tools/jprof/leaky.cpp
author Mantaroh Yoshinaga <mantaroh@gmail.com>
Fri, 13 Oct 2017 09:46:39 +0900
changeset 385979 0466471b9f67aa6a60bf3fb98515532e8a53095d
parent 367722 6a629adbb62a299d7208373d1c6f375149d2afdb
child 448947 6f3709b3878117466168c40affa7bca0b60cf75b
permissions -rw-r--r--
Bug 1185236 - Shorten print job name when GTK version is older than 3.18.2. r=karlt Since GTK 3.18.2, GTK allows setting job name with more than 255 bytes. As result, CUPS received the IPP error. (RFC 2911, Section 4.3.1) This patch will shorten print job name, if runtime GTK version is older than 3.18.2. MozReview-Commit-ID: EfB87Bvo6hX

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "leaky.h"
#include "intcnt.h"

#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#ifndef NTO
#include <getopt.h>
#endif
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>

#ifdef NTO
#include <mem.h>
#endif

#ifndef FALSE
#define FALSE 0
#endif
#ifndef TRUE
#define TRUE 1
#endif

static const u_int DefaultBuckets = 10007;	// arbitrary, but prime
static const u_int MaxBuckets = 1000003;	// arbitrary, but prime

//----------------------------------------------------------------------

int main(int argc, char** argv)
{
  leaky* l = new leaky;

  l->initialize(argc, argv);
  l->outputfd = stdout;

  for (int i = 0; i < l->numLogFiles; i++) {
    if (l->output_dir || l->numLogFiles > 1) {
      char name[2048]; // XXX fix
      if (l->output_dir)
        snprintf(name,sizeof(name),"%s/%s.html",l->output_dir,argv[l->logFileIndex + i]);
      else
        snprintf(name,sizeof(name),"%s.html",argv[l->logFileIndex + i]);

      fprintf(stderr,"opening %s\n",name);
      l->outputfd = fopen(name,"w");
      // if an error we won't process the file
    }
    if (l->outputfd) { // paranoia
      l->open(argv[l->logFileIndex + i]);

      if (l->outputfd != stderr) {
        fclose(l->outputfd);
        l->outputfd = nullptr;
      }
    }
  }

  return 0;
}

char *
htmlify(const char *in)
{
  const char *p = in;
  char *out, *q;
  int n = 0;
  size_t newlen;

  // Count the number of '<' and '>' in the input.
  while ((p = strpbrk(p, "<>")))
  {
    ++n;
    ++p;
  }

  // Knowing the number of '<' and '>', we can calculate the space
  // needed for the output string.
  newlen = strlen(in) + n * 3 + 1;
  out = new char[newlen];

  // Copy the input to the output, with substitutions.
  p = in;
  q = out;
  do
  {
    if (*p == '<')
    {
      strcpy(q, "&lt;");
      q += 4;
    }
    else if (*p == '>')
    {
      strcpy(q, "&gt;");
      q += 4;
    }
    else
    {
      *q++ = *p;
    }
    p++;
  } while (*p);
  *q = '\0';

  return out;
}

leaky::leaky()
{
  applicationName = nullptr;
  progFile = nullptr;

  quiet = true;
  showAddress = false;
  showThreads = false;
  stackDepth = 100000;
  onlyThread = 0;
  cleo = false;

  mappedLogFile = -1;
  firstLogEntry = lastLogEntry = 0;

  sfd = -1;
  externalSymbols = 0;
  usefulSymbols = 0;
  numExternalSymbols = 0;
  lowestSymbolAddr = 0;
  highestSymbolAddr = 0;

  loadMap = nullptr;

  collect_last  = false;
  collect_start = -1;
  collect_end   = -1;
}

leaky::~leaky()
{
}

void leaky::usageError()
{
  fprintf(stderr, "Usage: %s [-v] [-t] [-e exclude] [-i include] [-s stackdepth] [--last] [--all] [--start n [--end m]] [--cleo] [--output-dir dir] prog log [log2 ...]\n", (char*) applicationName);
  fprintf(stderr,
          "\t-v: verbose\n"
          "\t-t | --threads: split threads\n"
          "\t--only-thread n: only profile thread N\n"
          "\t-i include-id: stack must include specified id\n"
          "\t-e exclude-id: stack must NOT include specified id\n"
          "\t-s stackdepth: Limit depth looked at from captured stack frames\n"
          "\t--last: only profile the last capture section\n"
          "\t--start n [--end m]: profile n to m (or end) capture sections\n"
          "\t--cleo: format output for 'cleopatra' display\n"
          "\t--output-dir dir: write output files to dir\n"
          "\tIf there's one log, output goes to stdout unless --output-dir is set\n"
          "\tIf there are more than one log, output files will be named with .html added\n"
          );
  exit(-1);
}

static struct option longopts[] = {
    { "threads", 0, nullptr, 't' },
    { "only-thread", 1, nullptr, 'T' },
    { "last", 0, nullptr, 'l' },
    { "start", 1, nullptr, 'x' },
    { "end", 1, nullptr, 'n' },
    { "cleo",0, nullptr, 'c' },
    { "output-dir", 1, nullptr, 'd' },
    { nullptr, 0, nullptr, 0 },
};

void leaky::initialize(int argc, char** argv)
{
  applicationName = argv[0];
  applicationName = strrchr(applicationName, '/');
  if (!applicationName) {
    applicationName = argv[0];
  } else {
    applicationName++;
  }

  int arg;
  int errflg = 0;
  int longindex = 0;

  onlyThread = 0;
  output_dir = nullptr;
  cleo = false;

  // XXX tons of cruft here left over from tracemalloc
  // XXX The -- options shouldn't need short versions, or they should be documented
  while (((arg = getopt_long(argc, argv, "adEe:gh:i:r:Rs:tT:qvx:ln:",longopts,&longindex)) != -1)) {
    switch (arg) {
      case '?':
      default:
        fprintf(stderr,"error: unknown option %c\n",optopt);
	errflg++;
	break;
      case 'a':
	break;
      case 'A': // not implemented
	showAddress = true;
	break;
      case 'c':
        cleo = true;
        break;
      case 'd':
        output_dir = optarg; // reference to an argv pointer
	break;
      case 'R':
	break;
      case 'e':
	exclusions.add(optarg);
	break;
      case 'g':
	break;
      case 'r': // not implemented
	roots.add(optarg);
	if (!includes.IsEmpty()) {
	  errflg++;
	}
	break;
      case 'i':
	includes.add(optarg);
	if (!roots.IsEmpty()) {
	  errflg++;
	}
	break;
      case 'h':
	break;
      case 's':
	stackDepth = atoi(optarg);
	if (stackDepth < 2) {
	  stackDepth = 2;
	}
	break;
      case 'x':
        // --start
        collect_start = atoi(optarg);
	break;
      case 'n':
        // --end
        collect_end = atoi(optarg);
        break;
      case 'l':
        // --last
        collect_last = true;
        break;
      case 'q':
        break;
      case 'v':
        quiet = !quiet;
        break;
      case 't':
        showThreads = true;
	break;
      case 'T':
        showThreads = true;
        onlyThread = atoi(optarg);
	break;
    }
  }
  if (errflg || ((argc - optind) < 2)) {
    usageError();
  }
  progFile = argv[optind++];
  logFileIndex = optind;
  numLogFiles  = argc - optind;
  if (!quiet)
    fprintf(stderr,"numlogfiles = %d\n",numLogFiles);
}

static void* mapFile(int fd, u_int flags, off_t* sz)
{
  struct stat sb;
  if (fstat(fd, &sb) < 0) {
    perror("fstat");
    exit(-1);
  }
  void* base = mmap(0, (int)sb.st_size, flags, MAP_PRIVATE, fd, 0);
  if (!base) {
    perror("mmap");
    exit(-1);
  }
  *sz = sb.st_size;
  return base;
}

void leaky::LoadMap()
{
  malloc_map_entry mme;
  char name[1000];

  if (!loadMap) {
    // all files use the same map
    int fd = ::open(M_MAPFILE, O_RDONLY);
    if (fd < 0) {
      perror("open: " M_MAPFILE);
      exit(-1);
    }
    for (;;) {
      int nb = read(fd, &mme, sizeof(mme));
      if (nb != sizeof(mme)) break;
      nb = read(fd, name, mme.nameLen);
      if (nb != (int)mme.nameLen) break;
      name[mme.nameLen] = 0;
      if (!quiet) {
        fprintf(stderr,"%s @ %lx\n", name, mme.address);
      }

      LoadMapEntry* lme = new LoadMapEntry;
      lme->address = mme.address;
      lme->name = strdup(name);
      lme->next = loadMap;
      loadMap = lme;
    }
    close(fd);
  }
}

void leaky::open(char *logFile)
{
  int threadArray[100]; // should auto-expand
  int last_thread = -1;
  int numThreads = 0;
  int section = -1;
  bool collecting = false;

  LoadMap();

  setupSymbols(progFile);

  // open up the log file
  if (mappedLogFile)
    ::close(mappedLogFile);

  mappedLogFile = ::open(logFile, O_RDONLY);
  if (mappedLogFile < 0) {
    perror("open");
    exit(-1);
  }
  off_t size;
  firstLogEntry = (malloc_log_entry*) mapFile(mappedLogFile, PROT_READ, &size);
  lastLogEntry = (malloc_log_entry*)((char*)firstLogEntry + size);

  if (!collect_last || collect_start < 0) {
    collecting = true;
  }

  // First, restrict it to the capture sections specified (all, last, start/end)
  // This loop walks through all the call stacks we recorded
  for (malloc_log_entry* lep=firstLogEntry;
       lep < lastLogEntry;
       lep = reinterpret_cast<malloc_log_entry*>(&lep->pcs[lep->numpcs])) {

    if (lep->flags & JP_FIRST_AFTER_PAUSE) {
      section++;
      if (collect_last) {
        firstLogEntry = lep;
        numThreads = 0;
        collecting = true;
      }
      if (collect_start == section) {
        collecting = true;
        firstLogEntry = lep;
      }
      if (collect_end == section) {
        collecting = false;
        lastLogEntry = lep;
      }
      if (!quiet)
        fprintf(stderr,"New section %d: first=%p, last=%p, collecting=%d\n",
                section,(void*)firstLogEntry,(void*)lastLogEntry,collecting);
    }

    // Capture thread info at the same time

    // Find all the threads captured

    // pthread/linux docs say the signal can be delivered to any thread in
    // the process.  In practice, it appears in Linux that it's always
    // delivered to the thread that called setitimer(), and each thread can
    // have a separate itimer.  There's a support library for gprof that
    // overlays pthread_create() to set timers in any threads you spawn.
    if (showThreads && collecting) {
      if (lep->thread != last_thread)
      {
        int i;
        for (i=0; i<numThreads; i++)
        {
          if (lep->thread == threadArray[i])
            break;
        }
        if (i == numThreads &&
            i < (int) (sizeof(threadArray)/sizeof(threadArray[0])))
        {
          threadArray[i] = lep->thread;
          numThreads++;
          if (!quiet)
            fprintf(stderr,"new thread %d\n",lep->thread);
        }
      }
    }
  }
  if (!quiet)
    fprintf(stderr,"Done collecting: sections %d: first=%p, last=%p, numThreads=%d\n",
            section,(void*)firstLogEntry,(void*)lastLogEntry,numThreads);

  if (!cleo) {
    fprintf(outputfd,"<html><head><title>Jprof Profile Report</title></head><body>\n");
    fprintf(outputfd,"<h1><center>Jprof Profile Report</center></h1>\n");
  }

  if (showThreads)
  {
    fprintf(stderr,"Num threads %d\n",numThreads);

    if (!cleo) {
      fprintf(outputfd,"<hr>Threads:<p><pre>\n");
      for (int i=0; i<numThreads; i++)
      {
        fprintf(outputfd,"   <a href=\"#thread_%d\">%d</a>  ",
                threadArray[i],threadArray[i]);
        if ((i+1)%10 == 0)
          fprintf(outputfd,"<br>\n");
      }
      fprintf(outputfd,"</pre>");
    }

    for (int i=0; i<numThreads; i++)
    {
      if (!onlyThread || onlyThread == threadArray[i])
        analyze(threadArray[i]);
    }
  }
  else
  {
    analyze(0);
  }

  if (!cleo)
    fprintf(outputfd,"</pre></body></html>\n");
}

//----------------------------------------------------------------------


static int symbolOrder(void const* a, void const* b)
{
  Symbol const** ap = (Symbol const **)a;
  Symbol const** bp = (Symbol const **)b;
  return (*ap)->address == (*bp)->address ? 0 :
    ((*ap)->address > (*bp)->address ? 1 : -1);
}

void leaky::ReadSharedLibrarySymbols()
{
  LoadMapEntry* lme = loadMap;
  while (nullptr != lme) {
    ReadSymbols(lme->name, lme->address);
    lme = lme->next;
  }
}

void leaky::setupSymbols(const char *fileName)
{
  if (usefulSymbols == 0) {
    // only read once!

    // Read in symbols from the program
    ReadSymbols(fileName, 0);

    // Read in symbols from the .so's
    ReadSharedLibrarySymbols();

    if (!quiet) {
      fprintf(stderr,"A total of %d symbols were loaded\n", usefulSymbols);
    }

    // Now sort them
    qsort(externalSymbols, usefulSymbols, sizeof(Symbol *), symbolOrder);
    lowestSymbolAddr = externalSymbols[0]->address;
    highestSymbolAddr = externalSymbols[usefulSymbols-1]->address;
  }
}

// Binary search the table, looking for a symbol that covers this
// address.
int leaky::findSymbolIndex(u_long addr)
{
  u_int base = 0;
  u_int limit = usefulSymbols - 1;
  Symbol** end = &externalSymbols[limit];
  while (base <= limit) {
    u_int midPoint = (base + limit)>>1;
    Symbol** sp = &externalSymbols[midPoint];
    if (addr < (*sp)->address) {
      if (midPoint == 0) {
	return -1;
      }
      limit = midPoint - 1;
    } else {
      if (sp+1 < end) {
	if (addr < (*(sp+1))->address) {
	  return midPoint;
	}
      } else {
	return midPoint;
      }
      base = midPoint + 1;
    }
  }
  return -1;
}

Symbol* leaky::findSymbol(u_long addr)
{
  int idx = findSymbolIndex(addr);

  if(idx<0) {
    return nullptr;
  } else {
    return externalSymbols[idx];
  }
}

//----------------------------------------------------------------------

bool leaky::excluded(malloc_log_entry* lep)
{
  if (exclusions.IsEmpty()) {
    return false;
  }

  char** pcp = &lep->pcs[0];
  u_int n = lep->numpcs;
  for (u_int i = 0; i < n; i++, pcp++) {
    Symbol* sp = findSymbol((u_long) *pcp);
    if (sp && exclusions.contains(sp->name)) {
      return true;
    }
  }
  return false;
}

bool leaky::included(malloc_log_entry* lep)
{
  if (includes.IsEmpty()) {
    return true;
  }

  char** pcp = &lep->pcs[0];
  u_int n = lep->numpcs;
  for (u_int i = 0; i < n; i++, pcp++) {
    Symbol* sp = findSymbol((u_long) *pcp);
    if (sp && includes.contains(sp->name)) {
      return true;
    }
  }
  return false;
}

//----------------------------------------------------------------------

void leaky::displayStackTrace(FILE* out, malloc_log_entry* lep)
{
  char** pcp = &lep->pcs[0];
  u_int n = (lep->numpcs < stackDepth) ? lep->numpcs : stackDepth;
  for (u_int i = 0; i < n; i++, pcp++) {
    u_long addr = (u_long) *pcp;
    Symbol* sp = findSymbol(addr);
    if (sp) {
      fputs(sp->name, out);
      if (showAddress) {
	fprintf(out, "[%p]", (char*)addr);
      }
    }
    else {
      fprintf(out, "<%p>", (char*)addr);
    }
    fputc(' ', out);
  }
  fputc('\n', out);
}

void leaky::dumpEntryToLog(malloc_log_entry* lep)
{
  printf("%ld\t", lep->delTime);
  printf(" --> ");
  displayStackTrace(outputfd, lep);
}

void leaky::generateReportHTML(FILE *fp, int *countArray, int count, int thread)
{
  fprintf(fp,"<center>");
  if (showThreads)
  {
    fprintf(fp,"<hr><A NAME=thread_%d><b>Thread: %d</b></A><p>",
            thread,thread);
  }
  fprintf(fp,"<A href=#flat_%d>flat</A><b> | </b><A href=#hier_%d>hierarchical</A>",
          thread,thread);
  fprintf(fp,"</center><P><P><P>\n");

  int totalTimerHits = count;
  int *rankingTable = new int[usefulSymbols];

  for(int cnt=usefulSymbols; --cnt>=0; rankingTable[cnt]=cnt);

  // Drat.  I would use ::qsort() but I would need a global variable and my
  // intro-pascal professor threatened to flunk anyone who used globals.
  // She damaged me for life :-) (That was 1986.  See how much influence
  // she had.  I don't remember her name but I always feel guilty about globals)

  // Shell Sort. 581130733 is the max 31 bit value of h = 3h+1
  int mx, i, h;
  for(mx=usefulSymbols/9, h=581130733; h>0; h/=3) {
    if(h<mx) {
      for(i = h-1; i<usefulSymbols; i++) {
        int j, tmp=rankingTable[i], val = countArray[tmp];
	for(j = i; (j>=h) && (countArray[rankingTable[j-h]]<val); j-=h) {
	  rankingTable[j] = rankingTable[j-h];
	}
	rankingTable[j] = tmp;
      }
    }
  }

  // Ok, We are sorted now.  Let's go through the table until we get to
  // functions that were never called.  Right now we don't do much inside
  // this loop.  Later we can get callers and callees into it like gprof
  // does
  fprintf(fp,
          "<h2><A NAME=hier_%d></A><center><a href=\"http://dxr.mozilla.org/mozilla-central/source/tools/jprof/README.html#hier\">Hierarchical Profile</a></center></h2><hr>\n",
          thread);
  fprintf(fp, "<pre>\n");
  fprintf(fp, "%6s %6s         %4s      %s\n",
          "index", "Count", "Hits", "Function Name");

  for(i=0; i<usefulSymbols && countArray[rankingTable[i]]>0; i++) {
    Symbol **sp=&externalSymbols[rankingTable[i]];

    (*sp)->cntP.printReport(fp, this, rankingTable[i], totalTimerHits);

    char *symname = htmlify((*sp)->name);
    fprintf(fp, "%6d %6d (%3.1f%%)%s <a name=%d>%8d (%3.1f%%)</a>%s <b>%s</b>\n",
            rankingTable[i],
            (*sp)->timerHit, ((*sp)->timerHit*1000/totalTimerHits)/10.0,
            ((*sp)->timerHit*1000/totalTimerHits)/10.0 >= 10.0 ? "" : " ",
            rankingTable[i], countArray[rankingTable[i]],
            (countArray[rankingTable[i]]*1000/totalTimerHits)/10.0,
            (countArray[rankingTable[i]]*1000/totalTimerHits)/10.0 >= 10.0 ? "" : " ",
            symname);
    delete [] symname;

    (*sp)->cntC.printReport(fp, this, rankingTable[i], totalTimerHits);

    fprintf(fp, "<hr>\n");
  }
  fprintf(fp,"</pre>\n");

  // OK, Now we want to print the flat profile.  To do this we resort on
  // the hit count.

  // Cut-N-Paste Shell sort from above.  The Ranking Table has already been
  // populated, so we do not have to reinitialize it.
  for(mx=usefulSymbols/9, h=581130733; h>0; h/=3) {
    if(h<mx) {
      for(i = h-1; i<usefulSymbols; i++) {
	int j, tmp=rankingTable[i], val = externalSymbols[tmp]->timerHit;
	for(j = i;
	  (j>=h) && (externalSymbols[rankingTable[j-h]]->timerHit<val); j-=h) {
	  rankingTable[j] = rankingTable[j-h];
	}
	rankingTable[j] = tmp;
      }
    }
  }

  // Pre-count up total counter hits, to get a percentage.
  // I wanted the total before walking the list, if this
  // double-pass over externalSymbols gets slow we can
  // do single-pass and print this out after the loop finishes.
  totalTimerHits = 0;
  for(i=0;
      i<usefulSymbols && externalSymbols[rankingTable[i]]->timerHit>0; i++) {
    Symbol **sp=&externalSymbols[rankingTable[i]];
    totalTimerHits += (*sp)->timerHit;
  }
  if (totalTimerHits == 0)
    totalTimerHits = 1;

  if (totalTimerHits != count)
    fprintf(stderr,"Hit count mismatch: count=%d; totalTimerHits=%d",
            count,totalTimerHits);

  fprintf(fp,"<h2><A NAME=flat_%d></A><center><a href=\"http://dxr.mozilla.org/mozilla-central/source/tools/jprof/README.html#flat\">Flat Profile</a></center></h2><br>\n",
          thread);
  fprintf(fp, "<pre>\n");

  fprintf(fp, "Total hit count: %d\n", totalTimerHits);
  fprintf(fp, "Count %%Total  Function Name\n");
  // Now loop for as long as we have timer hits
  for(i=0;
      i<usefulSymbols && externalSymbols[rankingTable[i]]->timerHit>0; i++) {

    Symbol **sp=&externalSymbols[rankingTable[i]];

    char *symname = htmlify((*sp)->name);
    fprintf(fp, "<a href=\"#%d\">%3d   %-2.1f     %s</a>\n",
            rankingTable[i], (*sp)->timerHit,
            ((float)(*sp)->timerHit/(float)totalTimerHits)*100.0, symname);
    delete [] symname;
  }
}

void leaky::analyze(int thread)
{
  int *countArray = new int[usefulSymbols];
  int *flagArray  = new int[usefulSymbols];

  //Zero our function call counter
  memset(countArray, 0, sizeof(countArray[0])*usefulSymbols);

  // reset hit counts
  for(int i=0; i<usefulSymbols; i++) {
    externalSymbols[i]->timerHit = 0;
    externalSymbols[i]->regClear();
  }

  // The flag array is used to prevent counting symbols multiple times
  // if functions are called recursively.  In order to keep from having
  // to zero it on each pass through the loop, we mark it with the value
  // of stacks on each trip through the loop.  This means we can determine
  // if we have seen this symbol for this stack trace w/o having to reset
  // from the prior stacktrace.
  memset(flagArray, -1, sizeof(flagArray[0])*usefulSymbols);

  if (cleo)
    fprintf(outputfd,"m-Start\n");

  // This loop walks through all the call stacks we recorded
  // --last, --start and --end can restrict it, as can excludes/includes
  stacks = 0;
  for(malloc_log_entry* lep=firstLogEntry;
    lep < lastLogEntry;
    lep = reinterpret_cast<malloc_log_entry*>(&lep->pcs[lep->numpcs])) {

    if ((thread != 0 && lep->thread != thread) ||
        excluded(lep) || !included(lep))
    {
      continue;
    }

    ++stacks; // How many stack frames did we collect

    u_int n = (lep->numpcs < stackDepth) ? lep->numpcs : stackDepth;
    char** pcp = &lep->pcs[n-1];
    int idx=-1, parrentIdx=-1;  // Init idx incase n==0
    if (cleo) {
      // This loop walks through every symbol in the call stack.  By walking it
      // backwards we know who called the function when we get there.
      char type = 's';
      for (int i=n-1; i>=0; --i, --pcp) {
        idx = findSymbolIndex(reinterpret_cast<u_long>(*pcp));

        if(idx>=0) {
          // Skip over bogus __restore_rt frames that realtime profiling
          // can introduce.
          if (i > 0 && !strcmp(externalSymbols[idx]->name, "__restore_rt")) {
            --pcp;
            --i;
            idx = findSymbolIndex(reinterpret_cast<u_long>(*pcp));
            if (idx < 0) {
              continue;
            }
          }
          Symbol **sp=&externalSymbols[idx];
          char *symname = htmlify((*sp)->name);
          fprintf(outputfd,"%c-%s\n",type,symname);
          delete [] symname;
        }
        // else can't find symbol - ignore
        type = 'c';
      }
    } else {
      // This loop walks through every symbol in the call stack.  By walking it
      // backwards we know who called the function when we get there.
      for (int i=n-1; i>=0; --i, --pcp) {
        idx = findSymbolIndex(reinterpret_cast<u_long>(*pcp));

        if(idx>=0) {
          // Skip over bogus __restore_rt frames that realtime profiling
          // can introduce.
          if (i > 0 && !strcmp(externalSymbols[idx]->name, "__restore_rt")) {
            --pcp;
            --i;
            idx = findSymbolIndex(reinterpret_cast<u_long>(*pcp));
            if (idx < 0) {
              continue;
            }
          }

          // If we have not seen this symbol before count it and mark it as seen
          if(flagArray[idx]!=stacks && ((flagArray[idx]=stacks) || true)) {
            ++countArray[idx];
          }

          // We know who we are and we know who our parrent is.  Count this
          if(parrentIdx>=0) {
            externalSymbols[parrentIdx]->regChild(idx);
            externalSymbols[idx]->regParrent(parrentIdx);
          }
          // inside if() so an unknown in the middle of a stack won't break
          // the link!
          parrentIdx=idx;
        }
      }

      // idx should be the function that we were in when we received the signal.
      if(idx>=0) {
        ++externalSymbols[idx]->timerHit;
      }

    }
  }
  if (!cleo)
    generateReportHTML(outputfd, countArray, stacks, thread);
}

void FunctionCount::printReport(FILE *fp, leaky *lk, int parent, int total)
{
    const char *fmt = "                      <A href=\"#%d\">%8d (%3.1f%%)%s %s</A>%s\n";

    int nmax, tmax=((~0U)>>1);

    do {
	nmax=0;
	for(int j=getSize(); --j>=0;) {
	    int cnt = getCount(j);
	    if(cnt==tmax) {
		int idx = getIndex(j);
		char *symname = htmlify(lk->indexToName(idx));
                fprintf(fp, fmt, idx, getCount(j),
                        getCount(j)*100.0/total,
                        getCount(j)*100.0/total >= 10.0 ? "" : " ",
                        symname,
                        parent == idx ? " (self)" : "");
		delete [] symname;
	    } else if(cnt<tmax && cnt>nmax) {
	        nmax=cnt;
	    }
	}
    } while((tmax=nmax)>0);
}