gfx/angle/checkout/src/common/third_party/base/anglebase/numerics/safe_math_impl.h
author Jeff Gilbert <jgilbert@mozilla.com>
Fri, 15 Mar 2019 22:55:50 -0700
changeset 470378 167ee7c46b84bc9f0988896d74adc810ec2e495a
parent 406429 8ee92682ad1f3b67c110742bc910cf1af03ac48b
permissions -rw-r--r--
Bug 1520948 - Update ANGLE to chromium/3729..moz/firefox-68. Differential Revision: https://phabricator.services.mozilla.com/D23772

// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef ANGLEBASE_NUMERICS_SAFE_MATH_IMPL_H_
#define ANGLEBASE_NUMERICS_SAFE_MATH_IMPL_H_

#include <stddef.h>
#include <stdint.h>

#include <climits>
#include <cmath>
#include <cstdlib>
#include <limits>
#include <type_traits>

#include "anglebase/numerics/safe_conversions.h"

namespace angle
{

namespace base
{
namespace internal
{

// Everything from here up to the floating point operations is portable C++,
// but it may not be fast. This code could be split based on
// platform/architecture and replaced with potentially faster implementations.

// Integer promotion templates used by the portable checked integer arithmetic.
template <size_t Size, bool IsSigned>
struct IntegerForSizeAndSign;
template <>
struct IntegerForSizeAndSign<1, true>
{
    typedef int8_t type;
};
template <>
struct IntegerForSizeAndSign<1, false>
{
    typedef uint8_t type;
};
template <>
struct IntegerForSizeAndSign<2, true>
{
    typedef int16_t type;
};
template <>
struct IntegerForSizeAndSign<2, false>
{
    typedef uint16_t type;
};
template <>
struct IntegerForSizeAndSign<4, true>
{
    typedef int32_t type;
};
template <>
struct IntegerForSizeAndSign<4, false>
{
    typedef uint32_t type;
};
template <>
struct IntegerForSizeAndSign<8, true>
{
    typedef int64_t type;
};
template <>
struct IntegerForSizeAndSign<8, false>
{
    typedef uint64_t type;
};

// WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to
// support 128-bit math, then the ArithmeticPromotion template below will need
// to be updated (or more likely replaced with a decltype expression).

template <typename Integer>
struct UnsignedIntegerForSize
{
    typedef
        typename std::enable_if<std::numeric_limits<Integer>::is_integer,
                                typename IntegerForSizeAndSign<sizeof(Integer), false>::type>::type
            type;
};

template <typename Integer>
struct SignedIntegerForSize
{
    typedef
        typename std::enable_if<std::numeric_limits<Integer>::is_integer,
                                typename IntegerForSizeAndSign<sizeof(Integer), true>::type>::type
            type;
};

template <typename Integer>
struct TwiceWiderInteger
{
    typedef typename std::enable_if<
        std::numeric_limits<Integer>::is_integer,
        typename IntegerForSizeAndSign<sizeof(Integer) * 2,
                                       std::numeric_limits<Integer>::is_signed>::type>::type type;
};

template <typename Integer>
struct PositionOfSignBit
{
    static const typename std::enable_if<std::numeric_limits<Integer>::is_integer, size_t>::type
        value = CHAR_BIT * sizeof(Integer) - 1;
};

// This is used for UnsignedAbs, where we need to support floating-point
// template instantiations even though we don't actually support the operations.
// However, there is no corresponding implementation of e.g. CheckedUnsignedAbs,
// so the float versions will not compile.
template <typename Numeric,
          bool IsInteger = std::numeric_limits<Numeric>::is_integer,
          bool IsFloat   = std::numeric_limits<Numeric>::is_iec559>
struct UnsignedOrFloatForSize;

template <typename Numeric>
struct UnsignedOrFloatForSize<Numeric, true, false>
{
    typedef typename UnsignedIntegerForSize<Numeric>::type type;
};

template <typename Numeric>
struct UnsignedOrFloatForSize<Numeric, false, true>
{
    typedef Numeric type;
};

// Helper templates for integer manipulations.

template <typename T>
constexpr bool HasSignBit(T x)
{
    // Cast to unsigned since right shift on signed is undefined.
    return !!(static_cast<typename UnsignedIntegerForSize<T>::type>(x) >>
              PositionOfSignBit<T>::value);
}

// This wrapper undoes the standard integer promotions.
template <typename T>
constexpr T BinaryComplement(T x)
{
    return static_cast<T>(~x);
}

// Here are the actual portable checked integer math implementations.
// TODO(jschuh): Break this code out from the enable_if pattern and find a clean
// way to coalesce things into the CheckedNumericState specializations below.

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer, T>::type
CheckedAdd(T x, T y, RangeConstraint *validity)
{
    // Since the value of x+y is undefined if we have a signed type, we compute
    // it using the unsigned type of the same size.
    typedef typename UnsignedIntegerForSize<T>::type UnsignedDst;
    UnsignedDst ux      = static_cast<UnsignedDst>(x);
    UnsignedDst uy      = static_cast<UnsignedDst>(y);
    UnsignedDst uresult = static_cast<UnsignedDst>(ux + uy);
    // Addition is valid if the sign of (x + y) is equal to either that of x or
    // that of y.
    if (std::numeric_limits<T>::is_signed)
    {
        if (HasSignBit(BinaryComplement(static_cast<UnsignedDst>((uresult ^ ux) & (uresult ^ uy)))))
        {
            *validity = RANGE_VALID;
        }
        else
        {  // Direction of wrap is inverse of result sign.
            *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW;
        }
    }
    else
    {  // Unsigned is either valid or overflow.
        *validity = BinaryComplement(x) >= y ? RANGE_VALID : RANGE_OVERFLOW;
    }
    return static_cast<T>(uresult);
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer, T>::type
CheckedSub(T x, T y, RangeConstraint *validity)
{
    // Since the value of x+y is undefined if we have a signed type, we compute
    // it using the unsigned type of the same size.
    typedef typename UnsignedIntegerForSize<T>::type UnsignedDst;
    UnsignedDst ux      = static_cast<UnsignedDst>(x);
    UnsignedDst uy      = static_cast<UnsignedDst>(y);
    UnsignedDst uresult = static_cast<UnsignedDst>(ux - uy);
    // Subtraction is valid if either x and y have same sign, or (x-y) and x have
    // the same sign.
    if (std::numeric_limits<T>::is_signed)
    {
        if (HasSignBit(BinaryComplement(static_cast<UnsignedDst>((uresult ^ ux) & (ux ^ uy)))))
        {
            *validity = RANGE_VALID;
        }
        else
        {  // Direction of wrap is inverse of result sign.
            *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW;
        }
    }
    else
    {  // Unsigned is either valid or underflow.
        *validity = x >= y ? RANGE_VALID : RANGE_UNDERFLOW;
    }
    return static_cast<T>(uresult);
}

// Integer multiplication is a bit complicated. In the fast case we just
// we just promote to a twice wider type, and range check the result. In the
// slow case we need to manually check that the result won't be truncated by
// checking with division against the appropriate bound.
template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && sizeof(T) * 2 <= sizeof(uintmax_t),
                        T>::type
CheckedMul(T x, T y, RangeConstraint *validity)
{
    typedef typename TwiceWiderInteger<T>::type IntermediateType;
    IntermediateType tmp = static_cast<IntermediateType>(x) * static_cast<IntermediateType>(y);
    *validity            = DstRangeRelationToSrcRange<T>(tmp);
    return static_cast<T>(tmp);
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed &&
                            (sizeof(T) * 2 > sizeof(uintmax_t)),
                        T>::type
CheckedMul(T x, T y, RangeConstraint *validity)
{
    // If either side is zero then the result will be zero.
    if (!x || !y)
    {
        *validity = RANGE_VALID;
        return static_cast<T>(0);
    }
    else if (x > 0)
    {
        if (y > 0)
            *validity = x <= std::numeric_limits<T>::max() / y ? RANGE_VALID : RANGE_OVERFLOW;
        else
            *validity = y >= std::numeric_limits<T>::min() / x ? RANGE_VALID : RANGE_UNDERFLOW;
    }
    else
    {
        if (y > 0)
            *validity = x >= std::numeric_limits<T>::min() / y ? RANGE_VALID : RANGE_UNDERFLOW;
        else
            *validity = y >= std::numeric_limits<T>::max() / x ? RANGE_VALID : RANGE_OVERFLOW;
    }

    return static_cast<T>(x * y);
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed &&
                            (sizeof(T) * 2 > sizeof(uintmax_t)),
                        T>::type
CheckedMul(T x, T y, RangeConstraint *validity)
{
    *validity = (y == 0 || x <= std::numeric_limits<T>::max() / y) ? RANGE_VALID : RANGE_OVERFLOW;
    return static_cast<T>(x * y);
}

// Division just requires a check for an invalid negation on signed min/-1.
template <typename T>
T CheckedDiv(T x,
             T y,
             RangeConstraint *validity,
             typename std::enable_if<std::numeric_limits<T>::is_integer, int>::type = 0)
{
    if (std::numeric_limits<T>::is_signed && x == std::numeric_limits<T>::min() &&
        y == static_cast<T>(-1))
    {
        *validity = RANGE_OVERFLOW;
        return std::numeric_limits<T>::min();
    }

    *validity = RANGE_VALID;
    return static_cast<T>(x / y);
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed,
                        T>::type
CheckedMod(T x, T y, RangeConstraint *validity)
{
    *validity = y > 0 ? RANGE_VALID : RANGE_INVALID;
    return static_cast<T>(x % y);
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
                        T>::type
CheckedMod(T x, T y, RangeConstraint *validity)
{
    *validity = RANGE_VALID;
    return static_cast<T>(x % y);
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed,
                        T>::type
CheckedNeg(T value, RangeConstraint *validity)
{
    *validity = value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW;
    // The negation of signed min is min, so catch that one.
    return static_cast<T>(-value);
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
                        T>::type
CheckedNeg(T value, RangeConstraint *validity)
{
    // The only legal unsigned negation is zero.
    *validity = value ? RANGE_UNDERFLOW : RANGE_VALID;
    return static_cast<T>(-static_cast<typename SignedIntegerForSize<T>::type>(value));
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed,
                        T>::type
CheckedAbs(T value, RangeConstraint *validity)
{
    *validity = value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW;
    return static_cast<T>(std::abs(value));
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
                        T>::type
CheckedAbs(T value, RangeConstraint *validity)
{
    // T is unsigned, so |value| must already be positive.
    *validity = RANGE_VALID;
    return value;
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed,
                        typename UnsignedIntegerForSize<T>::type>::type
CheckedUnsignedAbs(T value)
{
    typedef typename UnsignedIntegerForSize<T>::type UnsignedT;
    return value == std::numeric_limits<T>::min()
               ? static_cast<UnsignedT>(std::numeric_limits<T>::max()) + 1
               : static_cast<UnsignedT>(std::abs(value));
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
                        T>::type
CheckedUnsignedAbs(T value)
{
    // T is unsigned, so |value| must already be positive.
    return static_cast<T>(value);
}

// These are the floating point stubs that the compiler needs to see. Only the
// negation operation is ever called.
#define ANGLEBASE_FLOAT_ARITHMETIC_STUBS(NAME)                                         \
    template <typename T>                                                              \
    typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type Checked##NAME( \
        T, T, RangeConstraint *)                                                       \
    {                                                                                  \
        NOTREACHED();                                                                  \
        return static_cast<T>(0);                                                      \
    }

ANGLEBASE_FLOAT_ARITHMETIC_STUBS(Add)
ANGLEBASE_FLOAT_ARITHMETIC_STUBS(Sub)
ANGLEBASE_FLOAT_ARITHMETIC_STUBS(Mul)
ANGLEBASE_FLOAT_ARITHMETIC_STUBS(Div)
ANGLEBASE_FLOAT_ARITHMETIC_STUBS(Mod)

#undef ANGLEBASE_FLOAT_ARITHMETIC_STUBS

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedNeg(T value,
                                                                               RangeConstraint *)
{
    return static_cast<T>(-value);
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedAbs(T value,
                                                                               RangeConstraint *)
{
    return static_cast<T>(std::abs(value));
}

// Floats carry around their validity state with them, but integers do not. So,
// we wrap the underlying value in a specialization in order to hide that detail
// and expose an interface via accessors.
enum NumericRepresentation
{
    NUMERIC_INTEGER,
    NUMERIC_FLOATING,
    NUMERIC_UNKNOWN
};

template <typename NumericType>
struct GetNumericRepresentation
{
    static const NumericRepresentation value =
        std::numeric_limits<NumericType>::is_integer
            ? NUMERIC_INTEGER
            : (std::numeric_limits<NumericType>::is_iec559 ? NUMERIC_FLOATING : NUMERIC_UNKNOWN);
};

template <typename T, NumericRepresentation type = GetNumericRepresentation<T>::value>
class CheckedNumericState
{};

// Integrals require quite a bit of additional housekeeping to manage state.
template <typename T>
class CheckedNumericState<T, NUMERIC_INTEGER>
{
  private:
    T value_;
    RangeConstraint validity_ : CHAR_BIT;  // Actually requires only two bits.

  public:
    template <typename Src, NumericRepresentation type>
    friend class CheckedNumericState;

    CheckedNumericState() : value_(0), validity_(RANGE_VALID) {}

    template <typename Src>
    CheckedNumericState(Src value, RangeConstraint validity)
        : value_(static_cast<T>(value)),
          validity_(GetRangeConstraint(validity | DstRangeRelationToSrcRange<T>(value)))
    {
        static_assert(std::numeric_limits<Src>::is_specialized, "Argument must be numeric.");
    }

    // Copy constructor.
    template <typename Src>
    CheckedNumericState(const CheckedNumericState<Src> &rhs)
        : value_(static_cast<T>(rhs.value())),
          validity_(GetRangeConstraint(rhs.validity() | DstRangeRelationToSrcRange<T>(rhs.value())))
    {}

    template <typename Src>
    explicit CheckedNumericState(
        Src value,
        typename std::enable_if<std::numeric_limits<Src>::is_specialized, int>::type = 0)
        : value_(static_cast<T>(value)), validity_(DstRangeRelationToSrcRange<T>(value))
    {}

    RangeConstraint validity() const { return validity_; }
    T value() const { return value_; }
};

// Floating points maintain their own validity, but need translation wrappers.
template <typename T>
class CheckedNumericState<T, NUMERIC_FLOATING>
{
  private:
    T value_;

  public:
    template <typename Src, NumericRepresentation type>
    friend class CheckedNumericState;

    CheckedNumericState() : value_(0.0) {}

    template <typename Src>
    CheckedNumericState(
        Src value,
        RangeConstraint validity,
        typename std::enable_if<std::numeric_limits<Src>::is_integer, int>::type = 0)
    {
        switch (DstRangeRelationToSrcRange<T>(value))
        {
            case RANGE_VALID:
                value_ = static_cast<T>(value);
                break;

            case RANGE_UNDERFLOW:
                value_ = -std::numeric_limits<T>::infinity();
                break;

            case RANGE_OVERFLOW:
                value_ = std::numeric_limits<T>::infinity();
                break;

            case RANGE_INVALID:
                value_ = std::numeric_limits<T>::quiet_NaN();
                break;

            default:
                NOTREACHED();
        }
    }

    template <typename Src>
    explicit CheckedNumericState(
        Src value,
        typename std::enable_if<std::numeric_limits<Src>::is_specialized, int>::type = 0)
        : value_(static_cast<T>(value))
    {}

    // Copy constructor.
    template <typename Src>
    CheckedNumericState(const CheckedNumericState<Src> &rhs) : value_(static_cast<T>(rhs.value()))
    {}

    RangeConstraint validity() const
    {
        return GetRangeConstraint(value_ <= std::numeric_limits<T>::max(),
                                  value_ >= -std::numeric_limits<T>::max());
    }
    T value() const { return value_; }
};

// For integers less than 128-bit and floats 32-bit or larger, we have the type
// with the larger maximum exponent take precedence.
enum ArithmeticPromotionCategory
{
    LEFT_PROMOTION,
    RIGHT_PROMOTION
};

template <typename Lhs,
          typename Rhs = Lhs,
          ArithmeticPromotionCategory Promotion =
              (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value) ? LEFT_PROMOTION
                                                                  : RIGHT_PROMOTION>
struct ArithmeticPromotion;

template <typename Lhs, typename Rhs>
struct ArithmeticPromotion<Lhs, Rhs, LEFT_PROMOTION>
{
    typedef Lhs type;
};

template <typename Lhs, typename Rhs>
struct ArithmeticPromotion<Lhs, Rhs, RIGHT_PROMOTION>
{
    typedef Rhs type;
};

// We can statically check if operations on the provided types can wrap, so we
// can skip the checked operations if they're not needed. So, for an integer we
// care if the destination type preserves the sign and is twice the width of
// the source.
template <typename T, typename Lhs, typename Rhs>
struct IsIntegerArithmeticSafe
{
    static const bool value =
        !std::numeric_limits<T>::is_iec559 &&
        StaticDstRangeRelationToSrcRange<T, Lhs>::value == NUMERIC_RANGE_CONTAINED &&
        sizeof(T) >= (2 * sizeof(Lhs)) &&
        StaticDstRangeRelationToSrcRange<T, Rhs>::value != NUMERIC_RANGE_CONTAINED &&
        sizeof(T) >= (2 * sizeof(Rhs));
};

}  // namespace internal
}  // namespace base

}  // namespace angle

#endif  // ANGLEBASE_NUMERICS_SAFE_MATH_IMPL_H_