedResolution) * reducedResolution;
nsCString hashResult = sCache->Get(extraClampedTime);
if(hashResult.Length() != HASH_DIGEST_SIZE_BYTES) { // Cache Miss =(
// If someone has pased in the testing-only parameter, replace our seed with it
if (aSecretSeed != nullptr) {
StaticMutexAutoLock lock(sLock);
if (sSecretMidpointSeed) {
delete[] sSecretMidpointSeed;
}
sSecretMidpointSeed = new uint8_t[kSeedSize];
memcpy(sSecretMidpointSeed, aSecretSeed, kSeedSize);
}
// If we don't have a seed, we need to get one.
if(MOZ_UNLIKELY(!sSecretMidpointSeed)) {
StaticMutexAutoLock lock(sLock);
if(MOZ_LIKELY(!sSecretMidpointSeed)) {
nsCOMPtr<nsIRandomGenerator> randomGenerator =
do_GetService("@mozilla.org/security/random-generator;1", &rv);
if (NS_WARN_IF(NS_FAILED(rv))) { return rv; }
rv = randomGenerator->GenerateRandomBytes(kSeedSize, &sSecretMidpointSeed);
if (NS_WARN_IF(NS_FAILED(rv))) { return rv; }
}
}
/*
* Use a cryptographicly secure hash function, but do _not_ use an HMAC.
* Obviously we're not using this data for authentication purposes, but
* even still an HMAC is a perfect fit here, as we're hashing a value
* using a seed that never changes, and an input that does. So why not
* use one?
*
* Basically - we don't need to, it's two invocations of the hash function,
* and speed really counts here.
*
* With authentication off the table, the properties we would get by
* using an HMAC here would be:
* - Resistence to length extension
* - Resistence to collision attacks on the underlying hash function
* - Resistence to chosen prefix attacks
*
* There is no threat of length extension here. Nor is there any real
* practical threat of collision: not only are we using a good hash
* function (you may mock me in 10 years if it is broken) but we don't
* provide the attacker much control over the input. Nor do we let them
* have the prefix.
*/
// Then hash extraClampedTime and store it in the cache
nsCOMPtr<nsICryptoHash> hasher = do_CreateInstance("@mozilla.org/security/hash;1", &rv);
NS_ENSURE_SUCCESS(rv, rv);
rv = hasher->Init(nsICryptoHash::SHA256);
NS_ENSURE_SUCCESS(rv, rv);
rv = hasher->Update(sSecretMidpointSeed, kSeedSize);
NS_ENSURE_SUCCESS(rv, rv);
rv = hasher->Update((const uint8_t *)&extraClampedTime, sizeof(extraClampedTime));
NS_ENSURE_SUCCESS(rv, rv);
nsAutoCStringN<HASH_DIGEST_SIZE_BYTES> derivedSecret;
rv = hasher->Finish(false, derivedSecret);
NS_ENSURE_SUCCESS(rv, rv);
// Finally, store it in the cache
sCache->Store(extraClampedTime, derivedSecret);
hashResult = derivedSecret;
}
// Offset the appropriate index into the hash output, and then turn it into a random midpoint
// between 0 and aResolutionUSec
int byteOffset = ((aClampedTimeUSec - extraClampedTime) / aResolutionUSec) * 4;
uint32_t deterministiclyRandomValue = *BitwiseCast<uint32_t*>(PromiseFlatCString(hashResult).get() + byteOffset);
deterministiclyRandomValue %= aResolutionUSec;
*aMidpointOut = deterministiclyRandomValue;
return NS_OK;
}
/**
* Given a precision value, this function will reduce a given input time to the nearest
* multiple of that precision.
*
* It will check if it is appropriate to clamp the input time according to the values
* of the privacy.resistFingerprinting and privacy.reduceTimerPrecision preferences.
* Note that while it will check these prefs, it will use whatever precision is given to
* it, so if one desires a minimum precision for Resist Fingerprinting, it is the
* caller's responsibility to provide the correct value. This means you should pass
* TimerPrecision(), which enforces a minimum vale on the precision based on
* preferences.
*
* It ensures the given precision value is greater than zero, if it is not it returns
* the input time.
*
* @param aTime [in] The input time to be clamped.
* @param aTimeScale [in] The units the input time is in (Seconds, Milliseconds, or Microseconds).
* @param aResolutionUSec [in] The precision (in microseconds) to clamp to.
* @return If clamping is appropriate, the clamped value of the input, otherwise the input.
*/
/* static */
double
nsRFPService::ReduceTimePrecisionImpl(
double aTime,
TimeScale aTimeScale,
double aResolutionUSec,
TimerPrecisionType aType)
{
if (!IsTimerPrecisionReductionEnabled(aType) || aResolutionUSec <= 0) {
return aTime;
}
// Increase the time as needed until it is in microseconds.
// Note that a double can hold up to 2**53 with integer precision. This gives us
// only until June 5, 2255 in time-since-the-epoch with integer precision.
// So we will be losing microseconds precision after that date.
// We think this is okay, and we codify it in some tests.
double timeScaled = aTime * (1000000 / aTimeScale);
// Cut off anything less than a microsecond.
long long timeAsInt = timeScaled;
// Cast the resolution (in microseconds) to an int.
long long resolutionAsInt = aResolutionUSec;
// Perform the clamping.
// We do a cast back to double to perform the division with doubles, then floor the result
// and the rest occurs with integer precision.
// This is because it gives consistency above and below zero. Above zero, performing the
// division in integers truncates decimals, taking the result closer to zero (a floor).
// Below zero, performing the division in integers truncates decimals, taking the result
// closer to zero (a ceil).
// The impact of this is that comparing two clamped values that should be related by a
// constant (e.g. 10s) that are across the zero barrier will no longer work. We need to
// round consistently towards positive infinity or negative infinity (we chose negative.)
// This can't be done with a truncation, it must be done with floor.
long long clamped = floor(double(timeAsInt) / resolutionAsInt) * resolutionAsInt;
long long midpoint = 0,
clampedAndJittered = clamped;
// RandomMidpoint uses crypto functions from NSS. But we wind up in this code _very_ early
// on in and we don't want to initialize NSS earlier than it would be initialized naturally.
// Doing so caused nearly every xpcshell test to fail, as well as Marionette.
// This is safe, because we're not going to be doing any web context stuff before NSS is
// initialized, so anything that winds up here won't be exposed to content so we don't
// really need to worry about fuzzing its value.
if (sJitter && NSS_IsInitialized()) {
if(!NS_FAILED(RandomMidpoint(clamped, resolutionAsInt, &midpoint)) &&
timeAsInt >= clamped + midpoint) {
clampedAndJittered += resolutionAsInt;
}
}
// Cast it back to a double and reduce it to the correct units.
double ret = double(clampedAndJittered) / (1000000.0 / aTimeScale);
#if defined(DEBUG)
bool tmp_jitter = sJitter;
MOZ_LOG(gResistFingerprintingLog, LogLevel::Verbose,
("Given: (%.*f, Scaled: %.*f, Converted: %lli), Rounding with (%lli, Originally %.*f), "
"Intermediate: (%lli), Clamped: (%lli) Jitter: (%i Midpoint: %lli) Final: (%lli Converted: %.*f)",
DBL_DIG-1, aTime, DBL_DIG-1, timeScaled, timeAsInt, resolutionAsInt, DBL_DIG-1, aResolutionUSec,
(long long)floor(double(timeAsInt) / resolutionAsInt), clamped, tmp_jitter, midpoint, clampedAndJittered, DBL_DIG-1, ret));
#endif
return ret;
}
/* static */
double
nsRFPService::ReduceTimePrecisionAsUSecs(double aTime, TimerPrecisionType aType /* = TimerPrecisionType::All */)
{
return nsRFPService::ReduceTimePrecisionImpl(aTime, MicroSeconds, TimerResolution(), aType);
}
/* static */
double
nsRFPService::ReduceTimePrecisionAsUSecsWrapper(double aTime)
{
return nsRFPService::ReduceTimePrecisionImpl(aTime, MicroSeconds, TimerResolution(), TimerPrecisionType::All);
}
/* static */
double
nsRFPService::ReduceTimePrecisionAsMSecs(double aTime, TimerPrecisionType aType /* = TimerPrecisionType::All */)
{
return nsRFPService::ReduceTimePrecisionImpl(aTime, MilliSeconds, TimerResolution(), aType);
}
/* static */
double
nsRFPService::ReduceTimePrecisionAsSecs(double aTime, TimerPrecisionType aType /* = TimerPrecisionType::All */)
{
return nsRFPService::ReduceTimePrecisionImpl(aTime, Seconds, TimerResolution(), aType);
}
/* static */
uint32_t
nsRFPService::CalculateTargetVideoResolution(uint32_t aVideoQuality)
{
return aVideoQuality * NSToIntCeil(aVideoQuality * 16 / 9.0);
}
/* static */
uint32_t
nsRFPService::GetSpoofedTotalFrames(double aTime)
{
double time = ReduceTimePrecisionAsSecs(aTime);
return NSToIntFloor(time * sVideoFramesPerSec);
}
/* static */
uint32_t
nsRFPService::GetSpoofedDroppedFrames(double aTime, uint32_t aWidth, uint32_t aHeight)
{
uint32_t targetRes = CalculateTargetVideoResolution(sTargetVideoRes);
// The video resolution is less than or equal to the target resolution, we
// report a zero dropped rate for this case.
if (targetRes >= aWidth * aHeight) {
return 0;
}
double time = ReduceTimePrecisionAsSecs(aTime);
// Bound the dropped ratio from 0 to 100.
uint32_t boundedDroppedRatio = min(sVideoDroppedRatio, 100u);
return NSToIntFloor(time * sVideoFramesPerSec * (boundedDroppedRatio / 100.0));
}
/* static */
uint32_t
nsRFPService::GetSpoofedPresentedFrames(double aTime, uint32_t aWidth, uint32_t aHeight)
{
uint32_t targetRes = CalculateTargetVideoResolution(sTargetVideoRes);
// The target resolution is greater than the current resolution. For this case,
// there will be no dropped frames, so we report total frames directly.
if (targetRes >= aWidth * aHeight) {
return GetSpoofedTotalFrames(aTime);
}
double time = ReduceTimePrecisionAsSecs(aTime);
// Bound the dropped ratio from 0 to 100.
uint32_t boundedDroppedRatio = min(sVideoDroppedRatio, 100u);
return NSToIntFloor(time * sVideoFramesPerSec * ((100 - boundedDroppedRatio) / 100.0));
}
/* static */
nsresult
nsRFPService::GetSpoofedUserAgent(nsACString &userAgent)
{
// This function generates the spoofed value of User Agent.
// We spoof the values of the platform and Firefox version, which could be
// used as fingerprinting sources to identify individuals.
// Reference of the format of User Agent:
// https://developer.mozilla.org/en-US/docs/Web/API/NavigatorID/userAgent
// https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
nsresult rv;
nsCOMPtr<nsIXULAppInfo> appInfo =
do_GetService("@mozilla.org/xre/app-info;1", &rv);
NS_ENSURE_SUCCESS(rv, rv);
nsAutoCString appVersion;
rv = appInfo->GetVersion(appVersion);
NS_ENSURE_SUCCESS(rv, rv);
// The browser version will be spoofed as the last ESR version.
// By doing so, the anonymity group will cover more versions instead of one
// version.
uint32_t firefoxVersion = appVersion.ToInteger(&rv);
NS_ENSURE_SUCCESS(rv, rv);
// Starting from Firefox 10, Firefox ESR was released once every seven
// Firefox releases, e.g. Firefox 10, 17, 24, 31, and so on.
// We infer the last and closest ESR version based on this rule.
nsCOMPtr<nsIXULRuntime> runtime =
do_GetService("@mozilla.org/xre/runtime;1", &rv);
NS_ENSURE_SUCCESS(rv, rv);
nsAutoCString updateChannel;
rv = runtime->GetDefaultUpdateChannel(updateChannel);
NS_ENSURE_SUCCESS(rv, rv);
// If we are running in Firefox ESR, determine whether the formula of ESR
// version has changed. Once changed, we must update the formula in this
// function.
if (updateChannel.EqualsLiteral("esr")) {
MOZ_ASSERT(((firefoxVersion % 7) == 3),
"Please udpate ESR version formula in nsRFPService.cpp");
}
uint32_t spoofedVersion = firefoxVersion - ((firefoxVersion - 3) % 7);
userAgent.Assign(nsPrintfCString(
"Mozilla/5.0 (%s; rv:%d.0) Gecko/%s Firefox/%d.0",
SPOOFED_UA_OS, spoofedVersion, LEGACY_BUILD_ID, spoofedVersion));
return rv;
}
nsresult
nsRFPService::Init()
{
MOZ_ASSERT(NS_IsMainThread());
nsresult rv;
nsCOMPtr<nsIObserverService> obs = mozilla::services::GetObserverService();
NS_ENSURE_TRUE(obs, NS_ERROR_NOT_AVAILABLE);
rv = obs->AddObserver(this, NS_XPCOM_SHUTDOWN_OBSERVER_ID, false);
NS_ENSURE_SUCCESS(rv, rv);
#if defined(XP_WIN)
rv = obs->AddObserver(this, PROFILE_INITIALIZED_TOPIC, false);
NS_ENSURE_SUCCESS(rv, rv);
#endif
nsCOMPtr<nsIPrefBranch> prefs = do_GetService(NS_PREFSERVICE_CONTRACTID);
NS_ENSURE_TRUE(prefs, NS_ERROR_NOT_AVAILABLE);
rv = prefs->AddObserver(RESIST_FINGERPRINTING_PREF, this, false);
NS_ENSURE_SUCCESS(rv, rv);
rv = prefs->AddObserver(RFP_TIMER_PREF, this, false);
NS_ENSURE_SUCCESS(rv, rv);
rv = prefs->AddObserver(RFP_TIMER_VALUE_PREF, this, false);
NS_ENSURE_SUCCESS(rv, rv);
rv = prefs->AddObserver(RFP_JITTER_VALUE_PREF, this, false);
NS_ENSURE_SUCCESS(rv, rv);
Preferences::AddAtomicBoolVarCache(&sPrivacyTimerPrecisionReduction,
RFP_TIMER_PREF,
true);
Preferences::AddAtomicUintVarCache(&sResolutionUSec,
RFP_TIMER_VALUE_PREF,
RFP_TIMER_VALUE_DEFAULT);
Preferences::AddAtomicBoolVarCache(&sJitter,
RFP_JITTER_VALUE_PREF,
RFP_JITTER_VALUE_DEFAULT);
Preferences::AddUintVarCache(&sVideoFramesPerSec,
RFP_SPOOFED_FRAMES_PER_SEC_PREF,
RFP_SPOOFED_FRAMES_PER_SEC_DEFAULT);
Preferences::AddUintVarCache(&sVideoDroppedRatio,
RFP_SPOOFED_DROPPED_RATIO_PREF,
RFP_SPOOFED_DROPPED_RATIO_DEFAULT);
Preferences::AddUintVarCache(&sTargetVideoRes,
RFP_TARGET_VIDEO_RES_PREF,
RFP_TARGET_VIDEO_RES_DEFAULT);
// We backup the original TZ value here.
const char* tzValue = PR_GetEnv("TZ");
if (tzValue) {
mInitialTZValue = nsCString(tzValue);
}
// Call Update here to cache the values of the prefs and set the timezone.
UpdateRFPPref();
return rv;
}
// This function updates only timing-related fingerprinting items
void
nsRFPService::UpdateTimers() {
MOZ_ASSERT(NS_IsMainThread());
if (sPrivacyResistFingerprinting || sPrivacyTimerPrecisionReduction) {
JS::SetTimeResolutionUsec(TimerResolution(), sJitter);
JS::SetReduceMicrosecondTimePrecisionCallback(nsRFPService::ReduceTimePrecisionAsUSecsWrapper);
} else if (sInitialized) {
JS::SetTimeResolutionUsec(0, false);
}
}
// This function updates every fingerprinting item necessary except timing-related
void
nsRFPService::UpdateRFPPref()
{
MOZ_ASSERT(NS_IsMainThread());
sPrivacyResistFingerprinting = Preferences::GetBool(RESIST_FINGERPRINTING_PREF);
UpdateTimers();
if (sPrivacyResistFingerprinting) {
PR_SetEnv("TZ=UTC");
} else if (sInitialized) {
// We will not touch the TZ value if 'privacy.resistFingerprinting' is false during
// the time of initialization.
if (!mInitialTZValue.IsEmpty()) {
nsAutoCString tzValue = NS_LITERAL_CSTRING("TZ=") + mInitialTZValue;
static char* tz = nullptr;
// If the tz has been set before, we free it first since it will be allocated
// a new value later.
if (tz) {
free(tz);
}
// PR_SetEnv() needs the input string been leaked intentionally, so
// we copy it here.
tz = ToNewCString(tzValue);
if (tz) {
PR_SetEnv(tz);
}
} else {
#if defined(XP_WIN)
// For Windows, we reset the TZ to an empty string. This will make Windows to use
// its system timezone.
PR_SetEnv("TZ=");
#else
// For POSIX like system, we reset the TZ to the /etc/localtime, which is the
// system timezone.
PR_SetEnv("TZ=:/etc/localtime");
#endif
}
}
nsJSUtils::ResetTimeZone();
}
void
nsRFPService::StartShutdown()
{
MOZ_ASSERT(NS_IsMainThread());
nsCOMPtr<nsIObserverService> obs = mozilla::services::GetObserverService();
if (obs) {
obs->RemoveObserver(this, NS_XPCOM_SHUTDOWN_OBSERVER_ID);
nsCOMPtr<nsIPrefBranch> prefs = do_GetService(NS_PREFSERVICE_CONTRACTID);
if (prefs) {
prefs->RemoveObserver(RESIST_FINGERPRINTING_PREF, this);
prefs->RemoveObserver(RFP_TIMER_PREF, this);
prefs->RemoveObserver(RFP_TIMER_VALUE_PREF, this);
prefs->RemoveObserver(RFP_JITTER_VALUE_PREF, this);
}
}
}
/* static */
void
nsRFPService::MaybeCreateSpoofingKeyCodes(const KeyboardLangs aLang,
const KeyboardRegions aRegion)
{
if (!sSpoofingKeyboardCodes) {
sSpoofingKeyboardCodes =
new nsDataHashtable<KeyboardHashKey, const SpoofingKeyboardCode*>();
}
if (KeyboardLang::EN == aLang) {
switch (aRegion) {
case KeyboardRegion::US:
MaybeCreateSpoofingKeyCodesForEnUS();
break;
}
}
}
/* static */
void
nsRFPService::MaybeCreateSpoofingKeyCodesForEnUS()
{
MOZ_ASSERT(sSpoofingKeyboardCodes);
static bool sInitialized = false;
const KeyboardLangs lang = KeyboardLang::EN;
const KeyboardRegions reg = KeyboardRegion::US;
if (sInitialized) {
return;
}
static const SpoofingKeyboardInfo spoofingKeyboardInfoTable[] = {
#define KEY(key_, _codeNameIdx, _keyCode, _modifier) \
{ KEY_NAME_INDEX_USE_STRING, NS_LITERAL_STRING(key_), \
{ CODE_NAME_INDEX_##_codeNameIdx, _keyCode, _modifier } },
#define CONTROL(keyNameIdx_, _codeNameIdx, _keyCode) \
{ KEY_NAME_INDEX_##keyNameIdx_, EmptyString(), \
{ CODE_NAME_INDEX_##_codeNameIdx, _keyCode, MODIFIER_NONE } },
#include "KeyCodeConsensus_En_US.h"
#undef CONTROL
#undef KEY
};
for (const auto& keyboardInfo : spoofingKeyboardInfoTable) {
KeyboardHashKey key(lang, reg,
keyboardInfo.mKeyIdx,
keyboardInfo.mKey);
MOZ_ASSERT(!sSpoofingKeyboardCodes->Lookup(key),
"Double-defining key code; fix your KeyCodeConsensus file");
sSpoofingKeyboardCodes->Put(key, &keyboardInfo.mSpoofingCode);
}
sInitialized = true;
}
/* static */
void
nsRFPService::GetKeyboardLangAndRegion(const nsAString& aLanguage,
KeyboardLangs& aLocale,
KeyboardRegions& aRegion)
{
nsAutoString langStr;
nsAutoString regionStr;
uint32_t partNum = 0;
for (const nsAString& part : aLanguage.Split('-')) {
if (partNum == 0) {
langStr = part;
} else {
regionStr = part;
break;
}
partNum++;
}
// We test each language here as well as the region. There are some cases that
// only the language is given, we will use the default region code when this
// happens. The default region should depend on the given language.
if (langStr.EqualsLiteral(RFP_KEYBOARD_LANG_STRING_EN)) {
aLocale = KeyboardLang::EN;
// Give default values first.
aRegion = KeyboardRegion::US;
if (regionStr.EqualsLiteral(RFP_KEYBOARD_REGION_STRING_US)) {
aRegion = KeyboardRegion::US;
}
} else {
// There is no spoofed keyboard locale for the given language. We use the
// default one in this case.
aLocale = RFP_DEFAULT_SPOOFING_KEYBOARD_LANG;
aRegion = RFP_DEFAULT_SPOOFING_KEYBOARD_REGION;
}
}
/* static */
bool
nsRFPService::GetSpoofedKeyCodeInfo(const nsIDocument* aDoc,
const WidgetKeyboardEvent* aKeyboardEvent,
SpoofingKeyboardCode& aOut)
{
MOZ_ASSERT(aKeyboardEvent);
KeyboardLangs keyboardLang = RFP_DEFAULT_SPOOFING_KEYBOARD_LANG;
KeyboardRegions keyboardRegion = RFP_DEFAULT_SPOOFING_KEYBOARD_REGION;
// If the document is given, we use the content language which is get from the
// document. Otherwise, we use the default one.
if (aDoc) {
nsAutoString language;
aDoc->GetContentLanguage(language);
// If the content-langauge is not given, we try to get langauge from the HTML
// lang attribute.
if (language.IsEmpty()) {
Element* elm = aDoc->GetHtmlElement();
if (elm) {
elm->GetLang(language);
}
}
// If two or more languages are given, per HTML5 spec, we should consider
// it as 'unknown'. So we use the default one.
if (!language.IsEmpty() &&
!language.Contains(char16_t(','))) {
language.StripWhitespace();
GetKeyboardLangAndRegion(language, keyboardLang,
keyboardRegion);
}
}
MaybeCreateSpoofingKeyCodes(keyboardLang, keyboardRegion);
KeyNameIndex keyIdx = aKeyboardEvent->mKeyNameIndex;
nsAutoString keyName;
if (keyIdx == KEY_NAME_INDEX_USE_STRING) {
keyName = aKeyboardEvent->mKeyValue;
}
KeyboardHashKey key(keyboardLang, keyboardRegion, keyIdx, keyName);
const SpoofingKeyboardCode* keyboardCode = sSpoofingKeyboardCodes->Get(key);
if (keyboardCode) {
aOut = *keyboardCode;
return true;
}
return false;
}
/* static */
bool
nsRFPService::GetSpoofedModifierStates(const nsIDocument* aDoc,
const WidgetKeyboardEvent* aKeyboardEvent,
const Modifiers aModifier,
bool& aOut)
{
MOZ_ASSERT(aKeyboardEvent);
// For modifier or control keys, we don't need to hide its modifier states.
if (aKeyboardEvent->mKeyNameIndex != KEY_NAME_INDEX_USE_STRING) {
return false;
}
// We will spoof the modifer state for Alt, Shift, AltGraph and Control.
if (aModifier & (MODIFIER_ALT | MODIFIER_SHIFT | MODIFIER_ALTGRAPH | MODIFIER_CONTROL)) {
SpoofingKeyboardCode keyCodeInfo;
if (GetSpoofedKeyCodeInfo(aDoc, aKeyboardEvent, keyCodeInfo)) {
aOut = keyCodeInfo.mModifierStates & aModifier;
return true;
}
}
return false;
}
/* static */
bool
nsRFPService::GetSpoofedCode(const nsIDocument* aDoc,
const WidgetKeyboardEvent* aKeyboardEvent,
nsAString& aOut)
{
MOZ_ASSERT(aKeyboardEvent);
SpoofingKeyboardCode keyCodeInfo;
if (!GetSpoofedKeyCodeInfo(aDoc, aKeyboardEvent, keyCodeInfo)) {
return false;
}
WidgetKeyboardEvent::GetDOMCodeName(keyCodeInfo.mCode, aOut);
// We need to change the 'Left' with 'Right' if the location indicates
// it's a right key.
if (aKeyboardEvent->mLocation ==
dom::KeyboardEventBinding::DOM_KEY_LOCATION_RIGHT &&
StringEndsWith(aOut, NS_LITERAL_STRING("Left"))) {
aOut.ReplaceLiteral(aOut.Length() - 4, 4, u"Right");
}
return true;
}
/* static */
bool
nsRFPService::GetSpoofedKeyCode(const nsIDocument* aDoc,
const WidgetKeyboardEvent* aKeyboardEvent,
uint32_t& aOut)
{
MOZ_ASSERT(aKeyboardEvent);
SpoofingKeyboardCode keyCodeInfo;
if (GetSpoofedKeyCodeInfo(aDoc, aKeyboardEvent, keyCodeInfo)) {
aOut = keyCodeInfo.mKeyCode;
return true;
}
return false;
}
NS_IMETHODIMP
nsRFPService::Observe(nsISupports* aObject, const char* aTopic,
const char16_t* aMessage)
{
if (!strcmp(NS_PREFBRANCH_PREFCHANGE_TOPIC_ID, aTopic)) {
NS_ConvertUTF16toUTF8 pref(aMessage);
if (pref.EqualsLiteral(RFP_TIMER_PREF) ||
pref.EqualsLiteral(RFP_TIMER_VALUE_PREF) ||
pref.EqualsLiteral(RFP_JITTER_VALUE_PREF)) {
UpdateTimers();
}
else if (pref.EqualsLiteral(RESIST_FINGERPRINTING_PREF)) {
UpdateRFPPref();
#if defined(XP_WIN)
if (!XRE_IsE10sParentProcess()) {
// Windows does not follow POSIX. Updates to the TZ environment variable
// are not reflected immediately on that platform as they are on UNIX
// systems without this call.
_tzset();
}
#endif
}
}
if (!strcmp(NS_XPCOM_SHUTDOWN_OBSERVER_ID, aTopic)) {
StartShutdown();
}
#if defined(XP_WIN)
else if (!strcmp(PROFILE_INITIALIZED_TOPIC, aTopic)) {
// If we're e10s, then we don't need to run this, since the child process will
// simply inherit the environment variable from the parent process, in which
// case it's unnecessary to call _tzset().
if (XRE_IsParentProcess() && !XRE_IsE10sParentProcess()) {
// Windows does not follow POSIX. Updates to the TZ environment variable
// are not reflected immediately on that platform as they are on UNIX
// systems without this call.
_tzset();
}
nsCOMPtr<nsIObserverService> obs = mozilla::services::GetObserverService();
NS_ENSURE_TRUE(obs, NS_ERROR_NOT_AVAILABLE);
nsresult rv = obs->RemoveObserver(this, PROFILE_INITIALIZED_TOPIC);
NS_ENSURE_SUCCESS(rv, rv);
}
#endif
return NS_OK;
}